New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. In Vitro AChE and BACE1 Inhibitory Activity
2.3. Molecular Docking
2.4. Molecular Dynamics
2.5. QSAR
3. Materials and Methods
3.1. Chemistry
3.1.1. General Information
3.1.2. Synthesis and Spectroscopic Analysis of Benzamides
- N,N′-(1,3-phenylene)bis(3,4,5-trimethoxybenzamide) JW1
- N,N′-(1,3-phenylene)bis(3,5-dimethoxybenzamide) JW2
- N,N′-(1,3-phenylene)bis(3,4-dimethoxybenzamide) JW3
- N,N′-(1,3-phenylene)bis(3-methoxybenzamide) JW4
- N,N′-(1,4-phenylene)bis(3,4,5-trimethoxybenzamide) JW5
- N,N′-(1,4-phenylene)bis(3,5-dimethoxybenzamide) JW6
- N,N′-(1,4-phenylene)bis(3,4-dimethoxybenzamide) JW7
- N,N′-(1,4-phenylene)bis(3-methoxybenzamide) JW8
- 3,4,5-trimethoxy-N-(3-nitrophenyl)benzamide MB1
- 3,4,5-trimethoxy-N-(3,4,5-trimethoxyphenyl)benzamide MB3
- 3,4,5-trimethoxy-N-(3,4,5-trimethoxybenzyl)benzamide MB4
3.2. Biological Activity
3.2.1. In Vitro Inhibition Studies on AChE
3.2.2. In Vitro Inhibition Studies on β-Secretase (BACE1)
3.3. Molecular Docking
3.4. Molecular Dynamics
3.5. QSAR Modeling
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benek, O.; Korabecny, J.; Soukup, O. A Perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2020, 41, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, I.; Sorrentino, L.; Paoletti, A.; Marra, R.; Arbitrio, M. The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211029113. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Shah, D.; Patel, Y.; Patel, S.; Mehta, M.; Bambharoliya, T. A review on recent development of novel heterocycles as acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Curr. Drug Targets 2023, 24, 225–246. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Pacha, N.M.; Abdin, S.M.; Omar, H.A.; Alniss, H.; Al-Tel, T.H. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 2020, 40, 339–384. [Google Scholar] [CrossRef]
- Bhatia, R.; Chakrabarti, S.S.; Kaur, U.; Parashar, G.; Banerjee, A.; Rawal, R.K. Multi-target directed ligands (MTDLs): Promising coumarin hybrids for Alzheimer’s disease. Curr. Alzheimer Res. 2021, 18, 802–830. [Google Scholar] [CrossRef]
- Sharma, A.; Bharate, S.B. Synthesis and biological evaluation of coumarin triazoles as dual inhibitors of cholinesterases and β-secretase. ACS Omega 2023, 8, 11161–11176. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, A.; Nuthakki, V.K.; Bhatt, S.; Nandi, U.; Bharate, S.B. Design, synthesis, and structure-activity relationship of caffeine-based triazoles as dual AChE and BACE-1 inhibitors. Drug Dev. Res. 2022, 83, 1803–1821. [Google Scholar] [CrossRef]
- Asif, M. Pharmacological Potential of Benzamide Analogues and their Uses in Medicinal Chemistry. Mod. Chem. Appl. 2016, 4, 194. [Google Scholar] [CrossRef]
- Arciszewska, K.; Pućkowska, A.; Wróbel, A.; Drozdowska, D. Carbocyclic Analogues of Distamycin and Netropsin. Mini Rev. Med. Chem. 2019, 19, 98–113. [Google Scholar] [CrossRef]
- Koca, M.; Güller, U.; Güller, P.; Dağalan, Z.; Nişancı, B. Design and synthesis of novel dual cholinesterase inhibitors: In vitro inhibition studies supported with molecular docking. Chem. Biodivers. 2022, 19, e202200015. [Google Scholar] [CrossRef] [PubMed]
- Kilic, B.; Bardakkaya, M.; Ilıkcı Sagkan, R.; Aksakal, F.; Shakila, S.; Dogruer, D.S. New thiourea and benzamide derivatives of 2-aminothiazole as multi-target agents against Alzheimer’s disease: Design, synthesis, and biological evaluation. Bioorg Chem. 2023, 131, 106322. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Wang, L.; Guan, Q.; Yang, H.; Chen, T.; Liu, Y.; Li, Q.; Lyu, W.; Lu, X.; Chen, Y.; et al. N-Benzyl benzamide derivatives as selective sub-nanomolar butyrylcholinesterase inhibitors for possible treatment in advanced Alzheimer’s disease. J. Med. Chem. 2022, 65, 11365–11387. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.H.; Liu, L.B.; Liu, H.R.; Tang, J.J.; Kang, L.; Wu, H.; Cui, P.; Yan, J. Structure-activity relationship investigation of benzamide and picolinamide derivatives containing dimethylamine side chain as acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2018, 33, 110–114. [Google Scholar] [CrossRef]
- Krátký, M.; Štěpánková, Š.; Houngbedji, N.H.; Vosátka, R.; Vorčáková, K.; Vinšová, J. 2-Hydroxy-N-phenylbenzamides and their esters inhibit acetylcholinesterase and butyrylcholinesterase. Biomolecules 2019, 9, 698. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, K.; Ma, L.; Xiong, B.; Fu, Y.; Yu, H.; Wang, W.; Wang, X.; Hu, D.; Peng, H.; et al. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and β-secretase. Bioorg Med. Chem. 2009, 17, 1600–1613. [Google Scholar] [CrossRef]
- Fernandez-Bachiller, M.I.; Perez, C.; Monjas, L.; Rademann, J.; Rodriguez-Franco, M.I. New tacrine-4-Oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem. 2012, 55, 1303–1317. [Google Scholar] [CrossRef]
- Dominguez, J.L.; Fernandez-Nieto, F.; Castro, M.; Catto, M.; Paleo, M.R.; Porto, S.; Sardina, F.J.; Brea, J.M.; Carotti, A.; Villaverde, M.C.; et al. Computer-aided structure-based design of multitarget leads for Alzheimer’s disease. J. Chem. Inf. Model. 2015, 55, 135–148. [Google Scholar] [CrossRef]
- Gabr, M.T.; Abdel-Raziq, M.S. Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorg Chem. 2018, 80, 245–252. [Google Scholar] [CrossRef]
- Ferreira, J.P.S.; Albuquerque, H.M.T.; Cardoso, S.M.; Silva, A.M.S.; Silva, V.L.M. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem. 2021, 221, 113492. [Google Scholar] [CrossRef]
- Peng, D.Y.; Sun, Q.; Zhu, X.L.; Lin, H.Y.; Chen, Q.; Yu, N.X.; Yang, W.C.; Yang, G.F. Design, synthesis, and bioevaluation of benzamides: Novel acetylcholinesterase inhibitors with multifunctions on butylcholinesterase, Abeta aggregation, and secretase. Bioorg Med. Chem. 2012, 20, 6739–6750. [Google Scholar] [CrossRef]
- García Marín, I.D.; Camarillo López, R.H.; Martínez, O.A.; Padilla-Martínez, I.I.; Correa-Basurto, J.; Rosales-Hernández, M.C. New compounds from heterocyclic amines scaffold with multitarget inhibitory activity on Aβ aggregation, AChE, and BACE1 in the Alzheimer disease. PLoS ONE 2022, 17, e0269129. [Google Scholar] [CrossRef] [PubMed]
- González-Naranjo, P.; Pérez, C.; González-Sánchez, M.; Gironda-Martínez, A.; Ulzurrun, E.; Bartolomé, F.; Rubio-Fernández, M.; Martin-Requero, A.; Campillo, N.E.; Páez, J.A. Multitarget drugs as potential therapeutic agents for Alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J. Enz Inhib. Med. Chem. 2022, 37, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Dhamodharan, G.; Mohan, C.G. Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Mol. Divers. 2022, 26, 1501–1517. [Google Scholar] [CrossRef] [PubMed]
- Banoo, R.; Nuthakki, V.K.; Abdullaha, M.; Sharma, M.; Bharate, S.B. Blood-brain barrier permeable benzylpiperidin-4-yl-linked benzylamino benzamides as dual cholinesterase inhibitors. Drug Dev. Res. 2022, 83, 1791–1802. [Google Scholar] [CrossRef] [PubMed]
- Maliszewski, D.; Wróbel, A.; Kolesińska, B.; Frączyk, J.; Drozdowska, D. 1,3,5- Triazine nitrogen mustards with different peptide group as innovative candidates for AChE and BACE1 Inhibitors. Molecules 2021, 26, 3942. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today 2004, 9, 430–431. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System; Version 2.2.3; Copyright Schrodinger LLC; Schrödinger: New York, NY, USA, 2021.
- BIOVIA Discovery Studio. BIOVIA Discovery Studio Visualizer; Dassault Systèmes: San Diego, CA, USA, 2022. [Google Scholar]
- Dileep, K.V.; Ihara, K.; Mishima-Tsumagari, C.; Kukimoto-Niino, M.; Yonemochi, M.; Hanada, K.; Shirouzu, M.; Zhang, K.Y.J. Crystal structure of human acetylcholinesterase in complex with tacrine: Implications for drug discovery. Int. J. Biol. Macromol. 2022, 210, 172–181. [Google Scholar] [CrossRef]
- Scott, J.D.; Li, S.W.; Brunskill, A.P.J.; Chen, X.; Cox, K.; Cumming, J.N.; Forman, M.; Gilbert, E.J.; Hodgson, R.A.; Hyde, L.A.; et al. Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease. J. Med. Chem. 2016, 59, 10435–10450. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.C.; Kollman, P.A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129–145. [Google Scholar] [CrossRef]
- Agarwal, R.; Smith, J.C. Speed vs Accuracy: Effect on Ligand Pose Accuracy of Varying Box Size and Exhaustiveness in AutoDock Vina. Mol. Inform. 2023, 42, 2200188. [Google Scholar] [CrossRef] [PubMed]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mackerell, A.D., Jr.; Feig, M.; Brooks III, C.L. Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J. Comput. Chem. 2004, 25, 1400–1415. [Google Scholar] [CrossRef] [PubMed]
- Buck, M.; Bouguet-Bonnet, S.; Pastor, R.W.; MacKerell, A.D., Jr. Importance of the CMAP correction to the CHARMM22 protein force field: Dynamics of hen lysozyme. Biophys. J. 2006, 90, L36–L38. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, J.; Jo, S.; Brooks III, C.L.; Lee, H.S.; Im, W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J. Comput. Chem. 2017, 38, 1879–1886. [Google Scholar] [CrossRef]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
Compound | AChE IC50 (µM) a | BACE1 IC50 (µM) b | ||||
---|---|---|---|---|---|---|
IC50 (µM) | Docking Score (kcal/mol) | Ligand Efficiency (kcal/mol*atom) | IC50 (µM) | Docking Score (kcal/mol) | Ligand Efficiency (kcal/mol*atom) | |
JW1 | 0.77 ± 0.018 | −9.8 | 0.27 | 54.44 ± 1.30 | −7.6 | 0.21 |
JW2 | 2.57 ± 0.063 | −10.3 | 0.32 | 73.98 ± 1.61 | −8.0 | 0.25 |
JW3 | 0.41 ± 0.028 | −10.4 | 0.32 | 40.16 ± 8.12 | −7.7 | 0.24 |
JW4 | 1.20 ± 0.013 | −11.2 | 0.40 | 81.37 ± 4.11 | −8.2 | 0.29 |
JW5 | 0.068 ± 0.058 | −10.0 | 0.28 | 9.29 ± 3.02 | −7.3 | 0.20 |
JW6 | 0.19 ± 0.033 | −10.7 | 0.33 | 16.66 ± 0.25 | −8.0 | 0.25 |
JW7 | 0.07 ± 0.003 | −10.8 | 0.34 | 12.76 ± 0.23 | −8.1 | 0.25 |
JW8 | 0.056 ± 0.043 | −11.2 | 0.40 | 9.01 ± 0.28 | −8.1 | 0.29 |
MB1 | 0.67 ± 0.008 | −9.4 | 0.39 | 40.45 ± 2.20 | −7.0 | 0.29 |
MB3 | 0.11 ± 0.078 | −8.8 | 0.32 | 20.22 ± 5.13 | −6.4 | 0.27 |
MB4 | 1.17 ± 0.015 | −8.7 | 0.31 | 87.67 ± 6.22 | −6.8 | 0.25 |
donepezil | 0.046 ± 0.013 | −11.6 | 0.41 | - c | −8.7 | 0.31 |
tacrine | 0.274 ± 0.08 | −8.9 | 0.59 | - c | −6.6 | 0.23 |
quercetin d | - c | −9.3 | 0.42 | 4.89 ± 2.31 | −8.4 | 0.56 |
verubecestat | −8.9 | 0.40 |
Ligand | AChE | Ligand | BACE1 | ||||
---|---|---|---|---|---|---|---|
Residue | Type | Occupancy (%) | Residue | Type | Occupancy (%) | ||
Donepezil | TYR-124 | A | 62.5 | Verubecestat | GLN-134 | A | 7.5 |
TYR-125 | D | 12.5 | LYS-168 | A/D | 5 | ||
TYR-337 | A | 9.5 | LEU-91 | A | 4.5 | ||
TRP-286 | A | 9 | THR-94 | A | 2 | ||
TYR-341 | D | 6.5 | GLY-291 | A | 2 | ||
PHE-295 | A | 4.5 | Quercetin | ASP-289 | D | 54 | |
SER-293 | D | 2 | SER-290 | A | 7 | ||
TYR-72 | D | 2 | THR-94 | A | 5.5 | ||
SER-203 | D | 2 | THR-390 | A | 4.5 | ||
Tacrine | TYR-124 | A | 62.3 | TYR-259 | A | 4.5 | |
TYR-337 | A | 9.5 | LYS-285 | A | 2.5 | ||
SER-203 | D | 3.5 | JW4 | ASP-93 | D | 53.5 | |
HIS-447 | D | 2 | GLY-291 | D | 50 | ||
JW4 | TYR-337 | A | 59 | ILE-171 | A | 2.5 | |
TYR-124 | D | 33 | THR-94 | D | 3 | ||
HIS-447 | D | 19 | THR-293 | D | 2 | ||
TYR-124 | A | 8.5 | JW7 | TRP-137 | A | 47 | |
GLY-121 | A | 4.5 | ASN-294 | D/A | 37.5 | ||
GLU-202 | D | 2.5 | THR-293 | A | 9.5 | ||
TRP-86 | A | 2 | GLN-133 | A | 5 | ||
JW7 | TYR-124 | A | 62.5 | SER-386 | A | 7 | |
TYR-337 | A | 9.5 | GLY-291 | D | 5.5 | ||
SER-203 | D | 3.5 | VAL-130 | D | 2.5 | ||
HIS-447 | D | 2 | ASP-93 | D | 2 | ||
JW8 | PHE-295 | A | 67 | JW8 | TYR-132 | D | 9.5 |
PHE-338 | A | 6 | GLN-134 | A | 8 | ||
TYR-337 | A | 2.5 | LYS-168 | D | 7.5 | ||
GLU-292 | D | 2.5 | TYR-129 | A | 3 | ||
SER-293 | A | 2.5 |
Ligand | H-Bond D/A | logP | Rat Acute Oral Toxicity | Human Carcinogenicity/ Hepa/Skin/Respiratory/ AMES/Eye-Toxicity | Lipiński/Pfizer/GSK/ Golden Triangle Rule | QED 1 | Sa-Score 2 | HIA 3/F20% 4/ PPB 5/BBB 6/ PGPinh 7/PGBsub 8 |
---|---|---|---|---|---|---|---|---|
JW4 | 2/6 | 4.026 | L | L/L/H/L/M/L | Y/Y/N/Y | 0.676 | 1.662 | Y/Y/Y/N/N/Y |
JW7 | 2/8 | 3.147 | L | L/L/L/y/M/L | Y/Y/N/Y | 0.549 | 1.667 | Y/Y/Y/Y/N/N |
JW8 | 2/6 | 3.957 | M | L/L/H/L/M/L | Y/Y/Y/Y | 0.676 | 1.618 | Y/Y/Y/N/N/Y |
DON | 0/4 | 4.313 | L | L/M/L/H/L/L | Y/N/N/Y | 0.747 | 2.667 | Y/Y/Y/Y/N/N |
QUE | 5/7 | 2.155 | L | L/L/H/L/M/L | Y/Y/Y/Y | 0.434 | 2.545 | Y/N/Y/Y/N/N |
TAC | 2/2 | 2.739 | L | H/M/H/H/H/L | Y/Y/Y/N | 0.559 | 1.641 | Y/N/Y/Y/N/Y |
VER | 3/8 | 1.603 | H | M/H/M/H/L/L | Y/Y/N/Y | 0.795 | 3.246 | Y/Y/Y/Y/N/Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdowska, D.; Maliszewski, D.; Wróbel, A.; Ratkiewicz, A.; Sienkiewicz, M. New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking. Int. J. Mol. Sci. 2023, 24, 14901. https://doi.org/10.3390/ijms241914901
Drozdowska D, Maliszewski D, Wróbel A, Ratkiewicz A, Sienkiewicz M. New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking. International Journal of Molecular Sciences. 2023; 24(19):14901. https://doi.org/10.3390/ijms241914901
Chicago/Turabian StyleDrozdowska, Danuta, Dawid Maliszewski, Agnieszka Wróbel, Artur Ratkiewicz, and Michał Sienkiewicz. 2023. "New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking" International Journal of Molecular Sciences 24, no. 19: 14901. https://doi.org/10.3390/ijms241914901
APA StyleDrozdowska, D., Maliszewski, D., Wróbel, A., Ratkiewicz, A., & Sienkiewicz, M. (2023). New Benzamides as Multi-Targeted Compounds: A Study on Synthesis, AChE and BACE1 Inhibitory Activity and Molecular Docking. International Journal of Molecular Sciences, 24(19), 14901. https://doi.org/10.3390/ijms241914901