The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia
Abstract
:1. Introduction
2. Results
2.1. Effect of Pharmacological Treatment (CLZ or JNJ) on NOS Isoforms in the Vehicle Groups
2.2. Effect of Pharmacological Treatment (CLZ or JNJ) on NOS Isoforms in the PFC of the SZ-Like Groups Compared to Controls
2.3. Effect of Pharmacological Treatment (CLZ or JNJ) on NOS Isoforms in the HPC of the SZ-Like Groups Compared to Controls
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Pharmacological Intervention
4.2.1. Postnatal Ketamine Mouse Model
4.2.2. Pharmacological Treatment (during Adolescent Period)
4.3. Molecular Tissue Analyses (in Adulthood)
4.3.1. Tissue Lysates
4.3.2. Western Blot Analyses
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, A.C.; Bigdeli, T.B.; Docherty, A.R.; Bacanu, S.; Lee, D.; De Candia, T.R.; Moscati, A.; Thiselton, D.L.; Maher, B.S.; Wormley, B.; et al. Meta-analysis of Positive and Negative Symptoms Reveals Schizophrenia Modifier Genes: Table 1. Schizophr. Bull. 2015, 42, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Maksymetz, J.; Moran, S.P.; Conn, P.J. Targeting metabotropic glutamate receptors for novel treatments of schizophrenia. Mol. Brain 2017, 10, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas, S.; Boloc, D.; Rodríguez, N.; Mezquida, G.; Amoretti, S.; Cuesta, M.J.; González-Peñas, J.; Alcon, A.G.; Lobo, A.; González-Pinto, A.; et al. Examining Gene–Environment Interactions Using Aggregate Scores in a First-Episode Psychosis Cohort. Schizophr. Bull. 2020, 46, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Mistry, S.; Harrison, J.R.; Smith, D.J.; Escott-Price, V.; Zammit, S. The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: A systematic review. J. Affect. Disord. 2018, 234, 148–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura, A.G.; Mezquida, G.; Martínez-Pinteño, A.; Gassó, P.; Rodriguez, N.; Moreno-Izco, L.; Amoretti, S.; Bioque, M.; Lobo, A.; González-Pinto, A.; et al. Link between cognitive polygenic risk scores and clinical progression after a first-psychotic episode. Psychol. Med. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pinteño, A.; García-Cerro, S.; Mas, S.; Torres, T.; Boloc, D.; Rodríguez, N.; Lafuente, A.; Gassó, P.; Arnaiz, J.A.; Parellada, E. The positive allosteric modulator of the mGlu2 receptor JNJ-46356479 partially improves neuropathological deficits and schizophrenia-like behaviors in a postnatal ketamine mice model. J. Psychiatr. Res. 2020, 126, 8–18. [Google Scholar] [CrossRef]
- Glausier, J.; Lewis, D. Dendritic spine pathology in schizophrenia. Neuroscience 2013, 251, 90–107. [Google Scholar] [CrossRef] [Green Version]
- Bygrave, A.M.; Kilonzo, K.; Kullmann, D.M.; Bannerman, D.M.; Kätzel, D. Can N-Methyl-D-Aspartate Receptor Hypofunction in Schizophrenia Be Localized to an Individual Cell Type? Front. Psychiatry 2019, 10, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, D.O.; Jeffries, C.D.; Do, K.Q. Potential Roles of Redox Dysregulation in the Development of Schizophrenia. Biol. Psychiatry 2020, 88, 326–336. [Google Scholar] [CrossRef]
- Cassano, T.; Pace, L.; Bedse, G.; Lavecchia, A.M.; De Marco, F.; Gaetani, S.; Serviddio, G. Glutamate and Mitochondria: Two Prominent Players in the Oxidative Stress-Induced Neurodegeneration. Curr. Alzheimer Res. 2016, 13, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Parellada, E.; Gassó, P. Glutamate and microglia activation as a driver of dendritic apoptosis: A core pathophysiological mechanism to understand schizophrenia. Transl. Psychiatry 2021, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yuede, C.M.; Wozniak, D.F.; Creeley, C.E.; Taylor, G.T.; Olney, J.W.; Farber, N.B. Behavioral Consequences of NMDA Antagonist-Induced Neuroapoptosis in the Infant Mouse Brain. PLoS ONE 2010, 5, e11374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tendilla-Beltrán, H.; Sanchez-Islas, N.D.C.; Marina-Ramos, M.; Leza, J.C.; Flores, G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog. Neurobiol. 2020, 199, 101967. [Google Scholar] [CrossRef]
- Maas, D.; Valles, A.; Martens, G. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl. Psychiatry 2017, 7, e1171. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.M.; Tsien, R.W.; Goff, D.C.; Halassa, M.M. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr. Res. 2015, 167, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Leza, J.C.; García-Bueno, B.; Bioque, M.; Arango, C.; Parellada, M.; Do, K.; O’Donnell, P.; Bernardo, M. Inflammation in schizophrenia: A question of balance. Neurosci. Biobehav. Rev. 2015, 55, 612–626. [Google Scholar] [CrossRef]
- Wei, C.; Sun, Y.; Chen, N.; Chen, S.; Xiu, M.; Zhang, X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 2019, 111, 104473. [Google Scholar] [CrossRef]
- Boll, K.M.; Noto, C.; Bonifácio, K.L.; Bortolasci, C.; Gadelha, A.; Bressan, R.A.; Barbosa, D.S.; Maes, M.; Moreira, E. Oxidative and nitrosative stress biomarkers in chronic schizophrenia. Psychiatry Res. 2017, 253, 43–48. [Google Scholar] [CrossRef]
- Shim, S.; Shuman, M.; Duncan, E. An emerging role of cGMP in the treatment of schizophrenia: A review. Schizophr. Res. 2016, 170, 226–231. [Google Scholar] [CrossRef]
- Prast, H.; Philippu, A. Nitric oxide as modulator of neuronal function. Prog. Neurobiol. 2001, 64, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Falcón-Moya, R.; Pérez-Rodríguez, M.; Prius-Mengual, J.; Andrade-Talavera, Y.; Arroyo-García, L.E.; Pérez-Artés, R.; Mateos-Aparicio, P.; Guerra-Gomes, S.; Oliveira, J.F.; Flores, G.; et al. Astrocyte-mediated switch in spike timing-dependent plasticity during hippocampal development. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kalchbrenner, N.; Blunsom, P. Recurrent Continuous Translation Models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; pp. 1700–1709. [Google Scholar] [CrossRef]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M.G. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Nasyrova, R.F.; Ivashchenko, D.; Ivanov, M.V.; Neznanov, N.G. Role of nitric oxide and related molecules in schizophrenia pathogenesis: Biochemical, genetic and clinical aspects. Front. Physiol. 2015, 6, 139. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.J.; Fan, X. Current understanding on the role of nitric oxide and therapeutic potential of NO supplementation in schizophrenia. Schizophr. Res. 2020, 222, 23–30. [Google Scholar] [CrossRef]
- Dawson, T.M.; Bredt, D.S.; Fotuhi, M.; Hwang, P.M.; Snyder, S.H. Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissues. Proc. Natl. Acad. Sci. USA 1991, 88, 7797–7801. [Google Scholar] [CrossRef] [Green Version]
- Hope, B.T.; Michael, G.J.; Knigge, K.M.; Vincent, S.R. Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA 1991, 88, 2811–2814. [Google Scholar] [CrossRef] [Green Version]
- Akbarian, S.; Viñuela, A.; Kim, J.J.; Potkin, S.G.; Bunney, W.E.; Jones, E.G. Distorted Distribution of Nicotinamide-Adenine Dinucleotide Phosphate—Diaphorase Neurons in Temporal Lobe of Schizophrenics Implies Anomalous Cortical Development. Arch. Gen. Psychiatry 1993, 50, 178–187. [Google Scholar] [CrossRef]
- Bloom, F.E. Advancing a Neurodevelopmental Origin for Schizophrenia. Arch. Gen. Psychiatry 1993, 50, 224–227. [Google Scholar] [CrossRef]
- Yao, J.K.; Leonard, S.; Reddy, R.D. Increased Nitric Oxide Radicals in Postmortem Brain from Patients with Schizophrenia. Schizophr. Bull. 2004, 30, 923–934. [Google Scholar] [CrossRef] [Green Version]
- Lauer, M.; Johannes, S.; Fritzen, S.; Senitz, D.; Riederer, P.; Reif, A. Morphological Abnormalities in Nitric-Oxide-Synthase-Positive Striatal Interneurons of Schizophrenic Patients. Neuropsychobiology 2005, 52, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Nishiguchi, N.; Yanagi, M.; Fukutake, M.; Mouri, K.; Kitamura, N.; Hashimoto, T.; Shirakawa, O.; Hishimoto, A. A putative cis-acting polymorphism in the NOS1 gene is associated with schizophrenia and NOS1 immunoreactivity in the postmortem brain. Schizophr. Res. 2010, 121, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.-G.; Bogerts, B.; Keilhoff, G. The many faces of nitric oxide in schizophrenia. A review. Schizophr. Res. 2005, 78, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Morales-Medina, J.C.; Aguilar-Alonso, P.; Di Cerbo, A.; Iannitti, T.; Flores, G. New insights on nitric oxide: Focus on animal models of schizophrenia. Behav. Brain Res. 2021, 409, 113304. [Google Scholar] [CrossRef] [PubMed]
- Biojone, C.; Casarotto, P.; Joca, S.; Castrén, E. Interplay Between Nitric Oxide and Brain-Derived Neurotrophic Factor in Neuronal Plasticity. CNS Neurol. Disord. Drug Targets 2015, 14, 979–987. [Google Scholar] [CrossRef]
- Pitsikas, N. The role of nitric oxide donors in schizophrenia: Basic studies and clinical applications. Eur. J. Pharmacol. 2015, 766, 106–113. [Google Scholar] [CrossRef]
- Eraldemir, F.C.; Ozsoy, D.; Bek, S.; Kir, H.; Dervisoglu, E. The relationship between brain-derived neurotrophic factor levels, oxidative and nitrosative stress and depressive symptoms: A study on peritoneal dialysis. Ren. Fail. 2015, 37, 722–726. [Google Scholar] [CrossRef]
- Cid, J.M.; Tresadern, G.; Vega, J.A.; de Lucas, A.I.; del Cerro, A.; Matesanz, E.; Linares, M.L.; García, A.; Iturrino, L.; Pérez-Benito, L.; et al. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). J. Med. Chem. 2016, 59, 8495–8507. [Google Scholar] [CrossRef]
- Li, M.-L.; Hu, X.-Q.; Li, F.; Gao, W.-J. Perspectives on the mGluR2/3 agonists as a therapeutic target for schizophrenia: Still promising or a dead end? Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 60, 66–76. [Google Scholar] [CrossRef]
- Lavreysen, H.; Ahnaou, A.; Drinkenburg, W.; Langlois, X.; Mackie, C.; Pype, S.; Lütjens, R.; Le Poul, E.; Trabanco, A.A.; Nuñez, J.M.C. Pharmacological and pharmacokinetic properties of JNJ-40411813, a positive allosteric modulator of the mGlu2 receptor. Pharmacol. Res. Perspect. 2014, 3, e00096. [Google Scholar] [CrossRef]
- Jeevakumar, V.; Driskill, C.; Paine, A.; Sobhanian, M.; Vakil, H.; Morris, B.; Ramos, J.; Kroener, S. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Behav. Brain Res. 2015, 282, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wu, C.F.; Yang, J.Y.; He, X.; Bi, X.L.; Yu, L.; Guo, T. Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2006, 30, 1523–1528. [Google Scholar] [CrossRef] [PubMed]
- Black, M.; Simmonds, J.; Senyah, Y.; Wettstein, J. Neonatal nitric oxide synthase inhibition: Social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology 2002, 42, 414–420. [Google Scholar] [CrossRef]
- Płoska, A.; Cieślik, P.; Siekierzycka, A.; Kalinowski, L.; Wierońska, J.M. Neurochemical changes underlying cognitive impairment in olfactory bulbectomized rats and the impact of the mGlu5-positive allosteric modulator CDPPB. Brain Res. 2021, 1768, 147577. [Google Scholar] [CrossRef]
- Gautier-Sauvigné, S.; Colas, D.; Parmantier, P.; Clement, P.; Gharib, A.; Sarda, N.; Cespuglio, R. Nitric oxide and sleep. Sleep Med. Rev. 2005, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Förstermann, U.; Sessa, W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012, 33, 829–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Arco, A.; Mora, F. Neurotransmitters and prefrontal cortex–limbic system interactions: Implications for plasticity and psychiatric disorders. J. Neural Transm. 2009, 116, 941–952. [Google Scholar] [CrossRef]
- Lauriat, T.L.; Shiue, L.; Haroutunian, V.; Verbitsky, M.; Ares, M.; Ospina, L.; McInnes, L.A. Developmental expression profile ofquaking, a candidate gene for schizophrenia, and its target genes in human prefrontal cortex and hippocampus shows regional specificity. J. Neurosci. Res. 2007, 86, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.B.; Sejnowski, T.J.; Behrens, M.M. Behavioral and neurochemical consequences of cortical oxidative stress on parvalbumin-interneuron maturation in rodent models of schizophrenia. Neuropharmacology 2012, 62, 1322–1331. [Google Scholar] [CrossRef]
- Yılmaz, O.; Soygüder, Z.; Keleş, F.; Yaman, T.; Yener, Z.; Uyar, A.; Çakır, T. An immunohistochemical study on the presence of nitric oxide synthase isoforms (nNOS, iNOS, eNOS) in the spinal cord and nodose ganglion of rats receiving ionising gamma radiation to their liver. J. Veter- Res. 2020, 64, 445–453. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treder, N.; Martínez-Pinteño, A.; Rodríguez, N.; Arbelo, N.; Madero, S.; Gómez, M.; García-Rizo, C.; Mas, S.; Gassó, P.; Parellada, E.; et al. The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. Int. J. Mol. Sci. 2023, 24, 1022. https://doi.org/10.3390/ijms24021022
Treder N, Martínez-Pinteño A, Rodríguez N, Arbelo N, Madero S, Gómez M, García-Rizo C, Mas S, Gassó P, Parellada E, et al. The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. International Journal of Molecular Sciences. 2023; 24(2):1022. https://doi.org/10.3390/ijms24021022
Chicago/Turabian StyleTreder, Nina, Albert Martínez-Pinteño, Natalia Rodríguez, Néstor Arbelo, Santiago Madero, Marta Gómez, Clemente García-Rizo, Sergi Mas, Patricia Gassó, Eduard Parellada, and et al. 2023. "The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia" International Journal of Molecular Sciences 24, no. 2: 1022. https://doi.org/10.3390/ijms24021022
APA StyleTreder, N., Martínez-Pinteño, A., Rodríguez, N., Arbelo, N., Madero, S., Gómez, M., García-Rizo, C., Mas, S., Gassó, P., Parellada, E., & Morén, C. (2023). The Effect of Clozapine and Novel Glutamate Modulator JNJ-46356479 on Nitrosative Stress in a Postnatal Murine Ketamine Model of Schizophrenia. International Journal of Molecular Sciences, 24(2), 1022. https://doi.org/10.3390/ijms24021022