Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Characterization of Carbon-Based Screen-Printed Electrodes
2.2. Structural Characterization by Raman Spectroscopy
2.3. Electrochemical Characterization of Carbon-Based Screen-Printed Electrodes
2.4. Mechanism of PANI:ZnO Conductivity
2.5. Electroanalysis of Redox Amino Acids
3. Materials and Methods
3.1. Materials
3.2. Instrumentation
3.2.1. Fabrication of Screen-Printed Carbon Electrodes
3.2.2. Fabrication of Modified Screen-Printed Carbon Electrodes
3.2.3. Field-Emission Scanning Electron Microscopy (FESEM)
3.2.4. Raman Spectroscopy
3.2.5. Voltammetric Parameters and Electrochemical Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brabec, V.; Mornstein, V. Electrochemical Behaviour of Proteins at Graphite Electrodes: II. Electrooxidation of Amino Acids. Biophys. Chem. 1980, 12, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, J.A.; Malfoy, B.; Bere, A. The Electrochemical Oxidation of Three Proteins: RNAase A, Bovine Serum Albumin and Concanavalin A at Solid Electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1980, 116, 595–606. [Google Scholar] [CrossRef]
- Samec, Z.; Malysheva, Z.; Koryta, J.; Pradáč, J.A. Contribution to the Voltammetric Study of Cystine and Cysteine at Pt Electrodes in 0.5 M H2SO4. J. Electroanal. Chem. Interfacial Electrochem. 1975, 65, 573–586. [Google Scholar] [CrossRef]
- Reynaud, J.A.; Malfoy, B.; Canesson, P. Electrochemical Investigations of Amino Acids at Solid Electrodes: Part I. Sulfur Components: Cystine, Cysteine, Methionine. J. Electroanal. Chem. Interfacial Electrochem. 1980, 114, 195–211. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and Para-Substituted Phenols Electrochemical Oxidation Pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Pathways of Electrochemical Oxidation of Indolic Compounds. Electroanalysis 2011, 23, 1337–1344. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Boron Doped Diamond and Glassy Carbon Electrodes Comparative Study of the Oxidation Behaviour of Cysteine and Methionine. Bioelectrochemistry 2011, 81, 46–52. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Enache, T.A. Voltammetric and Mass Spectrometry Investigation of Methionine Oxidation. J. Electroanal. Chem. 2019, 834, 124–129. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Peptide Methionine Sulfoxide Reductase A (MsrA): Direct Electrochemical Oxidation on Carbon Electrodes. Bioelectrochemistry 2013, 89, 11–18. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Alzheimer’s Disease Amyloid Beta Peptides in Vitro Electrochemical Oxidation. Bioelectrochemistry 2017, 114, 13–23. [Google Scholar] [CrossRef]
- Enache, T.A.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Amyloid Beta Peptide VHHQ, KLVFF, and IIGLMVGGVV Domains Involved in Fibrilization: AFM and Electrochemical Characterization. Anal. Chem. 2018, 90, 2285–2292. [Google Scholar] [CrossRef] [PubMed]
- Enache, T.A.; Chiorcea-Paquim, A.M.; Oliveira-Brett, A.M. Amyloid–β Peptides Time-Dependent Structural Modifications: AFM and Voltammetric Characterization. Anal. Chim. Acta 2016, 926, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Enache, T.A.; Oliveira-Brett, A.M. Electrochemical Evaluation of Glutathione S-Transferase Kinetic Parameters. Bioelectrochemistry 2015, 101, 46–51. [Google Scholar] [CrossRef]
- Diculescu, V.C.; Enache, T.A. Electrochemical Evaluation of Abelson Tyrosine-Protein Kinase 1 Activity and Inhibition by Imatinib Mesylate and Danusertib. Anal. Chim. Acta 2014, 845, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Oliveira-Brett, A.M.; Diculescu, V.C.; Enache, T.A.; Fernandes, I.P.G.; Chiorcea-Paquim, A.M.; Oliveira, S.C.B. Bioelectrochemistry for Sensing Amino Acids, Peptides, Proteins and DNA Interactions. Curr. Opin. Electrochem. 2019, 14, 173–179. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.-M.; Enache, T.A.; Oliveira-Brett, A.M. Electrochemistry of Alzheimer Disease Amyloid Beta Peptides. Curr. Med. Chem. 2018, 25, 4066–4083. [Google Scholar] [CrossRef]
- Enache, T.A.; Matei, E.; Diculescu, V.C. Electrochemical Sensor for Carbonyl Groups in Oxidized Proteins. Anal. Chem. 2019, 91, 1920–1927. [Google Scholar] [CrossRef]
- Uskoković, V. A Historical Review of Glassy Carbon: Synthesis, Structure, Properties and Applications. Carbon Trends 2021, 5, 100116. [Google Scholar] [CrossRef]
- Suprun, E.V.; Radko, S.P.; Khmeleva, S.A.; Mitkevich, V.A.; Archakov, A.I.; Makarov, A.A.; Shumyantseva, V.V. Electrochemical Oxidation of Amyloid-Beta Peptide Isoforms on Carbon Screen Printed Electrodes. Electrochem. Commun. 2017, 75, 33–37. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, L.; Zhu, G. Glassy Carbon Ceramic Composite Electrodes. Anal. Chim. Acta 2006, 564, 243–247. [Google Scholar] [CrossRef]
- Wang, J.; Anik Kirgöz, Ü.; Mo, J.W.; Lu, J.; Nasser Kawde, A.; Muck, A. Glassy Carbon Paste Electrodes. Electrochem. Commun. 2001, 3, 203–208. [Google Scholar] [CrossRef]
- Coustan, L.; Shul, G.; Bélanger, D. Electrochemical Behavior of Platinum, Gold and Glassy Carbon Electrodes in Water-in-Salt Electrolyte. Electrochem. Commun. 2017, 77, 89–92. [Google Scholar] [CrossRef]
- Dinu, A.; Apetrei, C. A Review of Sensors and Biosensors Modified with Conducting Polymers and Molecularly Imprinted Polymers Used in Electrochemical Detection of Amino Acids: Phenylalanine, Tyrosine, and Tryptophan. Int. J. Mol. Sci. 2022, 23, 1218. [Google Scholar] [CrossRef] [PubMed]
- Moulaee, K.; Neri, G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. Biosensors 2021, 11, 502. [Google Scholar] [CrossRef]
- Beitollahi, H.; Mohammadi, S.Z.; Safaei, M.; Tajik, S. Applications of electrochemical sensors and biosensors based on modified screen printed electrodes: A review. Anal. Methods. 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jadon, N.; Jain, R. Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review. Trends Anal. Chem. 2016, 82, 55–67. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Sen, T.; Shimpi, N.G.; Mishra, S. Synthesis and Sensing Applications of Polyaniline Nanocomposites: A Review. RSC Adv. 2016, 6, 42196–42222. [Google Scholar] [CrossRef]
- Selvolini, G.; Lazzarini, C.; Marrazza, G. Electrochemical Nanocomposite Single-Use Sensor for Dopamine Detection. Sensors 2019, 19, 3097. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Offenhäusser, A.; Ingebrandt, S.; Mayer, D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv. Healthc. Mater. 2021, 10, 2100061. [Google Scholar] [CrossRef]
- Okpara, E.C.; Fayemi, O.E.; Sherif, E.-S.M.; Ganesh, P.S.; Swamy, B.E.K.; Ebenso, E.E. Electrochemical evaluation of Cd2+ and Hg2+ ions in water using ZnO/Cu2ONPs/PANI modified SPEE electrode. Sens. Bio-Sens. Res. 2022, 35, 100476. [Google Scholar] [CrossRef]
- Punrat, E.; Maksuk, C.; Chuanuwatanakul, S.; Wonsawat, W.; Chailapakul, O. Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta 2016, 150, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.P.; Chinnadayyala, S.R.; Cho, S. Electrochemical nanobiosensor for early detection of rheumatoid arthritis biomarker: Anti- cyclic citrullinated peptide antibodies based on polyaniline (PANI)/MoS2-modified screen-printed electrode with PANI-Au nanomatrix-based signal amplification. Sens. Actuators B. Chem. 2021, 333, 129570. [Google Scholar] [CrossRef]
- Gu, M.; Xiao, H.; Wei, S.; Chen, Z.; Cao, L. A portable and sensitive dopamine sensor based on AuNPs functionalized ZnO-rGO nanocomposites modified screen-printed electrode. J. Electroanal. Chem. 2022, 908, 116117. [Google Scholar] [CrossRef]
- Pan, Y.; Zuo, J.; Hou, Z.; Huang, Y.; Huang, C. Preparation of Electrochemical Sensor Based on Zinc Oxide Nanoparticles for Simultaneous Determination of AA, DA, and UA. Front. Chem. 2020, 8, 592538. [Google Scholar] [CrossRef] [PubMed]
- Beitollahi, H.; Nejad, F.G. Graphene Oxide/ZnO Nano Composite for Sensitive and Selective Electrochemical Sensing of Levodopa and Tyrosine Using Modified Graphite Screen Printed Electrode. Electroanalysis 2016, 28, 2237–2244. [Google Scholar] [CrossRef]
- Cumba, L.R.; Camisasca, A.; Giordani, S.; Forster, R.J. Electrochemical Properties of Screen-Printed Carbon Nano-Onion Electrodes. Molecules 2020, 25, 3884. [Google Scholar] [CrossRef]
- Castaño-Guerrero, Y.; Romaguera-Barcelay, Y.; Moreira, F.T.C.; Brito, W.R.; Fortunato, E.; Sales, M.G.F. Poly(Thionine)-Modified Screen-Printed Electrodes for CA 19-9 Detection and Its Properties in Raman Spectroscopy. Chemosensors 2022, 10, 92. [Google Scholar] [CrossRef]
- Zappi, D.; Varani, G.; Cozzoni, E.; Iatsunskyi, I.; Laschi, S.; Giardi, M.T. Innovative Eco-Friendly Conductive Ink Based on Carbonized Lignin for the Production of Flexible and Stretchable Bio-Sensors. Nanomaterials 2021, 11, 3428. [Google Scholar] [CrossRef]
- Ferarri, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Turkten, N.; Karatas, Y.; Bekbolet, M. Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties. Water 2021, 13, 1025. [Google Scholar] [CrossRef]
- Dhingra, M.; Shrivastava, S.; Senthil Kumar, P.; Annapoorni, S. Polyaniline mediated enhancement in band gap emission of Zinc Oxide. Compos. Part B 2013, 45, 1515–1520. [Google Scholar] [CrossRef]
- Asgari, E.; Esrafili, A.; Jafari, A.J.; Kalantary, R.R.; Nourmoradi, H.; Farzadki, M. The comparison of ZnO/polyaniline nanocomposite under UV andvisible radiations for decomposition of metronidazole: Degradationrate, mechanism and mineralization. Process Saf. Environ. Prot. 2019, 128, 65–76. [Google Scholar] [CrossRef]
- Qin, R.; Hao, L.; Liu, Y.; Zhang, Y. Polyaniline-ZnO Hybrid Nanocomposites with Enhanced Photocatalytic and Electrochemical Performance. Chem. Sel. 2018, 3, 6286–6293. [Google Scholar] [CrossRef]
- Chen, Z.; Okamura, K.; Hanaki, M.; Nagaoka, T. Selective determination of tryptophan by using a carbon paste electrode modified with an overoxidized polypyrrole film. Anal. Sci. 2002, 18, 417–421. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xiong, Z.; Sun, P.; Wang, R.; Zhao, X.; Wang, Q. Facile longitudinal unzipped multiwalled carbon nanotubes incorporated overoxidized poly(p-aminophenol) modified electrode for sensitive simultaneous determination of dopamine, uric acid and tryptophan. J. Electroanal. Chem. 2017, 801, 395–402. [Google Scholar] [CrossRef]
- Wang, C.; Zou, X.; Zhao, X.; Wang, Q.; Tan, J.; Yuan, R. Cu-nanoparticles incorporated overoxidized-poly(3-amino-5-mercapto1,2,4-triazole) film modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electroanal. Chem. 2015, 741, 36–41. [Google Scholar] [CrossRef]
- Narang, J.; Chauhan, N.; Pundir, S.; Pundir, C.S. A magnetic nanoparticles-zinc oxide/zinc hexacyanoferrate hybrid film for amperometric determination of tyrosine. Bioprocess Biosyst. Eng. 2013, 36, 1545–1554. [Google Scholar] [CrossRef]
- Norouzi, P.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Biosensing applications of ZnO / graphene on glassy carbon electrode in analysis of tyrosine. Int. J. Electrochem. Sci. 2017, 12, 5254–5263. [Google Scholar] [CrossRef]
- Osumi, Y.; Tanaka, C.; Takaori, S. Levels of Tyrosine and Tryptophan in the Plasma and Brain of Spontaneously Hypertensive Rats. Jpn. J. Pharmacol. 1974, 24, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Jfernstrom, J.D.; Wurtman, R.J. Brain Serotonin Content: Physiological Dependence on Plasma Tryptophan Levels. Sci. New Ser. 1971, 173, 149–152. [Google Scholar]
- Adnan, M.; Puranik, S. Hypertyrosinemia; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
Amino Acid | Oxidation Peak Potentials (V vs. Ag/AgCl) and I/C (nA cm−2 µM−1) | |||||
---|---|---|---|---|---|---|
Ep1 | Ip1/C | Ep2 | Ip2/C | Ep3 | Ip3/C | |
Tyrosine | 0.65 | 188 | - | - | - | - |
Tryptophan | 0.65 | 198 | 1.00 | 47 | - | - |
Histidine | 1.25 | 76 | - | - | - | - |
Cysteine | 0.50 | 16 | 0.90 | 10 | 1.3 | 35 |
Methionine | 1.05 | 8 | - | - |
Electrode | ba × 104/ A cm−2(V s−1)−1/2 | bc × 103/ A cm−2 (V s−1)−1/2 | Electroactive Area/ cm−2 | dEpa/d(log(v/ mV s−1)/ mV Decade−1 | k0 × 104/ cm s−1 |
---|---|---|---|---|---|
SCPe | 4.02 | −2.3 | 0.88 | 89.9 | 0.3 |
mSCPe | 5.33 | −4.66 | 0.81 | 31.5 | 1.4 |
SPE | mSPE | |||||
---|---|---|---|---|---|---|
Eapp/V | −0.10 | +0.32 | +0.70 | −0.10 | +0.27 | +0.70 |
Rs/Ω cm2 | 137 | 145 | 144 | 39.6 | 36.6 | 39.5 |
C1/μF cm−2 sα−1 | 5.1 | 0.72 | 8.6 | 7.7 | 5.8 | 17.2 |
α1 | 0.92 | 0.91 | 0.86 | 0.94 | 0.80 | 0.88 |
R1/Ω cm2 | 167 × 103 | 4.4 × 103 | 75 × 103 | 74 × 103 | 26.6 | 34 × 103 |
Zw/Ω s1/2 cm2 | - | 168 | - | - | 3.01 | - |
τW/ms | - | 2 | - | - | 0.1 | - |
αW | - | 0.23 | - | - | 0.25 | - |
C2/ μF cm−2 sα−1 | - | - | - | 2.8 | 5.8 | 5.4 |
α2 | - | - | - | 0.87 | 0.92 | 0.82 |
R2/Ω cm2 | - | - | - | 14.4 | 14.4 | 15.4 |
Amino Acid | Oxidation Peak Potentials (V vs. Ag) and I/C (nA cm−2 µM−1) | |||
---|---|---|---|---|
SPE | mSPE | |||
Epa | Ipa/C | Epa | Ipa/C | |
Tyrosine | 0.68 | 82 | 0.60 | 166 |
Tryptophan | 0.83 | 147 | 0.70 | 145 |
Histidine | 1.25 | <0.01 | 1.25 | <0.01 |
Cysteine | 0.70 | 0.03 | 0.70 | 0.05 |
Methionine | 1.30 | <0.01 | 1.27 | <0.01 |
Amino Acid | Sensitivity/ µA cm−2 µM−1 | LOD/ µM |
---|---|---|
Tyr | 0.11 (S.D. = 0.234 µA cm−2) | 6.4 |
Trp | 0.19 (S.D. = 0.348 µA cm−2) | 5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enache, T.A.; Enculescu, M.; Bunea, M.-C.; Zubillaga, E.A.; Tellechea, E.; Aresti, M.; Lasheras, M.; Asensio, A.C.; Diculescu, V.C. Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids. Int. J. Mol. Sci. 2023, 24, 1129. https://doi.org/10.3390/ijms24021129
Enache TA, Enculescu M, Bunea M-C, Zubillaga EA, Tellechea E, Aresti M, Lasheras M, Asensio AC, Diculescu VC. Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids. International Journal of Molecular Sciences. 2023; 24(2):1129. https://doi.org/10.3390/ijms24021129
Chicago/Turabian StyleEnache, Teodor Adrian, Monica Enculescu, Mihaela-Cristina Bunea, Estibaliz Armendariz Zubillaga, Edurne Tellechea, Maite Aresti, María Lasheras, Aaron C. Asensio, and Victor C. Diculescu. 2023. "Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids" International Journal of Molecular Sciences 24, no. 2: 1129. https://doi.org/10.3390/ijms24021129
APA StyleEnache, T. A., Enculescu, M., Bunea, M. -C., Zubillaga, E. A., Tellechea, E., Aresti, M., Lasheras, M., Asensio, A. C., & Diculescu, V. C. (2023). Carbon Inks-Based Screen-Printed Electrodes for Qualitative Analysis of Amino Acids. International Journal of Molecular Sciences, 24(2), 1129. https://doi.org/10.3390/ijms24021129