Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes
Abstract
:1. Introduction
2. Results
2.1. Cell Number Analysis
2.2. Effects of TGF-β1 on aCSK
2.3. Effects of Caffeine on aCSK
2.4. Effects of Curcumin on aCSK
2.5. Effects of Pirfenidone on aCSK
2.6. Immunocytochemistry
3. Discussion
4. Material and Methods
4.1. Isolation of CSK
4.2. Cell Culture of aCSK
4.3. Cell Number Analysis
4.4. Immunocytochemistry
4.5. Real-Time Polymerase Chain Reaction (RT-PCR)
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuest, M.; Yam, G.H.; Peh, G.S.; Mehta, J.S. Advances in corneal cell therapy. Regen. Med. 2016, 11, 601–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuest, M.; Ang, M.; Htoon, H.M.; Tan, D.; Mehta, J.S. Long-term Visual Outcomes Comparing Descemet Stripping Automated Endothelial Keratoplasty and Penetrating Keratoplasty. Am. J. Ophthalmol. 2017, 182, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Andresen, J.L.; Ledet, T.; Ehlers, N. Keratocyte migration and peptide growth factors: The effect of PDGF, bFGF, EGF, IGF-I, aFGF and TGF-beta on human keratocyte migration in a collagen gel. Curr. Eye Res. 1997, 16, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Yam, G.H.; Yusoff, N.Z.; Kadaba, A.; Tian, D.; Myint, H.H.; Beuerman, R.W.; Zhou, L.; Mehta, J.S. Ex Vivo Propagation of Human Corneal Stromal “Activated Keratocytes” for Tissue Engineering. Cell Transplant. 2015, 24, 1845–1861. [Google Scholar] [CrossRef] [PubMed]
- Yam, G.H.; Teo, E.P.; Setiawan, M.; Lovatt, M.J.; Yusoff, N.; Fuest, M.; Goh, B.T.; Mehta, J.S. Postnatal periodontal ligament as a novel adult stem cell source for regenerative corneal cell therapy. J. Cell. Mol. Med. 2018, 22, 3119–3132. [Google Scholar] [CrossRef]
- Espana, E.M.; Kawakita, T.; Liu, C.Y.; Tseng, S.C. CD-34 expression by cultured human keratocytes is downregulated during myofibroblast differentiation induced by TGF-beta1. Investig. Ophthalmol. Vis. Sci. 2004, 45, 2985–2991. [Google Scholar] [CrossRef] [Green Version]
- Grobe, G.M.; Reichl, S. Characterization of vitamin C-induced cell sheets formed from primary and immortalized human corneal stromal cells for tissue engineering applications. Cells Tissues Organs 2013, 197, 283–297. [Google Scholar] [CrossRef]
- Guo, X.; Hutcheon, A.E.; Melotti, S.A.; Zieske, J.D.; Trinkaus-Randall, V.; Ruberti, J.W. Morphologic characterization of organized extracellular matrix deposition by ascorbic acid-stimulated human corneal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4050–4060. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Sherry, D.M.; McDermott, A.M. Thy-1 distinguishes human corneal fibroblasts and myofibroblasts from keratocytes. Exp. Eye Res. 2004, 79, 705–712. [Google Scholar] [CrossRef]
- Jester, J.V.; Huang, J.; Fisher, S.; Spiekerman, J.; Chang, J.H.; Wright, W.E.; Shay, J.W. Myofibroblast differentiation of normal human keratocytes and hTERT, extended-life human corneal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1850–1858. [Google Scholar] [CrossRef]
- Jester, J.V.; Brown, D.; Pappa, A.; Vasiliou, V. Myofibroblast differentiation modulates keratocyte crystallin protein expression, concentration, and cellular light scattering. Investig. Ophthalmol. Vis. Sci. 2012, 53, 770–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binte, M.Y.N.Z.; Riau, A.K.; Yam, G.H.F.; Binte Halim, N.S.H.; Mehta, J.S. Isolation and Propagation of Human Corneal Stromal Keratocytes for Tissue Engineering and Cell Therapy. Cells 2022, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Seidelmann, N.; Duarte Campos, D.F.; Rohde, M.; Johnen, S.; Salla, S.; Yam, G.H.; Mehta, J.S.; Walter, P.; Fuest, M. Human platelet lysate as a replacement for fetal bovine serum in human corneal stromal keratocyte and fibroblast culture. J. Cell. Mol. Med. 2021, 25, 9647–9659. [Google Scholar] [CrossRef] [PubMed]
- Arshinoff, S.A.; Mills, M.D.; Haber, S. Pharmacotherapy of photorefractive keratectomy. J. Cataract. Refract. Surg. 1996, 22, 1037–1044. [Google Scholar] [CrossRef]
- Jester, J.V.; Nien, C.J.; Vasiliou, V.; Brown, D.J. Quiescent keratocytes fail to repair MMC induced DNA damage leading to the long-term inhibition of myofibroblast differentiation and wound healing. Mol. Vis. 2012, 18, 1828–1839. [Google Scholar]
- Møller-Pedersen, T.; Cavanagh, H.D.; Petroll, W.M.; Jester, J.V. Neutralizing antibody to TGFbeta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr. Eye Res. 1998, 17, 736–747. [Google Scholar] [CrossRef]
- Bühren, J.; Nagy, L.; Swanton, J.N.; Kenner, S.; MacRae, S.; Phipps, R.P.; Huxlin, K.R. Optical effects of anti-TGFbeta treatment after photorefractive keratectomy in a cat model. Investig. Ophthalmol. Vis. Sci. 2009, 50, 634–643. [Google Scholar] [CrossRef]
- Saika, S.; Yamanaka, O.; Okada, Y.; Miyamoto, T.; Kitano, A.; Flanders, K.C.; Ohnishi, Y.; Nakajima, Y.; Kao, W.W.; Ikeda, K. Effect of overexpression of PPARgamma on the healing process of corneal alkali burn in mice. Am. J. Physiol. Cell Physiol. 2007, 293, C75–C86. [Google Scholar] [CrossRef]
- Kuriyan, A.E.; Lehmann, G.M.; Kulkarni, A.A.; Woeller, C.F.; Feldon, S.E.; Hindman, H.B.; Sime, P.J.; Huxlin, K.R.; Phipps, R.P. Electrophilic PPARgamma ligands inhibit corneal fibroblast to myofibroblast differentiation in vitro: A potentially novel therapy for corneal scarring. Exp. Eye Res. 2012, 94, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Berkowski, W.M.; Gibson, D.J.; Seo, S.; Proietto, L.R.; Whitley, R.D.; Schultz, G.S.; Plummer, C.E. Assessment of Topical Therapies for Improving the Optical Clarity Following Stromal Wounding in a Novel Ex Vivo Canine Cornea Model. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5509–5521. [Google Scholar] [CrossRef] [Green Version]
- Tatler, A.L.; Barnes, J.; Habgood, A.; Goodwin, A.; McAnulty, R.J.; Jenkins, G. Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices. Thorax 2016, 71, 565–567. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.C.; Hu, D.N.; Roberts, J.; Shen, X.; Lee, C.Y.; Nien, C.W.; Lin, H.Y. Inhibition effect of curcumin on UVB-induced secretion of pro-inflammatory cytokines from corneal limbus epithelial cells. Int. J. Ophthalmol. 2017, 10, 827–833. [Google Scholar] [CrossRef]
- Jiang, N.; Ma, M.; Li, Y.; Su, T.; Zhou, X.Z.; Ye, L.; Yuan, Q.; Zhu, P.; Min, Y.; Shi, W.; et al. The role of pirfenidone in alkali burn rat cornea. Int. Immunopharmacol. 2018, 64, 78–85. [Google Scholar] [CrossRef]
- Wilson, S.E.; He, Y.G.; Weng, J.; Li, Q.; McDowall, A.W.; Vital, M.; Chwang, E.L. Epithelial injury induces keratocyte apoptosis: Hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp. Eye Res. 1996, 62, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.E.; Mohan, R.R.; Hong, J.W.; Lee, J.S.; Choi, R.; Mohan, R.R. The wound healing response after laser in situ keratomileusis and photorefractive keratectomy: Elusive control of biological variability and effect on custom laser vision correction. Arch. Ophthalmol. 2001, 119, 889–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxlin, K.R.; Hindman, H.B.; Jeon, K.I.; Bühren, J.; MacRae, S.; DeMagistris, M.; Ciufo, D.; Sime, P.J.; Phipps, R.P. Topical rosiglitazone is an effective anti-scarring agent in the cornea. PLoS ONE 2013, 8, e70785. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.E.; Li, Q.; Weng, J.; Barry-Lane, P.A.; Jester, J.V.; Liang, Q.; Wordinger, R.J. The Fas-Fas ligand system and other modulators of apoptosis in the cornea. Investig. Ophthalmol. Vis. Sci. 1996, 37, 1582–1592. [Google Scholar]
- Huang, P.T.; Nelson, L.R.; Bourne, W.M. The morphology and function of healing cat corneal endothelium. Investig. Ophthalmol. Vis. Sci. 1989, 30, 1794–1801. [Google Scholar]
- Erie, J.C.; Patel, S.V.; McLaren, J.W.; Maguire, L.J.; Ramirez, M.; Bourne, W.M. Keratocyte density in vivo after photorefractive keratectomy in humans. Trans. Am. Ophthalmol. Soc. 1999, 97, 221. [Google Scholar] [CrossRef] [Green Version]
- Welsh, E.J.; Bara, A.; Barley, E.; Cates, C.J. Caffeine for asthma. Cochrane Database Syst. Rev. 2010, 1, CD001112. [Google Scholar] [CrossRef] [Green Version]
- Modi, A.A.; Feld, J.J.; Park, Y.; Kleiner, D.E.; Everhart, J.E.; Liang, T.J.; Hoofnagle, J.H. Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology 2010, 51, 201–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, K.S.; Polletini, J.; Dias, M.C.; Rodrigues, M.A.; Barbisan, L.F. Prevention of rat liver fibrosis and carcinogenesis by coffee and caffeine. Food Chem. Toxicol. 2014, 64, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Bastidas, D.; Oceguera-Contreras, E.; Salazar-Montes, A.; Gonzalez-Cuevas, J.; Hernandez-Ortega, L.D.; Armendariz-Borunda, J. Nrf2 and Snail-1 in the prevention of experimental liver fibrosis by caffeine. World J. Gastroenterol. 2013, 19, 9020–9033. [Google Scholar] [CrossRef] [PubMed]
- Arauz, J.; Zarco, N.; Segovia, J.; Shibayama, M.; Tsutsumi, V.; Muriel, P. Caffeine prevents experimental liver fibrosis by blocking the expression of TGF-beta. Eur. J. Gastroenterol. Hepatol. 2014, 26, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Guan, W.; Yang, W.; Wang, Q.; Zhao, H.; Yang, F.; Lv, X.; Li, J. Caffeine inhibits the activation of hepatic stellate cells induced by acetaldehyde via adenosine A2A receptor mediated by the cAMP/PKA/SRC/ERK1/2/P38 MAPK signal pathway. PLoS ONE 2014, 9, e92482. [Google Scholar] [CrossRef]
- Fehrholz, M.; Speer, C.P.; Kunzmann, S. Caffeine and rolipram affect Smad signalling and TGF-beta1 stimulated CTGF and transgelin expression in lung epithelial cells. PLoS ONE 2014, 9, e97357. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, E.M.; Stegen, J.; Brouns, F. Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 1998, 85, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Willson, C. The clinical toxicology of caffeine: A review and case study. Toxicol. Rep. 2018, 5, 1140–1152. [Google Scholar] [CrossRef]
- Wilson, S.E. Corneal myofibroblast biology and pathobiology: Generation, persistence, and transparency. Exp. Eye Res. 2012, 99, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Jester, J.V.; Barry-Lane, P.A.; Cavanagh, H.D.; Petroll, W.M. Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea 1996, 15, 505–516. [Google Scholar] [CrossRef]
- Radomska-Lesniewska, D.M.; Osiecka-Iwan, A.; Hyc, A.; Gozdz, A.; Dabrowska, A.M.; Skopinski, P. Therapeutic potential of curcumin in eye diseases. Cent. Eur. J. Immunol. 2019, 44, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Schaffer, M.; Schaffer, P.M.; Zidan, J.; Sela, G.B. Curcuma as a functional food in the control of cancer and inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 588–597. [Google Scholar] [CrossRef]
- Panahi, Y.; Hosseini, M.S.; Khalili, N.; Naimi, E.; Simental-Mendia, L.E.; Majeed, M.; Sahebkar, A. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomed. Pharmacother. 2016, 82, 578–582. [Google Scholar] [CrossRef]
- Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res. 2007, 13, 3423–3430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2014, 21, 204–222. [Google Scholar] [CrossRef] [PubMed]
- Santibáñez, J.F.; Quintanilla, M.; Martínez, J. Genistein and curcumin block TGF-beta 1-induced u-PA expression and migratory and invasive phenotype in mouse epidermal keratinocytes. Nutr. Cancer 2000, 37, 49–54. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, J.S.; Chung, S.K. The effect of curcumin on corneal neovascularization in rabbit eyes. Curr. Eye Res. 2010, 35, 274–280. [Google Scholar] [CrossRef]
- Bolger, G.T.; Licollari, A.; Tan, A.; Greil, R.; Vcelar, B.; Greil-Ressler, S.; Weiss, L.; Schönlieb, C.; Magnes, T.; Radl, B.; et al. Pharmacokinetics of liposomal curcumin (Lipocurc™) infusion: Effect of co-medication in cancer patients and comparison with healthy individuals. Cancer Chemother. Pharmacol. 2019, 83, 265–275. [Google Scholar] [CrossRef]
- Kanai, M.; Imaizumi, A.; Otsuka, Y.; Sasaki, H.; Hashiguchi, M.; Tsujiko, K.; Matsumoto, S.; Ishiguro, H.; Chiba, T. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother. Pharmacol. 2012, 69, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Lao, C.D.; Ruffin, M.T.t.; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006, 6, 10. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.A.; Euden, S.A.; Platton, S.L.; Cooke, D.N.; Shafayat, A.; Hewitt, H.R.; Marczylo, T.H.; Morgan, B.; Hemingway, D.; Plummer, S.M.; et al. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847–6854. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.C.; Lin, H.Y.; Chi, M.H.; Shen, C.M.; Chen, H.W.; Yang, W.J.; Lee, M.H. Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Food Chem. 2014, 154, 282–290. [Google Scholar] [CrossRef]
- Liu, F.; Bayliss, G.; Zhuang, S. Application of nintedanib and other potential anti-fibrotic agents in fibrotic diseases. Clin. Sci. 2019, 133, 1309–1320. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, H.; Ebina, M.; Kondoh, Y.; Ogura, T.; Azuma, A.; Suga, M.; Taguchi, Y.; Takahashi, H.; Nakata, K.; Sato, A.; et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J. 2010, 35, 821–829. [Google Scholar] [CrossRef]
- Choi, K.; Lee, K.; Ryu, S.W.; Im, M.; Kook, K.H.; Choi, C. Pirfenidone inhibits transforming growth factor-beta1-induced fibrogenesis by blocking nuclear translocation of Smads in human retinal pigment epithelial cell line ARPE-19. Mol. Vis. 2012, 18, 1010–1020. [Google Scholar] [PubMed]
- Sun, G.; Lin, X.; Zhong, H.; Yang, Y.; Qiu, X.; Ye, C.; Wu, K.; Yu, M. Pharmacokinetics of pirfenidone after topical administration in rabbit eye. Mol. Vis. 2011, 17, 2191. [Google Scholar] [PubMed]
- Macias-Barragan, J.; Sandoval-Rodriguez, A.; Navarro-Partida, J.; Armendariz-Borunda, J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair 2010, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Back, K.O.; Kim, H.J.; Lee, S.Y.; Kook, K.H. Pirfenidone attenuates IL-1β-induced COX-2 and PGE2 production in orbital fibroblasts through suppression of NF-κB activity. Exp. Eye Res. 2013, 113, 1–8. [Google Scholar] [CrossRef]
- Hewitson, T.D.; Kelynack, K.J.; Tait, M.G.; Martic, M.; Jones, C.L.; Margolin, S.B.; Becker, G.J. Pirfenidone reduces in vitro rat renal fibroblast activation and mitogenesis. J. Nephrol. 2001, 14, 453–460. [Google Scholar]
- Kaur, H.; Chaurasia, S.S.; de Medeiros, F.W.; Agrawal, V.; Salomao, M.Q.; Singh, N.; Ambati, B.K.; Wilson, S.E. Corneal stroma PDGF blockade and myofibroblast development. Exp. Eye Res. 2009, 88, 960–965. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Santhiago, M.R.; Barbosa, F.L.; Agrawal, V.; Singh, N.; Ambati, B.K.; Wilson, S.E. Effect of TGFbeta and PDGF-B blockade on corneal myofibroblast development in mice. Exp. Eye Res. 2011, 93, 810–817. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.J.; Mohan, R.R.; Mohan, R.R.; Wilson, S.E. Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: Expression of the platelet-derived growth factor system in the cornea. Investig. Ophthalmol. Vis. Sci. 1999, 40, 1364–1372. [Google Scholar]
- Lin, X.; Yu, M.; Wu, K.; Yuan, H.; Zhong, H. Effects of pirfenidone on proliferation, migration, and collagen contraction of human Tenon’s fibroblasts in vitro. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3763–3770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, K.I.; Choi, J.S.; Kim, H.K.; Shin, S.Y. Effects of an anti-transforming growth factor-beta agent (pirfenidone) on strabismus surgery in rabbits. Curr. Eye Res. 2012, 37, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Fink, M.K.; Giuliano, E.A.; Tandon, A.; Mohan, R.R. Therapeutic potential of Pirfenidone for treating equine corneal scarring. Vet. Ophthalmol. 2015, 18, 242–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, H.; Sun, G.; Lin, X.; Wu, K.; Yu, M. Evaluation of pirfenidone as a new postoperative antiscarring agent in experimental glaucoma surgery. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3136–3142. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Jaini, R.; Torricelli, A.A.; Santhiago, M.R.; Singh, N.; Ambati, B.K.; Wilson, S.E. TGFβ and PDGF-B signaling blockade inhibits myofibroblast development from both bone marrow-derived and keratocyte-derived precursor cells in vivo. Exp. Eye Res. 2014, 121, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Guha, R.; Trivedi, R.; Kompella, U.B.; Konar, A.; Hazra, S. Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS ONE 2013, 8, e70528. [Google Scholar] [CrossRef] [Green Version]
- Costabel, U.; Bendstrup, E.; Cottin, V.; Dewint, P.; Egan, J.J.; Ferguson, J.; Groves, R.; Hellström, P.M.; Kreuter, M.; Maher, T.M.; et al. Pirfenidone in idiopathic pulmonary fibrosis: Expert panel discussion on the management of drug-related adverse events. Adv. Ther. 2014, 31, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Barranco-Garduño, L.M.; Buendía-Roldan, I.; Rodriguez, J.J.; González-Ramírez, R.; Cervantes-Nevárez, A.N.; Neri-Salvador, J.C.; Carrasco-Portugal, M.D.C.; Castañeda-Hernández, G.; Martinez-Espinosa, K.; Selman, M.; et al. Pharmacokinetic evaluation of two pirfenidone formulations in patients with idiopathic pulmonary fibrosis and chronic hypersensitivity pneumonitis. Heliyon 2020, 6, e05279. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, A.; Wang, H.; Wang, J.; Zhai, G.; Ma, H.; Feng, S.; Liu, L.; Gao, Y. Exploring the Key Genes and Pathways in the Formation of Corneal Scar Using Bioinformatics Analysis. Biomed. Res. Int. 2020, 2020, 6247489. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.E. Corneal wound healing. Exp. Eye Res. 2020, 197, 108089. [Google Scholar] [CrossRef] [PubMed]
- Duarte Campos, D.F.; Rohde, M.; Ross, M.; Anvari, P.; Blaeser, A.; Vogt, M.; Panfil, C.; Yam, G.H.; Mehta, J.S.; Fischer, H.; et al. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J. Biomed. Mater. Res. A 2019, 107, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
SMA (Fold Change) | LUM (Fold Change) | ALDH3A1 (Fold Change) | Cell Count/mm2 | |
---|---|---|---|---|
basal medium = control | 1 | 1 | 1 | 55.3 ± 4.4 |
control + TGF-β1 | 10.16 ± 3.10 *** | 0.61 ± 0.07 *** | 0.02 ± 0.02 *** | 57.2 ± 6.3 |
caffeine 50 µM | 0.99 ± 0.24 | 0.95 ± 0.10 | 1.09 ± 0.22 | 52.6 ± 11.8 |
caffeine 50 µM + TGF-β1 | 9.77 ±2.58 | 0.73 ± 0.20 | 0.02 ± 0.01 | 54.0 ± 8.1 |
caffeine 100 µM | 0.93 ± 0.38 | 1.00 ± 0.20 | 1.06 ± 0.22 | 52.4 ± 8.5 |
caffeine 100 µM + TGF-β1 | 6.06 ± 1.03 * | 0.59 ± 0.14 | 0.01 ± 0.01 | 54.2 ± 9.1 |
caffeine 500 µM | 1.10 ± 0.47 | 0.75 ± 0.14 *** | 1.19 ± 0.22 | 42.8 ± 15.0 * |
caffeine 500 µM + TGF-β1 | 10.23 ± 4.50 | 0.64 ± 0.16 | 0.01 ± 0.01 | 45.7 ± 8.1 * |
curcumin 20 µM | 0.93 ± 0.16 | 0.84 ± 0.25 | 0.94 ± 0.25 | 46.4 ± 12.7 |
curcumin 20 µM + TGF-β1 | 3.96 ± 0.17 ** | 0.52 ± 0.19 | 0.01 ± 0.01 | 48.7 ± 9.5 |
curcumin 50 µM | 1.02 ± 0.30 | 0.78 ± 0.18 ** | 1.12 ± 0.18 | 21.2 ± 4.1 *** |
curcumin 50 µM + TGF-β1 | 2.94 ± 0.76 ** | 0.55 ± 0.14 | 0.01 ± 0.01 | 20.5 ± 4.1 *** |
pirfenidone 1.1 nM | 1.09 ± 0.14 | 1.34 ± 0.15 *** | 0.48 ± 0.06 *** | 53.3 ± 7.0 |
pirfenidone 1.1 nM + TGF-β1 | 6.88 ± 2.32 * | 0.55 ± 0.09 | 0.01 ± 0.01 | 54.2 ± 6.3 |
pirfenidone 2.2 nM | 1.10 ± 0.13 | 1.44 ± 0.34 ** | 0.32 ± 0.09 *** | 41.9 ± 7.7 *** |
pirfenidone 2.2 nM + TGF-β1 | 7.92 ± 1.89 | 0.45 ± 0.07 ** | 0.01 ± 0.01 | 42.4 ± 5.1 *** |
basal medium = control | DMEM/Ham’s F12 (Merck) +1% MEM nonessential amino acids (Gibco) +0.8% Penicillin-Streptomycin (Sigma-Aldrich) +1% Amphotericin B (Sigma-Aldrich) +1% MEM Eagle’s Vitamin Mix (Merck) +1 mM L-ascorbate 2-phosphate (Sigma-Aldrich) +10 µM ROCK-inhibitor (AdooQ Bioscience) +10 ng/mL Insulin-like growth factor (Gibco) +0.5% FBS (Panbiotech) |
control + TGF-β1 | control + 10 ng/mL TGF-β1 (human TGF-β1, PeproTech, Cranbury, NJ, USA) |
caffeine 50 µM | control + 50 µM caffeine (Sigma-Aldrich) |
caffeine 50 µM + TGF-β1 | control + 50 µM caffeine + 10 ng/mL TGF-β1 |
caffeine 100 µM | control + 100 µM caffein |
caffeine 100 µM + TGF-β1 | control + 100 µM caffeine + 10 ng/mL TGF-β1 |
caffeine 500 µM | control + 500 µM caffeine |
caffeine 500 µM + TGF-β1 | control + 500 µM caffeine + 10 ng/mL TGF-β1 |
curcumin 20 µM | control + 20 µM curcumin (Sigma-Aldrich) |
curcumin 20 µM + TGF-β1 | control + 20 µM curcumin + 10 ng/mL TGF-β1 |
curcumin 50 µM | control + 50 µM curcumi |
curcumin 50 µM + TGF-β1 | control + 50 µM curcumin + 10 ng/mL TGF-β1 |
pirfenidone 1.1 nM | control + 200 µg/mL pirfenidone (Sigma-Aldrich) |
pirfenidone 1.1 nM + TGF-β1 | control + 200 µg/mL pirfenidone + 10 ng/mL TGF-β1 |
pirfenidone 2.2 nM | control + 400 µg/mL pirfenidone |
pirfenidone 2.2 nM + TGF-β1 | control + 400 µg/mL pirfenidone + 10 ng/mL TGF-β1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talpan, D.; Salla, S.; Seidelmann, N.; Walter, P.; Fuest, M. Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes. Int. J. Mol. Sci. 2023, 24, 1461. https://doi.org/10.3390/ijms24021461
Talpan D, Salla S, Seidelmann N, Walter P, Fuest M. Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes. International Journal of Molecular Sciences. 2023; 24(2):1461. https://doi.org/10.3390/ijms24021461
Chicago/Turabian StyleTalpan, Delia, Sabine Salla, Nina Seidelmann, Peter Walter, and Matthias Fuest. 2023. "Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes" International Journal of Molecular Sciences 24, no. 2: 1461. https://doi.org/10.3390/ijms24021461
APA StyleTalpan, D., Salla, S., Seidelmann, N., Walter, P., & Fuest, M. (2023). Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes. International Journal of Molecular Sciences, 24(2), 1461. https://doi.org/10.3390/ijms24021461