Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease
Abstract
:1. Introduction
2. Human Linker Histone and Its Subtypes
3. Post-Translational Modifications of Human Linker Histones
4. Modulators of Linker Histone Post-Translational Modifications
4.1. Linker Histones PTMs in Disease
4.2. Mutations in Linker Histones and Their Implications
5. Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cutter, A.R.; Hayes, J.J. A brief review of nucleosome structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luger, K.; Mader, A.W.; Richmond, R.K.; Sargent, D.F.; Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997, 389, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Fyodorov, D.V.; Zhou, B.R.; Skoultchi, A.I.; Bai, Y. Emerging roles of linker histones in regulating chromatin structure and function. Nat. Rev. Mol. Cell Biol. 2018, 19, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legartová, S.; Lochmanová, G.; Bártová, E. The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation. Life 2022, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Justel, J.M.; Santa-María, C.; Martín-Vírgala, S.; Ramesh, S.; Ferrera-Lagoa, A.; Salinas-Pena, M.; Isoler-Alcaraz, J.; Maslon, M.M.; Jordan, A.; Cáceres, J.F.; et al. Histone H1 regulates non-coding RNA turnover on chromatin in a m6A-dependent manner. Cell Rep. 2022, 40, 111329. [Google Scholar] [CrossRef]
- Chubb, J.E.; Rea, S. Core and linker histone modifications involved in the DNA damage response. Subcell Biochem. 2010, 50, 17–42. [Google Scholar] [CrossRef]
- Godde, J.S.; Ura, K. Dynamic alterations of linker histone variants during development. Int. J. Dev. Biol. 2009, 53, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Fan, Y. Role of H1 linker histones in mammalian development and stem cell differentiation. Biochim. Biophys. Acta 2016, 1859, 496–509. [Google Scholar] [CrossRef] [Green Version]
- Happel, N.; Doenecke, D. Histone H1 and its isoforms: Contribution to chromatin structure and function. Gene 2009, 431, 1–12. [Google Scholar] [CrossRef]
- Fan, Y.; Sirotkin, A.; Russell, R.G.; Ayala, J.; Skoultchi, A.I. Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H10 replacement subtype. Mol. Cell Biol. 2001, 21, 7933–7943. [Google Scholar] [CrossRef]
- Lin, Q.; Sirotkin, A.; Skoultchi, A.I. Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol. Cell Biol. 2000, 20, 2122–2128. [Google Scholar] [CrossRef] [Green Version]
- Sirotkin, A.M.; Edelmann, W.; Cheng, G.; Klein-Szanto, A.; Kucherlapati, R.; Skoultchi, A.I. Mice develop normally without the H10 linker histone. Proc. Natl. Acad. Sci. USA 1995, 92, 6434–6438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Y.; Nikitina, T.; Morin-Kensicki, E.M.; Zhao, J.; Magnuson, T.R.; Woodcock, C.L.; Skoultchi, A.I. H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol. Cell Biol. 2003, 23, 4559–4572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzo, A.; Schneider, R. The role of linker histone H1 modifications in the regulation of gene expression and chromatin dynamics. Biochim. Biophys. Acta 2016, 1859, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Reddy, D.; Gupta, S. Global histone post-translational modifications and cancer: Biomarkers for diagnosis, prognosis and treatment? World J. Biol. Chem. 2015, 6, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T.; Allis, C.D. Translating the histone code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.; Maze, I. Nothing Is Yet Set in (Hi) stone: Novel post-translational modifications regulating chromatin function. Trends Biochem. Sci. 2020, 45, 829–844. [Google Scholar] [CrossRef] [PubMed]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications-cause and consequence of genome function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; John, S.; Pesavento, J.J.; Schultz-Norton, J.R.; Schiltz, R.L.; Baek, S.; Nardulli, A.M.; Hager, G.L.; Kelleher, N.L.; Mizzen, C.A. Histone H1 phosphorylation is associated with transcription by RNA polymerases I and II. J. Cell Biol. 2010, 189, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Talasz, H.; Sarg, B.; Lindner, H.H. Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 2009, 118, 693–709. [Google Scholar] [CrossRef]
- Chu, C.S.; Hsu, P.H.; Lo, P.W.; Scheer, E.; Tora, L.; Tsai, H.J.; Tsai, M.D.; Juan, L.J. Protein kinase A-mediated serine 35 phosphorylation dissociates histone H1.4 from mitotic chromosome. J. Biol. Chem. 2011, 286, 35843–35851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamieniarz, K.; Izzo, A.; Dundr, M.; Tropberger, P.; Ozreti´c, L.; Kirfel, J.; Scheer, E.; Tropel, P.; Wi´sniewski, J.R.; Tora, L.; et al. A dual role of linker histone H1.4 Lys 34 acetylation in transcriptional activation. Genes Dev. 2012, 26, 797–802. [Google Scholar] [CrossRef] [Green Version]
- Happel, N.; Doenecke, D.; Sekeri-Pataryas, K.E.; Sourlingas, T.G. H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp. Gerontol. 2008, 43, 184–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christophorou, M.A.; Castelo-Branco, G.; Halley-Stott, R.P.; Oliveira, C.S.; Loos, R.; Radzisheuskaya, A.; Mowen, K.A.; Bertone, P.; Silva, J.C.R.; Zernicka-Goetz, M.; et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014, 507, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Perez, A.; Jene-Sanz, A.; Lopez-Bigas, N. The mutational landscape of chromatin regulatory factors across 4623 tumor samples. Genome Biol. 2013, 14, r106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aumann, S.; Abdel-Wahab, O. Somatic alterations and dysregulation of epigenetic modifiers in cancers. Biochem. Biophys. Res. Commun. 2014, 455, 24–34. [Google Scholar] [CrossRef]
- Scaffidi, P. Histone H1 alterations in cancer. Biochim. Biophys. Acta 2016, 1859, 533–539. [Google Scholar] [CrossRef]
- Hartman, P.G.; Chapman, G.E.; Moss, T.; Bradbury, E.M. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur. J. Biochem. 1977, 77, 45–51. [Google Scholar] [CrossRef]
- Cutter, A.R.; Hayes, J.J. Linker histones: Novel insights into structure-specific recognition of the nucleosome. Biochem. Cell Biol. 2017, 95, 171–178. [Google Scholar] [CrossRef]
- Pepenella, S.; Murphy, K.J.; Hayes, J.J. Intra-and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 2014, 123, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, H.; Clark, D.J.; Hayes, J.J. DNA and nucleosomes direct distinct folding of a linker histone H1 C-terminal domain. Nucleic Acids Res. 2012, 40, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Kale, S.; Dimitrov, S.; Hayes, J.J. Unraveling linker histone interactions in nucleosomes. Curr. Opin. Struct. Biol. 2021, 71, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Bednar, J.; Garcia-Saez, I.; Boopathi, R.; Cutter, A.R.; Papai, G.; Reymer, A.; Syed, S.H.; Lone, I.N.; Tonchev, O.; Crucifix, C.; et al. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Mol. Cell 2017, 66, 384–397. [Google Scholar] [CrossRef] [Green Version]
- Woods, D.C.; Wereszczynski, J. Elucidating the influence of linker histone variants on chromatosome dynamics and energetics. Nucleic Acids Res. 2020, 48, 3591–3604. [Google Scholar] [CrossRef] [Green Version]
- Kasinsky, H.E.; Lewis, J.D.; Dacks, J.B.; Ausió, J. Origin of H1 linker histones. FASEB J. 2001, 15, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.D. A minireview of microheterogeneity in H1 histone and its possible significance. Anal. Biochem. 1984, 136, 24–30. [Google Scholar] [CrossRef]
- Izzo, A.; Kamieniarz, K.; Schneider, R. The histone H1 family: Specific members, specific functions? Biol. Chem. 2008, 389, 333–343. [Google Scholar] [CrossRef]
- Roque, A.; Ponte, I.; Suau, P. Interplay between histone H1 structure and function. Biochim. Biophys. Acta 2016, 1859, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Feng, C.; Gao, T.; Mu, G.; Zhu, W.; Yang, Y. Linker Histone in Diseases. Int. J. Biol. Sci. 2017, 13, 1008–1018. [Google Scholar] [CrossRef]
- Millán-Ariño, L.; Izquierdo-Bouldstridge, A.; Jordan, A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochim. Biophys. Acta 2016, 1859, 510–519. [Google Scholar] [CrossRef]
- Bradbury, E.M.; Inglis, R.J.; Matthews, H.R.; Sarner, N. Phosphorylation of Very-Lysine-Rich Histone in Physarum polycephalum Correlation with Chromosome Condensation. Eur. J. Biochem. 1973, 33, 131–139. [Google Scholar] [CrossRef]
- Blumenfeld, M. Phosphorylated H1 histone in Drosophila melanogaster. Biochem. Genet. 1979, 17, 163–166. [Google Scholar] [CrossRef]
- Sung, M.T.; Wagner, T.E.; Hartford, J.B.; Serra, M.; Vandegrift, V.; Sung, M.T. Phosphorylation and Dephosphorylation of Histone V (H5): Controlled Condensation of Avian Erythrocyte Chromatin. Appendix: Phosphorylation and Dephosphorylation of Histone H5. II. Circular Dichroic Studies. Biochemistry 1977, 16, 286–290. [Google Scholar] [CrossRef] [PubMed]
- Gurley, L.R.; Walters, R.A.; Tobey, R.A. Sequential phosphorylation of histone subfractions in the Chinese hamster cell cycle. J. Biol. Chem. 1975, 250, 3936–3944. [Google Scholar] [CrossRef]
- Andrés, M.; García-Gomis, D.; Ponte, I.; Suau, P.; Roque, A. Histone H1 post-translational modifications: Update and future perspectives. Int. J. Mol. Sci. 2020, 21, 5941. [Google Scholar] [CrossRef] [PubMed]
- Sarg, B.; Helliger, W.; Talasz, H.; Förg, B.; Lindner, H.H. Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: Identification of a novel phosphorylation site on histone H1. J. Biol. Chem. 2006, 281, 6573–6580. [Google Scholar] [CrossRef] [Green Version]
- Wi´sniewski, J.R.; Zougman, A.; Krüger, S.; Mann, M. Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as di erences between cell culture and tissue. Mol. Cell Proteome 2007, 6, 72–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Starkova, T.Y.; Polyanichko, A.M.; Artamonova, T.O.; Khodorkovskii, M.A.; Kostyleva, E.I.; Chikhirzhina, E.V.; Tomilin, A.N. Post-translational modifications of linker histone H1 variants in mammals. Phys. Biol. 2017, 14, 016005. [Google Scholar] [CrossRef]
- Gréen, A.; Sarg, B.; Gréen, H.; Lönn, A.; Lindner, H.H.; Rundquist, I. Histone H1 interphase phosphorylation becomes largely established in G1 or early S phase and differs in G1 between T-lymphoblastoid cells and normal T cells. Epigenet. Chromatin 2011, 4, 15. [Google Scholar] [CrossRef]
- Simithy, J.; Sidoli, S.; Yuan, Z.F.; Coradin, M.; Bhanu, N.V.; Marchione, D.M.; Klein, B.J.; Bazilevsky, G.A.; McCullough, C.E.; Magin, R.S.; et al. Characterization of histone acylations links chromatin modifications with metabolism. Nat. Commun. 2017, 8, 1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, L.; Reinberg, D. The missing linker: Emerging trends for H1 variant-specific functions. Genes Dev. 2021, 35, 40–58. [Google Scholar] [CrossRef]
- Lu, A.; Zougman, A.; Pudełko, M.; Be¸benek, M.; Ziółkowski, P.; Mann, M.; Wi´sniewski, J.R. Mapping of lysine monomethylation of linker histones in human breast and its cancer. J. Proteome Res. 2009, 8, 4207–4215. [Google Scholar] [CrossRef] [PubMed]
- Noberini, R.; Morales, T.C.; Savoia, E.O.; Brandini, S.; Jodice, M.G.; Bertalot, G.; Bonizzi, G.; Capra, M.; Diaferia, G.; Scaffidi, P. Label-Free Mass Spectrometry-Based Quantification of Linker Histone H1 Variants in Clinical Samples. Int. J. Mol. Sci. 2020, 21, 7330. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.; Snijders, A.; Williamson, J.; Reynolds, C.; Baldwin, J.; Dickman, M. Post-translational modifications of the linker histone variants and their association with cell mechanisms. FEBS J. 2009, 276, 3685–3697. [Google Scholar] [CrossRef]
- Harshman, S.W.; Young, N.L.; Parthun, M.R.; Freitas, M.A. H1 histones: Current perspectives and challenges. Nucleic Acids Res. 2013, 41, 9593–9609. [Google Scholar] [CrossRef] [Green Version]
- Harshman, S.W.; Hoover, M.E.; Huang, C.; Branson, O.E.; Chaney, S.B.; Cheney, C.M.; Rosol, T.J.; Shapiro, C.L.; Wysocki, V.H.; Huebner, K.; et al. Histone H1 phosphorylation in breast cancer. J. Proteome Res. 2014, 13, 2453–2467. [Google Scholar] [CrossRef]
- Perri, A.M.; Agosti, V.; Olivo, E.; Concolino, A.; Angelis, M.D.; Tammè, L.; Fiumara, C.V.; Cuda, G.; Scumaci, D. Histone Proteomics Reveals Novel post-translational Modifications in Breast Cancer. Aging 2019, 11, 11722–11755. [Google Scholar] [CrossRef]
- Talasz, H.; Helliger, W.; Puschendorf, B.; Lindner, H. In vivo phosphorylation of histone H1 variants during the cell cycle. Biochemistry 1996, 35, 1761–1767. [Google Scholar] [CrossRef]
- Deterding, L.J.; Bunger, M.K.; Banks, G.C.; Tomer, K.B.; Archer, T.K. Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J. Proteome Res. 2008, 7, 2368–2379. [Google Scholar] [CrossRef]
- Hergeth, S.P.; Dundr, M.; Tropberger, P.; Zee, B.M.; Garcia, B.A.; Daujat, S.; Schneider, R. Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase Aurora B. J. Cell Sci. 2011, 124, 1623–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, Y.; Tang, M.; Peng, B.; Lu, X.; Yang, Q.; Zhu, Q.; Hou, T.; Li, M.; Liu, C.; et al. Destabilization of linker histone H1.2 is essential for ATM activation and DNA damage repair. Cell Res. 2018, 28, 756–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, M.F.; Ballestar, E.; Villar-Garea, A.; Boix-Chornet, M.; Espada, J.; Schotta, G.; Bonaldi, T.; Haydon, C.; Ropero, S.; Petrie, K.; et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat. Genet. 2005, 37, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Broeck, A.V.D.; Brambilla, E.; Moro-Sibilot, D.; Lantuejoul, S.; Brambilla, C.; Eymin, B.; Gazzeri, S. Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin. Cancer Res. 2008, 14, 7237–7245. [Google Scholar] [CrossRef] [Green Version]
- Noberini, R.; Robusti, G.; Bonaldi, T. Mass spectrometry-based characterization of histones in clinical samples: Applications, progresses, and challenges. FEBS J. 2022, 289, 1191–1213. [Google Scholar] [CrossRef]
- Hechtman, J.F.; Beasley, M.B.; Kinoshita, Y.; Ko, H.M.; Hao, K.; Burstein, D.E. Promyelocytic leukemia zinc finger and histone H1.5 differentially stain low- and high-grade pulmonary neuroendocrine tumors: A pilot immunohistochemical study. Hum. Pathol. 2013, 44, 1400–1405. [Google Scholar] [CrossRef]
- Khachaturov, V.; Xiao, G.Q.; Kinoshita, Y.; Unger, P.D.; Burstein, D.E. Histone H1.5, a novel prostatic cancer marker: An immunohistochemical study. Hum. Pathol. 2014, 45, 2115–2119. [Google Scholar] [CrossRef]
- Kostova, N.N.; Srebreva, L.N.; Milev, A.D.; Bogdanova, O.G.; Rundquist, I.; Lindner, H.H.; Markov, D.V. Immunohistochemical demonstration of histone H1(0) in human breast carcinoma. Histochem. Cell Biol. 2005, 124, 435–443. [Google Scholar] [CrossRef]
- Medrzycki, M.; Zhang, Y.; McDonald, J.F.; Fan, Y. Profiling of linker histone variants in ovarian cancer. Front. Biosci. 2012, 17, 396–406. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Chaerkady, R.; Tan, A.C.; García-García, E.; Nalli, A.; Suárez-Gauthier, A.; López-Ríos, F.; Zhang, X.F.; Solomon, A.; Tong, J.; et al. Antitumor Activity and Molecular Effects of the Novel Heat Shock Protein 90 Inhibitor, IPI-504, in Pancreatic Cancer. Mol. Cancer Ther. 2008, 7, 3275–3284. [Google Scholar] [CrossRef]
- Zhou, S.; Yan, Y.; Chen, X.; Zeng, S.; Wei, J.; Wang, X.; Gong, Z.; Xu, Z. A Two-Gene-Based Prognostic Signature for Pancreatic Cancer. Aging 2020, 12, 18322–18342. [Google Scholar] [CrossRef]
- Liao, R.; Mizzen, C.A. Interphase H1 phosphorylation: Regulation and functions in chromatin. Biochim. Biophys. Acta 2016, 1859, 476–485. [Google Scholar] [CrossRef]
- Behrends, M.; Engmann, O. Linker histone H1.5 is an underestimated factor in differentiation and carcinogenesis. Environ. Epigenet. 2020, 6, dvaa013. [Google Scholar] [CrossRef]
- Telu, K.H.; Abbaoui, B.; Thomas-Ahner, J.M.; Zynger, D.L.; Clinton, S.K.; Freitas, M.A.; Mortazavi, A. Alterations of Histone H1 Phosphorylation during Bladder Carcinogenesis. J. Proteome Res. 2013, 12, 3317–3326. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Jeong, K.W.; Kim, H.; Choi, J.; Lu, W.; Stallcup, M.R.; An, W. Functional Interplay between P53 Acetylation and H1.2 Phosphorylation in P53-Regulated Transcription. Oncogene. 2012, 31, 4290–4301. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-H.; Zhong, M.; Zang, H.L.; Tian, X.F. MTA1 Promotes Hepatocellular Carcinoma Progression by Downregulation of DNA-PKMediated h1.2T146 Phosphorylation. Front. Oncol. 2020, 10, 567. [Google Scholar] [CrossRef]
- Lai, S.; Jia, J.; Cao, X.; Zhou, P.K.; Gao, S. Molecular and Cellular Functions of the Linker Histone H1.2. Front. Cell Dev. Biol. 2022, 9, 773195. [Google Scholar] [CrossRef]
- Saloura, V.; Vougiouklakis, T.; Bao, R.; Kim, S.; Baek, S.; Zewde, M.; Bernard, B.; Burkitt, K.; Nigam, N.; Izumchenko, E.; et al. WHSC1 monomethylates histone H1 and induces stem-cell like features in squamous cell carcinoma of the head and neck. Neoplasia 2020, 22, 283–293. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Dong, L.; Tang, M.; Zhang, P.; Zhang, C.; Cao, Z.; Zhu, Q.; Chen, Y.; Wang, H.; et al. Histone H1 acetylation at lysine 85 regulates chromatin condensation and genome stability upon DNA damage. Nucleic Acids Res. 2018, 46, 7716–7730. [Google Scholar] [CrossRef] [Green Version]
- Bolton, V.; Russelakis-Carneiro, T.; Betmouni, R.; Perry, S. Non-nuclear histone H1 is upregulated in neurones and astrocytes in prion and Alzheimer’s diseases but not in acute neurodegeneration. Neuropathol. Appl. Neurobiol. 1999, 25, 425–432. [Google Scholar] [CrossRef]
- Duce, J.A.; Smith, D.P.; Blake, R.E.; Crouch, P.J.; Li, Q.X.; Masters, C.L.; Trounce, I.A. Linker histone H1 binds to disease associated amyloid-like fibrils. J. Mol. Biol. 2006, 361, 493–505. [Google Scholar] [CrossRef]
- Contreras, A.; Hale, T.K.; Stenoien, D.L.; Rosen, J.M.; Mancini, M.A.; Herrera, R.E. The dynamic mobility of histone H1 is regulated by Cyclin/CDK phosphorylation. Mol. Cell Biol. 2003, 23, 8626–8636. [Google Scholar] [CrossRef] [Green Version]
- Tsoneva, I.; Nikolova, B.; Georgieva, M.; Genova, M.; Tomov, T.; Rols, M.P.; Berger, M.R. Induction of apoptosis by electrotransfer of positively charged proteins as Cytochrome C and Histone H1 into cells. Biochim. Biophys. Acta 2005, 1721, 55–64. [Google Scholar] [CrossRef]
- Goers, J.; Manning-Bog, A.B.; McCormack, A.L.; Millett, I.S.; Doniach, S.; Di Monte, D.A.; Uversky, V.N.; Fink, A.L. Nuclear localization of alpha-synuclein and its interaction with histones. Biochemistry 2003, 42, 8465–8471. [Google Scholar] [CrossRef]
- Roque, A.; Sortino, R.; Ventura, S.; Ponte, I.; Suau, P. Histone H1 Favors Folding and Parallel Fibrillar Aggregation of the 1–42 Amyloid-β Peptide. Langmuir 2015, 31, 6782–6790. [Google Scholar] [CrossRef]
- Duffney, L.J.; Valdez, P.; Tremblay, M.W.; Cao, X.; Montgomery, S.; McConkie-Rosell, A.; Jiang, Y.-H. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2018, 177, 426–433. [Google Scholar] [CrossRef]
- Flex, E.; Martinelli, S.; Van-Dijck, A.; Ciolfi, A.; Cecchetti, S.; Coluzzi, E.; Pannone, L.; Andreoli, C.; Radio, F.C.; Pizzi, S.; et al. Aberrant function of the C-terminal tail of HIST1H1E accelerates cellular senescence and causes premature aging. Am. J. Hum. Genet. 2019, 105, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Ciolfi, A.; Aref-Eshghi, E.; Pizzi, S.; Pedace, L.; Miele, E.; Kerkhof, J.; Flex, E.; Martinelli, S.; Radio, F.C.; Ruivenkamp, C.A.L.; et al. Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature. Clin. Epigenet. 2020, 12, 7. [Google Scholar] [CrossRef]
- Indugula, S.R.; Ayala, S.S.; Vetrini, F.; Belonis, A.; Zhang, W. Exome sequencing identified a novel HIST1H1E heterozygous protein-truncating variant in a 6-month-old male patient with Rahman syndrome: A case report. Clin. Case Rep. 2022, 10, e05370. [Google Scholar] [CrossRef]
- Rubenstein, P.A.; Wen, K.K. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton 2014, 71, 211–229. [Google Scholar] [CrossRef]
- Kumar, A.; Zhong, Y.; Albrecht, A.; Sang, P.B.; Maples, A.; Liu, Z.; Vinayachandran, V.; Reja, R.; Lee, C.F.; Kumar, A.; et al. Actin R256 mono-methylation is a conserved post-translational modification involved in transcription. Cell Rep. 2020, 32, 108172. [Google Scholar] [CrossRef]
Human Linker Histone Subtypes | Phospho-rylation | Acetylation | Methyltion | Formy-lation | Ubiquitn-ylation | Hydrox-ylation | 2-hydroxyisob-utyrylation | Citrulation | Crotony-lation | ADP-ribosylat-ion (Parylation) | Refrences |
---|---|---|---|---|---|---|---|---|---|---|---|
H1.1 | S2, S115, S116, T119, T130, T133, S136 | K17, K22, K55, K67, K78, K88, K93, K100, K137, K185, K186, K187, K191, K193 | K67, K93, K100, K109, K113, K120, K131, K140, K188, K191, K193, K196, K208, K213 | K67, K84, K93, K100 | K78, K100 | Y74, K100 | [4,46,48,49] | ||||
H1.2 | S2, T4, T31, S36, T45, Y71, T146, T154, T165, S173 | K17, K23, K34, K46, K52, K63, K64, K85, K90, K97, K148, K169, K172, K175, L176, K178, K183, K192 | K27, R33, K34, K46, K52, K63, K64, K75, K85, K90, K97, K106, K119, K129, K148, K168, K172, K181, K183, K187, K196, K201, K211 | K17, K34, K46, K63, K64, K75, K81, K85, K90, K97, K160 | K34, K46, K63, K64, K75, K85, K90, K97, K106 | Y71 | K45, K51, K62, K63, K84, K89, K96 | R54 | K34, K64, K85, K90, K97, K159 | S188 | [4,14,46,47,48,49,53,56,57,58] |
H1.3 | S2, T4, T18, T30, S37, Y72, T147, T155, T180, S189 | K17, K25, K26, K35, K47, K53, K64, K65, K86, K91, K98, K138, K140, K141, K149, K169, K179, K184, K185, K188 | K25, K26, K33, K35, K47, K53, K64, K65, K76, K91, K98, K107, K118, K137, K149, K150, K169, K170, K173, K194, K204 | K35, K47, K64, K65, K75, K82, K86, K91, K98, K141, K160 | K35, K47, K65, K76, K86, K91, K98, K107 | Y72 | R55 | S189 | [4,14,46,47,48,49,53,56,58] | ||
H1.4 | S2, T4, T18, S27, S36, S41, T142, T146, T154, S172, S187 | K17, K26, K32, K34, K46, K52, K63, K64, K85, K90, K97, K169, K190, K192 | K17, K21, K22, K23, K25, K26, K32, K33, K34, K46, K52, K63, K64, K75, K85, K90, K97, K106, K119, K121, K127, K136, K148, K159, K168, K169, K177, K192, K195, K197, K207, K212, K217 | K17, K34, K46, K63, K64, K75, K81, K85, K90, K97, K110, K140, K160 | K17, K21, K34, K46, K63, K64, K75, K85, K90, K97, K106 | Y71 | R54 | E3, E16, E115, K219 | [4,14,46,47,48,49,53,56,57] | ||
H1.5 | S2, T4, T11, S18, S36, T39, S44, Y74, S107, T138, T155, S173, T187, S189 | K17, K49, K67, K78, K88, K93, K109, K168, K169, K209 | K27, K49, K55, K67, K78, K84, K93, K100, K109, K130, K149, K168, K169, K172, K182, K194, K199, K214, K224 | K37, K67, K84, K88, K93 | K35, K37, K49, K100 | R57 | [4,14,46,47,48,49,53,56,58] | ||||
H1.0 | T2 | K12, K82, K102, K108, K155 | K40 | R43, R94 | [4,14,46,47,48,49,53,56,58] | ||||||
H1X | S2, S31 | K106 | [46,48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Maurya, P.; Hayes, J.J. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. Int. J. Mol. Sci. 2023, 24, 1463. https://doi.org/10.3390/ijms24021463
Kumar A, Maurya P, Hayes JJ. Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. International Journal of Molecular Sciences. 2023; 24(2):1463. https://doi.org/10.3390/ijms24021463
Chicago/Turabian StyleKumar, Ashok, Preeti Maurya, and Jeffrey J. Hayes. 2023. "Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease" International Journal of Molecular Sciences 24, no. 2: 1463. https://doi.org/10.3390/ijms24021463
APA StyleKumar, A., Maurya, P., & Hayes, J. J. (2023). Post-Translation Modifications and Mutations of Human Linker Histone Subtypes: Their Manifestation in Disease. International Journal of Molecular Sciences, 24(2), 1463. https://doi.org/10.3390/ijms24021463