Ionophore Toxicity in Animals: A Review of Clinical and Molecular Aspects
Abstract
:1. Ionophores
1.1. Ionophore Structure and Mechanism of Action
1.2. Ionophores in Coccidiosis
2. Toxicity of Ionophores
2.1. Salinomycin Toxicity
2.2. Monensin Toxicity
2.3. Maduramicin Toxicity
2.4. Lasalocid Toxicity
3. Interaction of Tiamulin with Ionophores
4. Other Clinical Uses of the Ionophores
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dorne, J.L.C.M.; Fernández-Cruz, M.L.; Bertelsen, U.; Renshaw, D.W.; Peltonen, K.; Anadon, A.; Feil, A.; Sanders, P.; Wester, P.; Fink-Gremmels, J. Risk Assessment of Coccidostatics during Feed Cross-Contamination: Animal and Human Health Aspects. Toxicol. Appl. Pharmacol. 2013, 270, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Novilla, M.N. Ionophores. In Veterinary Toxicology: Basic and Clinical Principles, 3rd ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 1073–1092. ISBN 9780128114100. [Google Scholar]
- Huczyński, A. Polyether Ionophores—Promising Bioactive Molecules for Cancer Therapy. Bioorg. Med. Chem. Lett. 2012, 22, 7002–7010. [Google Scholar] [CrossRef] [Green Version]
- Antoszczak, M.; Huczyński, A. Salinomycin and Its Derivatives—A New Class of Multiple-Targeted “Magic Bullets. ” Eur. J. Med. Chem. 2019, 176, 208–227. [Google Scholar] [CrossRef]
- Kaushik, V.; Yakisich, J.S.; Kumar, A.; Azad, N.; Iyer, A.K.V. Ionophores: Potential Use as Anticancer Drugs and Chemosensitizers. Cancers 2018, 10, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kart, A.; Bilgili, A. Ionophore Antibiotics: Toxicity, Mode of Action and Neurotoxic Aspect of Carboxylic Ionophores. J. Anim. Vet. Adv. 2008, 7, 748–751. [Google Scholar]
- Versini, A.; Saier, L.; Sindikubwabo, F.; Müller, S.; Cañeque, T.; Rodriguez, R. Chemical Biology of Salinomycin. Tetrahedron 2018, 74, 5585–5614. [Google Scholar] [CrossRef]
- Radko, L.; Olejnik, M. Cytotoxicity of Anticancer Candidate Salinomycin and Identification of Its Metabolites in Rat Cell Cultures. Toxicol. In Vitro 2018, 52, 314–320. [Google Scholar] [CrossRef]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial Drugs of the Livestock Industry. Parasitol. Res. 2019, 118, 2009–2026. [Google Scholar] [CrossRef] [Green Version]
- Rybicki, M.J. Coccidiostats in Treating Coccidiosis. Zywnosc. Nauka. Technol. Jakosc/Food Sci. Technol. Qual. 2020, 27, 127–137. [Google Scholar] [CrossRef]
- Report from the Commission to the Council and the European Parliament on the Use of Coccidiostats and Histomonostats as Feed Additives Submitted Pursuant to Article 11 of Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on Additives for Use in Animal Nutrition; COM/2008/0233 Final; European Commission: Brussels, Belgium, 2003.
- Stubbings, G.; Bigwood, T. The Development and Validation of a Multiclass Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Procedure for the Determination of Veterinary Drug Residues in Animal Tissue Using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) Approach. Anal. Chim. Acta 2009, 637, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Jolley, W.R.; Bardsley, K.D. Ruminant Coccidiosis. Vet. Clin. N. Am. Food Anim. Pract. 2006, 22, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Váczi, P.; Neuschl, J.; Cónková, E. The Ionophorous Anticoccidials Used In Poultry (A Review). Folia Vet 2007, 51, 202–207. [Google Scholar]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-Calculating the Cost of Coccidiosis in Chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D. 21 Years of Monensin for Control of Coccidiosis—A Review. In Proceedings of the 6th International Coccidial Conference, Guelph, ON, Canada, 21–25 June 1993; pp. 37–44. [Google Scholar]
- European Union Register of Feed Additives Pursuant to Regulation (EC) No 1831/2003; Edition 07/2022 (302); European Commission: Brussels, Belgium, 2003.
- Jones, J.E.; Sous, J.; Hughes, B.L.; Castaldo, D.J.; Toler, J.E. Production and Egg-Quality Responses of White Leghorn Layers to Anticoccidial Agents. Poult. Sci. 1990, 69, 378–387. [Google Scholar] [CrossRef]
- Conway, D.P.; Johnson, J.K.; Guyonnet, V.; Long, P.L.; Smothers, C.D. Efficacy of Semduramicin and Salinomycin against Different Stages of Eimeria Tenella and E. Acervulina in the Chicken. Vet. Parasitol. 1993, 45, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EC) No 496/2007 of 4 May 2007 Amending Regulation (EC) No 600/2005 as Regards the Introduction of a Maximum Residue Limit for the Feed Additive Salinomax 120G, Belonging to the Group of Coccidiostats and Other Medicinal Substances (Text with EEA Relevance); European Commission: Brussels, Belgium, 2007.
- Kožárová, I. Anticoccidial Drug Residues and Safety of Animal Products Derived from Poultry. In Proceedings of Lectures and Posters of the International Scientific Conference “Hygiena Alimentorum XXVII”, Štrbské Pleso, Slovakia, 18–20 May 2006; pp. 109–112. [Google Scholar]
- Commission Implementing Regulation (EU) No 495/2011 of 20 May 2011 Amending Regulation (EC) No 109/2007 as Regards the Composition of the Feed Additive Monensin Sodium Text with EEA Relevance; European Commission: Brussels, Belgium, 2011.
- Commission Regulation (EC) No 1464/2004 of 17 August 2004 Concerning the Authorisation for 10 Years of the Additive «Monteban» in Feedingstuffs, Belonging to the Group of Coccidiostats and Other Medicinal Substances (Text with EEA Relevance); European Commission: Brussels, Belgium, 2004.
- Commission Regulation (EU) No 884/2010 of 7 October 2010 Amending Regulation (EC) No 1464/2004 as Regards the Withdrawal Time of the Additive ‘Monteban’, Belonging to the Group of Coccidiostats and Other Medicinal Substances; European Commission: Brussels, Belgium, 2010.
- Shlosberg, A.; Perl, S.; Harmelin, A.; Hanji, V.; Bellaiche, M.; Bogin, E.; Cohen, R.; Markusfeld-Nir, O.; Shpigel, N.; Eisenberg, Z.; et al. Acute Maduramicin Toxicity in Calves. Vet. Rec 1997, 140, 643–646. [Google Scholar] [CrossRef]
- Gutiérrez-Lugo, M.T.; Lotina-Hennsen, B.; Farrés, A.; Sánchez, S.; Mata, R. Phytotoxic and Photosynthetic Activities of Maduramicin and Maduramicin Methyl Ester. Z. Naturforsch. C J. Biosci. 1999, 54, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Commission Implementing Regulation (EU) No 388/2011 of 19 April 2011 Concerning the Authorisation of Maduramicin Ammonium Alpha as a Feed Additive for Chickens for Fattening (Holder of Authorisation Zoetis Belgium SA) and Amending Regulation (EC) No 2430/1999; European Commission: Brussels, Belgium, 2011.
- Pesti, G.M.; Bakalli, R.I.; Cervantes, H.M.; Bafundo, K.W. Studies on Semduramicin and Nutritional Responses. 1. Level and Source of Protein. Poult. Sci. 1999, 78, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Pesti, G.M.; Bakalli, R.I.; Cervantes, H.M.; Bafundo, K.W. Studies on Semduramicin and Nutritional Responses: 2. Methionine Levels. Poult. Sci. 1999, 78, 1170–1176. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 1443/2006 of 29 September 2006 Concerning the Permanent Authorisations of Certain Additives in Feedingstuffs and an Authorisation for 10 Years for a Coccidiostat (Text with EEA Relevance); European Commission: Brussels, Belgium, 2006.
- Guyonnet, V.; Johnson, J.K.; Long, P.L. Studies on the Stage of Action of Lasalocid against Eimeria Tenella and Eimeria Acervulina in the Chicken. Vet. Parasitol. 1990, 37, 93–100. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; de Bastos, M.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Safety and Efficacy of Avatec® 150G (Lasalocid A Sodium) for Chickens for Fattening and Chickens Reared for Laying, and Modification of the Terms of Authorisation for Chickens for Fattening, Chickens Reared for Laying, Turkeys for Fattening, Minor Avian Species (Pheasants, Guinea Fowl, Quails and Partridges) except Laying Birds. EFSA J. 2017, 15, e04857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevin, D.A.; Meujo, D.A.F.; Hamann, M.T. Polyether Ionophores: Broad-Spectrum and Promising Biologically Active Molecules for the Control of Drug-Resistant Bacteria and Parasites. Expert. Opin. Drug Discov. 2009, 4, 109–146. [Google Scholar] [CrossRef] [PubMed]
- Markiewicz, W.; Barski, D.; Burmańczuk, A.; Tomaszewska, E. Toxicity of Salinomycin and Narasin in Turkeys. J. Elem. 2014, 19, 903–914. [Google Scholar] [CrossRef]
- Roder, J.D.; Stair, E.L. Ionophore Toxicosis. Vet. Hum. Toxicol. 1999, 41, 178–181. [Google Scholar]
- Roder, J.D. Ionophore Toxicity and Tolerance. Vet. Clin. N. Am. Food Anim. Pract. 2011, 27, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Oehme, F.W.; Pickrell, J.A. An Analysis of the Chronic Oral Toxicity of Polyether Ionophore Antibiotics in Animals. Vet. Hum. Toxicol. 1999, 41, 251–257. [Google Scholar]
- Hall, J.O. Feed-Associated Toxicants: Ionophores. In Veterinary Toxicology; Plumlee, K., Ed.; Mosby: Maryland Heights, MO, USA, 2004; pp. 120–127. [Google Scholar]
- Migaki, T.T.; Babcock, W.E. Safety Evaluation of Salinomycin in Broiler Chickens Reared in Floor Pens. Poult. Sci. 1979, 58, 481–482. [Google Scholar] [CrossRef]
- Andreasen, J.R.; Schleifer, J.H. Salinomycin Toxicosis in Male Breeder Turkeys. Avian Dis. 1995, 39, 638–642. [Google Scholar] [CrossRef]
- Potter, L.M.; Blake, J.P.; Blair, M.E.; Bliss, B.A.; Denbow, D.M. Salinomycin Toxicity in Turkeys. Poult. Sci. 1986, 65, 1955–1959. [Google Scholar] [CrossRef]
- Stuart, J.C. Salinomycin Poisoning in Turkeys. Vet. Rec. 1983, 113, 597. [Google Scholar]
- Koutoulis, K.C.; Kefalas, G.; Minos, E. Salinomycin Toxicosis in Broiler Breeders and Turkeys: Report of the First Case. Am. J. Anim. Vet. Sci. 2013, 8, 190–196. [Google Scholar] [CrossRef]
- Halvorson, D.A.; van Dijk, C.; Brown, P. Ionophore Toxicity in Turkey Breeders. Avian Dis. 1982, 26, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.L.; Hillier, P.; Sutherland, R.J. Salinomycin Poisoning in Point-of-Lay Turkeys. Aust. Vet. J. 1989, 66, 326–329. [Google Scholar] [CrossRef] [PubMed]
- van Assen, E.J. A Case of Salinomycin Intoxication in Turkeys. Can. Vet. J. 2006, 47, 256–258. [Google Scholar]
- Yong, C.W. Saskatchewan. Salinomycin Toxicity in Turkeys. Can. Vet. J. 1990, 31, 220. [Google Scholar] [PubMed]
- Peixoto, P.V.; Nogueira, V.A.; Gonzaléz, A.P.; Tokarnia, C.H.; França, T.N. Accidental and Experimental Salinomycin Poisoning in Rabbits. Pesqui. Veterinária Bras. 2009, 29, 695–699. [Google Scholar] [CrossRef]
- Naser Al-Wabel, P.A. Sensitivity and Fatality of Salinomycin to Saudi Dromedary Camels: A Pilot Study. J. Camel Pract. Res. 2012, 19, 57–64. [Google Scholar]
- Plumlee, K.H.; Johnson, B.; Galey, F.D. Acute Salinomycin Toxicosis of Pigs. J. Vet. Diagn. Investig. 1995, 7, 419–420. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, R.; Rajaian, H.; Hajimohammadi, A.; Nazifi, S.; Khaliji, E.; Asmarian, S. ECG Alterations and Changes in Biochemical Parameters Associated with Experimental Salinomycin Toxicosis in Sheep. Iran. J. Vet. Res. 2013, 14, 120–125. [Google Scholar]
- Gao, X.; Zheng, Y.; Ruan, X.; Ji, H.; Peng, L.; Guo, D.; Jiang, S. Salinomycin Induces Primary Chicken Cardiomyocytes Death via Mitochondria Mediated Apoptosis. Chem. Biol. Interact. 2018, 282, 45–54. [Google Scholar] [CrossRef]
- Cybulski, W.; Radko, L.; Rzeski, W. Cytotoxicity of Monensin, Narasin and Salinomycin and Their Interaction with Silybin in HepG2, LMH and L6 Cell Cultures. Toxicol. In Vitro 2015, 29, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Diaz, G.J.; Aguillón, Y.; Cortés, A. Effects on Health, Performance, and Tissue Residues of the Ionophore Antibiotic Salinomycin in Finishing Broilers (21 to 38 d). Poult. Sci. 2018, 97, 1922–1928. [Google Scholar] [CrossRef]
- Hajimohammadi, A. Evaluation of Metabolisable Energy Indices Following Experimental Salinomycin Toxicosis in Sheep. J. Vet. Sci. Med. Diagn. 2013, 2, 3. [Google Scholar] [CrossRef]
- Ashrafihelan, J.; Eisapour, H.; Erfani, A.M.; Kalantary, A.A.; Amoli, J.S.; Mozafari, M. High Mortality Due to Accidental Salinomycin Intoxication in Sheep. Interdiscip. Toxicol. 2014, 7, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, F.; Anjum, A.D.; Khan, A.; Mohsan, M.; Shazad, M. Pathological and Serum Biochemical Effects of Salinomycin on Layer Chicks. Pak. Vet. J. 2008, 28, 71–75. [Google Scholar]
- Johansen, C.H.; Bjerrum, L.; Pedersen, K. Impact of Salinomycin on the Intestinal Microflora of Broiler Chickens. Acta Vet. Scand. 2007, 49, 30. [Google Scholar] [CrossRef] [Green Version]
- Kamashi, K.; Reddy, A.G.; Reddy, K.S.; Reddy, V.R. Evaluation of Zinc against Salinomycin Toxicity in Broilers. Indian J. Physiol. Pharmacol. 2004, 48, 89–95. [Google Scholar]
- Jones, J.E.; Solis, J.; Hughes, B.L.; Castaldo, D.J.; Toler, J.E. Reproduction Responses of Broiler-Breeders to Anticoccidial Agents. Poult. Sci. 1990, 69, 27–36. [Google Scholar] [CrossRef]
- Stutz, M.; Johnson, S. The Effects of the Coccidiostats Nicarbazin and Monensin upon the Nutrition of Broiler Chicks during Early Growth. In Proceedings of the 15th World Poultry Congress, New Orleans, LA, USA, 11–17 August 1974; pp. 97–99. [Google Scholar]
- Sandercock, D.A.; Mitchell, M.A. The Role of Sodium Ions in the Pathogenesis of Skeletal Muscle Damage in Broiler Chickens. Poult. Sci. 2004, 83, 701–706. [Google Scholar] [CrossRef]
- Rath, N.C.; Chapman, H.D.; Fitz-Coy, S.H.; Balog, J.M.; Huff, G.R.; Huff, W.E. Effects of Roxarsone and Monensin on Digital Flexoral Tendons of Broiler Chickens. Poult. Sci. 1998, 77, 523–528. [Google Scholar] [CrossRef]
- Chapman, H.D.; Jeffers, T.K.; Williams, R.B. Forty Years of Monensin for the Control of Coccidiosis in Poultry. Poult. Sci. 2010, 89, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, K.; Mcdougald, L.R. Anticoccidial Drugs: Growth and Performance Depressing Effects in Young Chickens 1. Poult. Sci. 1982, 61, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Stuart, J. An Outbreak of Monensin Poisoning in Adult Turkeys. Vet. Rec. 1978, 102, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Calò, M.; lo Cascio, P.; Licata, P.; Richetti, A.; Zaccone, G.; Naccari, F. Effects of Monensin on Na+/K(+)-ATPase and Ca(++)-AtPase Activities in Chick Skeletal Muscle and Myocardium after Subacute Treatment. Eur. J. Histochem. 2002, 46, 309–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalmers, G.A. Monensin Toxicity in Broiler Chickens. Can. Vet. J. 1981, 22, 21–22. [Google Scholar]
- Vanderkop, P.A.; Macneil, J.D.; Vanderkop, M.A. Monensin Intoxication in Broiler Chicks: Is It Really so Easy to Identify? Can. Vet. J. 1989, 30, 823–824. [Google Scholar]
- Chen, X.; Chen, L.; Jiang, S.; Huang, S. Maduramicin Induces Apoptosis and Necrosis, and Blocks Autophagic Flux in Myocardial H9c2 Cells. J. Appl. Toxicol. 2018, 38, 366–375. [Google Scholar] [CrossRef]
- Singh, T.; Gupta, R.P. Clinico-Haematological and Mineral Studies on Experimental Maduramicin Toxicity in Chickens. Vet. Parasitol. 2003, 116, 345–353. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, Y.; Peng, L.; Ruan, X.; Ji, H.; Qiu, Y.; Liu, X.; Teng, P.; Guo, D.; Jiang, S. Maduramicin Induces Apoptosis in Chicken Myocardial Cells via Intrinsic and Extrinsic Pathways. Toxicol. In Vitro 2018, 50, 190–200. [Google Scholar] [CrossRef]
- Gao, X.; Peng, L.; Ruan, X.; Chen, X.; Ji, H.; Ma, J.; Ni, H.; Jiang, S.; Guo, D. Transcriptome Profile Analysis Reveals Cardiotoxicity of Maduramicin in Primary Chicken Myocardial Cells. Arch. Toxicol. 2018, 92, 1267–1281. [Google Scholar] [CrossRef]
- Decloedt, A.; Verheyen, T.; de Clercq, D.; Sys, S.; Vercauteren, G.; Ducatelle, R.; Delahaut, P.; van Loon, G. Acute and Long-Term Cardiomyopathy and Delayed Neurotoxicity after Accidental Lasalocid Poisoning in Horses. J. Vet. Intern. Med. 2012, 26, 1005–1011. [Google Scholar] [CrossRef]
- Radko, L.; Cybulski, W.; Rzeski, W. The Protective Effect of Silybin against Lasalocid Cytotoxic Exposure on Chicken and Rat Cell Lines. Biomed. Res. Int. 2013, 2013, 783519. [Google Scholar] [CrossRef] [PubMed]
- Islam, K.M.S.; Klein, U.; Burch, D.G.S. The Activity and Compatibility of the Antibiotic Tiamulin with Other Drugs in Poultry Medicine—A Review. Poult. Sci. 2009, 88, 2353–2359. [Google Scholar] [CrossRef]
- Madej, J.A.; Mazurkiewicz, M.; Kuryszko, J.; Gaweł, A. Histological and Ultrastructural Examination of Muscles in Broilers Administered Tiamulin Together with Ionophoric Anticoccidials. Arch. Vet. Pol. 1993, 33, 5–17. [Google Scholar] [PubMed]
- Umemura, T.; Nakamura, H.; Goryo, M.; Itakura, C. Histopathology of Monensin-Tiamulin Myopathy in Broiler Chicks. Avian Pathol. 1984, 13, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Badiola, J.J.; Luco, D.F.; Perez, V.; Vargas, M.A.; Luján, L.; García Marín, J.F. Maduramicin and Tiamulin Compatibility in Broiler Chickens. Avian Pathol. 1994, 23, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, A.; Bafundo, K.W.; Islam, K.M.S.; Aupperle, H.; Glaser, R.; Schoon, H.A.; Gropp, J.M. Tiamulin and Semduramicin: Effects of Simultaneous Administration on Performance and Health of Growing Broiler Chickens. Poult. Sci. 2006, 85, 441–445. [Google Scholar] [CrossRef]
- Weisman, Y.; Herz, A.; Yegana, Y.; Egyed, M.N.; Shlosberg, A. The Effect of Tiamulin Administered by Different Routes and at Different Ages to Turkeys Receiving Monensin in Their Feed. Vet. Res. Commun. 1983, 6, 189–198. [Google Scholar] [CrossRef]
- Kantor, S. Maduramicin Ammonium: Anticoccidial Efficacy and Safety in Battery Andfloorpen Studies. In Proceedings of the Annual Coccidiosis Proceedings of Georgia Coccidiosis Conference, Athens, GA, USA, 18–20 November 1985; pp. 271–278. [Google Scholar]
- Vieira, S.; Favero, A.; Berres, J.; Freitas, D.; Martinez, J.; Mayorga, M.; Coneglian, J. Live Performance and Processing Yields of Broilers Fed Diets with Tiamulin and Salinomycin Combinations. Rev. Bras. Cienc. Avic. 2010, 12, 35–39. [Google Scholar] [CrossRef] [Green Version]
- Sakar, D.; Belèiæ, Z.; Blagoviæ, S.; Pompe-Gotal, J. Narasin Toxicity in Pigs and Its Incompatibility with Tiamulin. Vet. Arch. 1991, 61, 269–281. [Google Scholar]
- Meingassner, J.G.; Schmook, F.P.; Czok, R.; Mieth, H. Enhancement of the Anticoccidial Activity of Polyether Antibiotics in Chickens by Tiamulin. Poult. Sci. 1979, 58, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Ceppa, L.; Dacasto, M.; Carletti, M.; Montesissa, C.; Nebbia, C. “In Vitro” Interactions of Monensin with Hepatic Xenobiotic Metabolizing Enzymes. Pharmacol. Res. 1997, 36, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Nebbia, C.; Ceppa, L.; Dacasto, M.; Carletti, M.; Nachtmann, C. Oxidative Metabolism of Monensin in Rat Liver Microsomes and Interactions with Tiamulin and Other Chemotherapeutic Agents: Evidence for the Involvement of Cytochrome P-450 3A Subfamily. Drug Metab. Dispos. 1999, 27, 1039–1044. [Google Scholar]
- Nebbia, C.; Ceppa, L.; Dacasto, M.; Nachtmann, C.; Carletti, M. Oxidative Monensin Metabolism and Cytochrome P450 3A Content and Functions in Liver Microsomes from Horses, Pigs, Broiler Chicks, Cattle and Rats. J. Vet. Pharmacol. Ther. 2001, 24, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Radko, L.; Olejnik, M.; Posyniak, A. Primary Human Hepatocytes, but Not HepG2 or Balb/c 3T3 Cells, Efficiently Metabolize Salinomycin and Are Resistant to Its Cytotoxicity. Molecules 2020, 25, 1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zweers-Zeilmaker, W.M.; van Miert, A.S.; Horbach, G.J.; Witkamp, R.F. In Vitro Complex Formation and Inhibition of Hepatic Cytochrome P450 Activity by Different Macrolides and Tiamulin in Goats and Cattle. Res. Vet. Sci. 1999, 66, 51–55. [Google Scholar] [CrossRef]
- Witkamp, R.F.; Nijmeijer, S.M.; van Miert, A.S. Cytochrome P-450 Complex Formation in Rat Liver by the Antibiotic Tiamulin. Antimicrob. Agents Chemother. 1996, 40, 50–54. [Google Scholar] [CrossRef] [Green Version]
- Rátz, V.; Laczay, P.; Móra, Z.; Csikó, G.; Monostori, K.; Vereczkey, L.; Lehel, J.; Semjén, G. Recent Studies on the Effects of Tiamulin and Monensin on Hepatic Cytochrome P450 Activities in Chickens and Turkeys. J. Vet. Pharmacol. Ther. 1997, 20, 415–418. [Google Scholar] [CrossRef]
- Li, G.; de Oliveira, D.M.P.; Walker, M.J. The Antimicrobial and Immunomodulatory Effects of Ionophores for the Treatment of Human Infection. J. Inorg. Biochem. 2022, 227, 111661. [Google Scholar] [CrossRef]
- Bohlmann, L.; de Oliveira, D.M.P.; El-Deeb, I.M.; Brazel, E.B.; Harbison-Price, N.; Ong, C.Y.; Rivera-Hernandez, T.; Ferguson, S.A.; Cork, A.J.; Phan, M.-D.; et al. Chemical Synergy between Ionophore PBT2 and Zinc Reverses Antibiotic Resistance. mBio 2018, 9, e02391–e02418. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, D.M.P.; Bohlmann, L.; Conroy, T.; Jen, F.E.-C.; Everest-Dass, A.; Hansford, K.A.; Bolisetti, R.; El-Deeb, I.M.; Forde, B.M.; Phan, M.-D.; et al. Repurposing a Neurodegenerative Disease Drug to Treat Gram-Negative Antibiotic-Resistant Bacterial Sepsis. Sci. Transl. Med. 2020, 12, eabb3791. [Google Scholar] [CrossRef]
- Lanckriet, A.; Timbermont, L.; de Gussem, M.; Marien, M.; Vancraeynest, D.; Haesebrouck, F.; Ducatelle, R.; van Immerseel, F. The Effect of Commonly Used Anticoccidials and Antibiotics in a Subclinical Necrotic Enteritis Model. Avian Pathol. 2010, 39, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickey, E.E.; Wong, H.S.; Khazandi, M.; Ogunniyi, A.D.; Petrovski, K.R.; Garg, S.; Page, S.W.; O’Handley, R.; Trott, D.J. Repurposing Ionophores as Novel Antimicrobial Agents for the Treatment of Bovine Mastitis Caused by Gram-Positive Pathogens. J. Vet. Pharmacol. Ther. 2018, 41, 746–754. [Google Scholar] [CrossRef]
- Hickey, E.E.; Page, S.W.; Trott, D.J. In Vitro Efficacy and Pharmacodynamic Profiles of Four Polyether Ionophores against Methicillin-Resistant Staphylococcus spp. J. Vet. Pharmacol. Ther. 2020, 43, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, J.; Stępień, K.; Huczyński, A.; Tyski, S. Activity of Natural Polyether Ionophores: Monensin and Salinomycin against Clinical Staphylococcus Epidermidis Strains. Pol. J. Microbiol. 2015, 64, 273–278. [Google Scholar] [CrossRef]
- Jang, Y.; Shin, J.S.; Yoon, Y.-S.; Go, Y.Y.; Lee, H.W.; Kwon, O.S.; Park, S.; Park, M.-S.; Kim, M. Salinomycin Inhibits Influenza Virus Infection by Disrupting Endosomal Acidification and Viral Matrix Protein 2 Function. J. Virol. 2018, 92, e01441-18. [Google Scholar] [CrossRef] [Green Version]
- Svenningsen, E.B.; Thyrsted, J.; Blay-Cadanet, J.; Liu, H.; Lin, S.; Moyano-Villameriel, J.; Olagnier, D.; Idorn, M.; Paludan, S.R.; Holm, C.K.; et al. Ionophore Antibiotic X-206 Is a Potent Inhibitor of SARS-CoV-2 Infection in Vitro. Antivir. Res. 2021, 185, 104988. [Google Scholar] [CrossRef] [PubMed]
- Antoszczak, M.; Huczyński, A. Anticancer Activity of Polyether Ionophore-Salinomycin. Anticancer Agents Med. Chem. 2015, 15, 575–591. [Google Scholar] [CrossRef]
- Antoszczak, M. A Comprehensive Review of Salinomycin Derivatives as Potent Anticancer and Anti-CSCs Agents. Eur. J. Med. Chem. 2019, 166, 48–64. [Google Scholar] [CrossRef]
- Naujokat, C.; Steinhart, R. Salinomycin as a Drug for Targeting Human Cancer Stem Cells. J. Biomed. Biotechnol. 2012, 2012, 950658. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Y.; Li, J.; Huang, J.H.; Hu, X.; Wu, E. Salinomycin as a Potent Anticancer Stem Cell Agent: State of the Art and Future Directions. Med. Res. Rev. 2022, 42, 1037–1063. [Google Scholar] [CrossRef] [PubMed]
Ionophore Name | Approval Year | Trade Name |
---|---|---|
Monensin | 1971 | Coban |
Lasalocid | 1976 | Avatec |
Salinomycin | 1983 | Bio-Cox, Sacox |
Narasin | 1988 | Monteban |
Maduramicin | 1989 | Cygro |
Semduramicin | 1995 | Aviax |
Ionophore | Producing Organism | Affected Protozoa Species | The Recommended Concentration in Feed | Withdrawal Period | Reference |
---|---|---|---|---|---|
Salinomycin | Streptomyces albus | E. tenella, E. necatrix, E. acervulina, E. maxima, E. brunetti, E. mivati | 50–70 mg/kg | 1 day | [18,19,20] |
Monensin | Streptomyces cinnamonensis | E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella, E. mivati | 100–125 mg/kg | 1 day | [19,21,22] |
Narasin | Streptomyces aureofaciens | E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella, E. mivati | 60–70 mg/kg | 0 days | [18,23,24] |
Maduramicin | Actinomadura yumaensis | E. acervulina, E. brunetti, E. maxima, E. necatrix, E. tenella, E. mivati | Authorization expired in 2021 | [18,25,26,27] | |
Semduramicin | Actinomadura roseorufa | E. acervulina, E. maxima, E. brunetti, E. tenella | 20–25 mg/kg | 5 days | [14,28,29,30] |
Lasalocid | Streptomyces lasaliensis | E. tenella, E. necatrix, E. acervulina, E. brunetti, E. mivati, E. maxima | 75–125 mg/kg | 3 days | [31,32] |
Species | LD50 [mg/kg b.w.] | Reference | |||
---|---|---|---|---|---|
Lasalocid | Monensin | Narasin | Salinomycin | ||
Cattle | 50–150 | 20–80 | [2,35] | ||
Chicken | 71.5 | 200–214 | 67 | 40–44.3 | [2,36] |
Goat | - | 26.4 | - | - | [2] |
Horse | 21.5 | 1–3 | 0.8 | 0.6 | [2,36] |
Mice | 146 | 70–96 | 15.8–36.7 | 57.4 | [2,37,38] |
Rabbit | 40 | 41.7 | 11.9–15.5 | - | [2,37,38] |
Rat | 122 | 28.6–40.1 | 18.5–40.8 | 48 | [2,37,38] |
Sheep | 75–350 | 12 | - | - | [35] |
Swine | 16.7–50 | 8.9 | - | [2,38] | |
Trout | - | >1000 | - | - | [2] |
Turkey | 253 | 0.6 | [2,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekinci, İ.B.; Chłodowska, A.; Olejnik, M. Ionophore Toxicity in Animals: A Review of Clinical and Molecular Aspects. Int. J. Mol. Sci. 2023, 24, 1696. https://doi.org/10.3390/ijms24021696
Ekinci İB, Chłodowska A, Olejnik M. Ionophore Toxicity in Animals: A Review of Clinical and Molecular Aspects. International Journal of Molecular Sciences. 2023; 24(2):1696. https://doi.org/10.3390/ijms24021696
Chicago/Turabian StyleEkinci, İlksen Berfin, Agnieszka Chłodowska, and Małgorzata Olejnik. 2023. "Ionophore Toxicity in Animals: A Review of Clinical and Molecular Aspects" International Journal of Molecular Sciences 24, no. 2: 1696. https://doi.org/10.3390/ijms24021696
APA StyleEkinci, İ. B., Chłodowska, A., & Olejnik, M. (2023). Ionophore Toxicity in Animals: A Review of Clinical and Molecular Aspects. International Journal of Molecular Sciences, 24(2), 1696. https://doi.org/10.3390/ijms24021696