Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum
Abstract
:1. Preface
2. Cerebellum-like Dorsal Cochlear Nucleus (DCN) and Cerebellum
2.1. Cerebellum
2.2. A Cerebellum-like Structure, Dorsal Cochlear Nucleus (DCN)
3. Evidence of Kainate Receptor Expression in DCN and Cerebellum
3.1. Kainate Receptors (KARs)
3.2. Expression of KARs in the DCN
3.3. Expression of KARs in Cerebellum
4. Roles of KARs in Cerebellum Enlightening Cerebellum-like DCN
4.1. Role of KARs in Development of Cerebellum
4.2. Physiological Roles of KARs in the Cerebellum
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bell, C.C.; Han, V.; Sawtell, N.B. Cerebellum-Like Structures and Their Implications for Cerebellar Function. Annu. Rev. Neurosci. 2008, 31, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Schinzel, F.; Seyfer, H.; Ebbers, L.; Nothwang, H.G. The Lbx1 Lineage Differentially Contributes to Inhibitory Cell Types of the Dorsal Cochlear Nucleus, a Cerebellum-like Structure, and the Cerebellum. J. Comp. Neurol. 2021, 529, 3032–3045. [Google Scholar] [CrossRef]
- Oertel, D.; Young, E.D. What’s a Cerebellar Circuit Doing in the Auditory System? Trends Neurosci. 2004, 27, 104–110. [Google Scholar] [CrossRef]
- Baizer, J.S.; Manohar, S.; Paolone, N.A.; Weinstock, N.; Salvi, R.J. Understanding Tinnitus: The Dorsal Cochlear Nucleus, Organization and Plasticity. Brain Res. 2012, 1485, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Trussell, L.O.; Oertel, D. Microcircuits of the Dorsal Cochlear Nucleus. In The Mammalian Auditory Pathways; Oliver, D.L., Cant, N.B., Fay, R.R., Popper, A.N., Eds.; Springer: Cham, Switzerland, 2018; Volume 65, pp. 73–99. [Google Scholar]
- Yamazaki, T.; Igarashi, J.; Makino, J.; Ebisuzaki, T. Real-Time Simulation of a Cat-Scale Artificial Cerebellum on PEZY-SC Processors. Int. J. High Perform. Comput. Appl. 2019, 33, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-Q.; Trussell, L.O. Serotonergic Modulation of Sensory Representation in a Central Multisensory Circuit Is Pathway Specific. Cell Rep. 2017, 20, 1844–1854. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.-Q.; Hoang Dinh, E.; Shi, W.; Lu, Y. Ambient GABA-Activated Tonic Inhibition Sharpens Auditory Coincidence Detection via a Depolarizing Shunting Mechanism. J. Neurosci. 2011, 31, 6121–6131. [Google Scholar] [CrossRef] [Green Version]
- Contractor, A.; Mulle, C.; Swanson, G.T. Kainate Receptors Coming of Age: Milestones of Two Decades of Research. Trends Neurosci. 2011, 34, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, K.B.; Wollmuth, L.P.; Bowie, D.; Furukawa, H.; Menniti, F.S.; Sobolevsky, A.I.; Swanson, G.T.; Swanger, S.A.; Greger, I.H.; Nakagawa, T.; et al. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharm. Rev. 2021, 73, 1469–1658. [Google Scholar] [CrossRef]
- Valbuena, S.; Lerma, J. Kainate Receptors, Homeostatic Gatekeepers of Synaptic Plasticity. Neuroscience 2021, 456, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-W.; Kapfhammer, J.P. The Emerging Key Role of the MGluR1-PKCγ Signaling Pathway in the Pathogenesis of Spinocerebellar Ataxias: A Neurodevelopmental Viewpoint. Int. J. Mol. Sci. 2022, 23, 9169. [Google Scholar] [CrossRef]
- Wu, Q.-W.; Kapfhammer, J.P. Modulation of Increased MGluR1 Signaling by RGS8 Protects Purkinje Cells From Dendritic Reduction and Could Be a Common Mechanism in Diverse Forms of Spinocerebellar Ataxia. Front. Cell. Dev. Biol. 2021, 8, 1912. [Google Scholar] [CrossRef]
- Tang, Z.-Q.; Lu, Y. Anatomy and Physiology of Metabotropic Glutamate Receptors in Mammalian and Avian Auditory System. Trends Anat. Physiol. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Lu, Y. Metabotropic Glutamate Receptors in Auditory Processing. Neuroscience 2014, 274, 429–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.-W.; Kapfhammer, J.P. Conditional Gene Silencing via a CRISPR System in Cerebellar Purkinje Cells. Biochim. Biophys. Acta (BBA) Gen. Subj. 2021, 1865, 129869. [Google Scholar] [CrossRef]
- Wu, Q.-W.; Kapfhammer, J.P. The Bacterial Enzyme Cas13 Interferes with Neurite Outgrowth from Cultured Cortical Neurons. Toxins 2021, 13, 262. [Google Scholar] [CrossRef]
- Wu, Q.-W.; Kapfhammer, J.P. The Bacterial Enzyme RfxCas13d Is Less Neurotoxic Than PspCas13b and Could Be a Promising RNA Editing and Interference Tool in the Nervous System. Brain Sci. 2021, 11, 1054. [Google Scholar] [CrossRef]
- Lainé, J.; Axelrad, H. The Candelabrum Cell: A New Interneuron in the Cerebellar Cortex. J. Comp. Neurol. 1994, 339, 159–173. [Google Scholar] [CrossRef]
- Bihannic, L.; Ayrault, O. Insights into Cerebellar Development and Medulloblastoma. Bull Cancer 2016, 103, 30–40. [Google Scholar] [CrossRef]
- Cerminara, N.L.; Lang, E.J.; Sillitoe, R.V.; Apps, R. Redefining the Cerebellar Cortex as an Assembly of Non-Uniform Purkinje Cell Microcircuits. Nat. Rev. Neurosci. 2015, 16, 79–93. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.-W.; Kapfhammer, J.P. The CRISPR-Cas13a System Interferes with Purkinje Cell Dendritic Development. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118710. [Google Scholar] [CrossRef]
- Wu, Q.-W.; Kapfhammer, J.P. CRISPR-Cas13-Mediated Knockdown of Regulator of G-Protein Signaling 8 (RGS8) Does Not Affect Purkinje Cell Dendritic Development. Front. Cell Dev. Biol. 2022, 10, 854273. [Google Scholar] [CrossRef] [PubMed]
- Napper, R.M.A.; Harvey, R.J. Number of Parallel Fiber Synapses on an Individual Purkinje Cell in the Cerebellum of the Rat. J. Comp. Neurol. 1988, 274, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Binda, F.; Pernaci, C.; Saxena, S. Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Front. Neurosci. 2020, 14, 293. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, E.; Casali, S. Seeking a Unified Framework for Cerebellar Function and Dysfunction: From Circuit Operations to Cognition. Front. Neural Circuits 2013, 6, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kecskes, S.; Kőszeghy, Á.; Szücs, G.; Rusznák, Z.; Matesz, C.; Birinyi, A. Three-Dimensional Reconstruction and Quantitative Morphometric Analysis of Pyramidal and Giant Neurons of the Rat Dorsal Cochlear Nucleus. Brain Struct. Funct. 2013, 218, 1279–1292. [Google Scholar] [CrossRef]
- Spatz, W.B. Differences between Guinea Pig and Rat in the Dorsal Cochlear Nucleus: Expression of Calcium-Binding Proteins by Cartwheel and Purkinje-like Cells. Hear. Res. 1997, 107, 136–146. [Google Scholar] [CrossRef]
- Kőszeghy, Á.; Pál, B.; Pap, P.; Pocsai, K.; Nagy, Z.; Szűcs, G.; Rusznák, Z. Purkinje-like Cells of the Rat Cochlear Nucleus: A Combined Functional and Morphological Study. Brain Res. 2009, 1297, 57–69. [Google Scholar] [CrossRef]
- Spatz, W.B. Purkinje-like Cells in the Cochlear Nucleus of the Common Tree Shrew (Tupaia Glis) Identified by Calbindin Immunohistochemistry. Brain Res. 2003, 983, 230–232. [Google Scholar] [CrossRef]
- Cant, N.B. The Cochlear Nucleus: Neuronal Types and Their Synaptic Organization. In The Mammalian Auditory Pathway: Neuroanatomy; Springer: Berlin/Heidelberg, Germany, 1992; pp. 66–116. [Google Scholar]
- Brugge, J.F. Anatomy and Physiology of Auditory Pathways and Cortex. In Handbook of Clinical Neurophysiology, Vol. 10—Disorders of Peripheral and Central Auditory Processing; Celesia, G.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 25–59. [Google Scholar]
- Young, E.D.; Davis, K.A. Circuitry and Function of the Dorsal Cochlear Nucleus. In Integrative Functions in the Mammalian Auditory Pathway; Springer: Berlin/Heidelberg, Germany, 2002; pp. 160–206. [Google Scholar]
- Wu, Q.-W.; Kapfhammer, J.P. Serine/Threonine Kinase 17b (STK17B) Signalling Regulates Purkinje Cell Dendritic Development and Is Altered in Multiple Spinocerebellar Ataxias. Eur. J. Neurosci. 2021, 54, 6673–6684. [Google Scholar] [CrossRef]
- Apostolides, P.F.; Trussell, L.O. Superficial Stellate Cells of the Dorsal Cochlear Nucleus. Front. Neural Circuits 2014, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Shore, S.E. Multisensory Activation of Ventral Cochlear Nucleus D-stellate Cells Modulates Dorsal Cochlear Nucleus Principal Cell Spatial Coding. J. Physiol. 2018, 596, 4537–4548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singla, S.; Dempsey, C.; Warren, R.; Enikolopov, A.G.; Sawtell, N.B. A Cerebellum-like Circuit in the Auditory System Cancels Responses to Self-Generated Sounds. Nat. Neurosci. 2017, 20, 943–950. [Google Scholar] [CrossRef] [Green Version]
- Mullen, R.J.; Eicher, E.M.; Sidman, R.L. Purkinje Cell Degeneration, a New Neurological Mutation in the Mouse. Proc. Natl. Acad. Sci. USA 1976, 73, 208–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mugnaini, E.; Berrebi, A.S.; Dahl, A.L.; Morgan, J.I. The Polypeptide PEP-19 Is a Marker for Purkinje Neurons in Cerebellar Cortex and Cartwheel Neurons in the Dorsal Cochlear Nucleus. Arch. Ital. Biol. 1987, 126, 41–67. [Google Scholar]
- Caddy, K.W.; Biscoe, T.J. Structural and Quantitative Studies on the Normal C3H and Lurcher Mutant Mouse. Philos. Trans. R. Soc. London. B Biol. Sci. 1979, 287, 167–201. [Google Scholar] [CrossRef]
- Merchán, M.A.; Juiz, J.M.; Godfrey, D.A.; Mugnaini, E. The Mammalian Cochlear Nuclei; Merchán, M.A., Juiz, J.M., Godfrey, D.A., Mugnaini, E., Eds.; Springer US: Boston, MA, USA, 1993; ISBN 978-1-4613-6273-9. [Google Scholar]
- Parham, K.; Bonaiuto, G.; Carlson, S.; Turner, J.G.; D’Angelo, W.R.; Bross, L.S.; Fox, A.; Willott, J.F.; Kim, D.O. Purkinje Cell Degeneration and Control Mice: Responses of Single Units in the Dorsal Cochlear Nucleus and the Acoustic Startle Response. Hear. Res. 2000, 148, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Berrebi, A.S.; Morgan, J.I.; Mugnaini, E. The Purkinje Cell Class May Extend beyond the Cerebellum. J. Neurocytol. 1990, 19, 643–654. [Google Scholar] [CrossRef]
- Arendt, D.; Musser, J.M.; Baker, C.V.H.; Bergman, A.; Cepko, C.; Erwin, D.H.; Pavlicev, M.; Schlosser, G.; Widder, S.; Laubichler, M.D.; et al. The Origin and Evolution of Cell Types. Nat. Rev. Genet. 2016, 17, 744–757. [Google Scholar] [CrossRef]
- Fujiyama, T.; Yamada, M.; Terao, M.; Terashima, T.; Hioki, H.; Inoue, Y.U.; Inoue, T.; Masuyama, N.; Obata, K.; Yanagawa, Y.; et al. Inhibitory and Excitatory Subtypes of Cochlear Nucleus Neurons Are Defined by Distinct BHLH Transcription Factors, Ptf1a and Atoh1. Development 2009, 136, 2049–2058. [Google Scholar] [CrossRef]
- Pascual, M.; Abasolo, I.; Mingorance-Le Meur, A.; Martínez, A.; del Rio, J.A.; Wright, C.V.E.; Real, F.X.; Soriano, E. Cerebellar GABAergic Progenitors Adopt an External Granule Cell-like Phenotype in the Absence of Ptf1a Transcription Factor Expression. Proc. Natl. Acad. Sci. USA 2007, 104, 5193–5198. [Google Scholar] [CrossRef] [Green Version]
- Jane, D.E.; Lodge, D.; Collingridge, G.L. Kainate Receptors: Pharmacology, Function and Therapeutic Potential. Neuropharmacology 2009, 56, 90–113. [Google Scholar] [CrossRef]
- Lerma, J.; Marques, J.M. Kainate Receptors in Health and Disease. Neuron 2013, 80, 292–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pressey, J.C.; Woodin, M.A. Kainate Receptor Regulation of Synaptic Inhibition in the Hippocampus. J. Physiol. 2021, 599, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Traynelis, S.F.; Wollmuth, L.P.; McBain, C.J.; Menniti, F.S.; Vance, K.M.; Ogden, K.K.; Hansen, K.B.; Yuan, H.; Myers, S.J.; Dingledine, R. Glutamate Receptor Ion Channels: Structure, Regulation, and Function. Pharm. Rev. 2010, 62, 405–496. [Google Scholar] [CrossRef] [Green Version]
- Bettler, B.; Mulle, C. AMPA and Kainate Receptors. Neuropharmacology 1995, 34, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Collingridge, G.L.; Olsen, R.W.; Peters, J.; Spedding, M. A Nomenclature for Ligand-Gated Ion Channels. Neuropharmacology 2009, 56, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Lerma, J.; Paternain, A.V.; Rodríguez-Moreno, A.; López-García, J.C. Molecular Physiology of Kainate Receptors. Physiol. Rev. 2001, 81, 971–998. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, H.B.; Catches, J.S.; Petralia, R.S.; Copits, B.A.; Xu, J.; Russell, T.A.; Swanson, G.T.; Contractor, A. High-Affinity Kainate Receptor Subunits Are Necessary for Ionotropic but Not Metabotropic Signaling. Neuron 2009, 63, 818–829. [Google Scholar] [CrossRef] [Green Version]
- Khanra, N.; Brown, P.M.; Perozzo, A.M.; Bowie, D.; Meyerson, J.R. Architecture and Structural Dynamics of the Heteromeric GluK2/K5 Kainate Receptor. Elife 2021, 10, e66097. [Google Scholar] [CrossRef]
- Wisden, W.; Seeburg, P. A Complex Mosaic of High-Affinity Kainate Receptors in Rat Brain. J. Neurosci. 1993, 13, 3582–3598. [Google Scholar] [CrossRef] [Green Version]
- Paternain, A.V.; Herrera, M.T.; Nieto, M.A.; Lerma, J. GluR5 and GluR6 Kainate Receptor Subunits Coexist in Hippocampal Neurons and Coassemble to Form Functional Receptors. J. Neurosci. 2000, 20, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulle, C.; Sailer, A.; Swanson, G.T.; Brana, C.; O’Gorman, S.; Bettler, B.; Heinemann, S.F. Subunit Composition of Kainate Receptors in Hippocampal Interneurons. Neuron 2000, 28, 475–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huettner, J.E. Kainate Receptors and Synaptic Transmission. Prog. Neurobiol. 2003, 70, 387–407. [Google Scholar] [CrossRef]
- Ramos, C.; Lutzu, S.; Yamasaki, M.; Yanagawa, Y.; Sakimura, K.; Tomita, S.; Watanabe, M.; Castillo, P.E. Activation of Extrasynaptic Kainate Receptors Drives Hilar Mossy Cell Activity. J. Neurosci. 2022, 42, 2872–2884. [Google Scholar] [CrossRef] [PubMed]
- Petralia, R.S.; Wang, Y.-X.; Wenthold, R.J. Histological and Ultrastructural Localization of the Kainate Receptor Subunits, KA2 and GluR6/7, in the Rat Nervous System Using Selective Antipeptide Antibodies. J. Comp. Neurol. 1994, 349, 85–110. [Google Scholar] [CrossRef]
- Huntley, G.; Rogers, S.; Moran, T.; Janssen, W.; Archin, N.; Vickers, J.; Cauley, K.; Heinemann, S.; Morrison, J. Selective Distribution of Kainate Receptor Subunit Immunoreactivity in Monkey Neocortex Revealed by a Monoclonal Antibody That Recognizes Glutamate Receptor Subunits GluR5/6/7. J. Neurosci. 1993, 13, 2965–2981. [Google Scholar] [CrossRef] [Green Version]
- Petralia, R.S.; Wang, Y.-X.; Zhao, H.-M.; Wenthold, R.J. Ionotropic and Metabotropic Glutamate Receptors Show Unique Postsynaptic, Presynaptic, and Glial Localizations in the Dorsal Cochlear Nucleus. J. Comp. Neurol. 1996, 372, 356–383. [Google Scholar] [CrossRef]
- Petralia, R.S.; Rubio, M.E.; Wang, Y.-X.; Wenthold, R.J. Differential Distribution of Glutamate Receptors in the Cochlear Nuclei. Hear. Res. 2000, 147, 59–69. [Google Scholar] [CrossRef]
- Bettler, B.; Boulter, J.; Hermans-Borgmeyer, I.; O’Shea-Greenfield, A.; Deneris, E.S.; Moll, C.; Borgmeyer, U.; Hollmann, M.; Heinemann, S. Cloning of a Novel Glutamate Receptor Subunit, GluR5: Expression in the Nervous System during Development. Neuron 1990, 5, 583–595. [Google Scholar] [CrossRef]
- Bahn, S.; Volk, B.; Wisden, W. Kainate Receptor Gene Expression in the Developing Rat Brain. J. Neurosci. 1994, 14, 5525–5547. [Google Scholar] [CrossRef]
- Ripellino, J.A.; Neve, R.L.; Howe, J.R. Expression and Heteromeric Interactions of Non-N-Methyl-d-Aspartate Glutamate Receptor Subunits in the Developing and Adult Cerebellum. Neuroscience 1997, 82, 485–497. [Google Scholar] [CrossRef] [PubMed]
- Bureau, I.; Dieudonné, S.; Coussen, F.; Mulle, C. Kainate Receptor-Mediated Synaptic Currents in Cerebellar Golgi Cells Are Not Shaped by Diffusion of Glutamate. Proc. Natl. Acad. Sci. USA 2000, 97, 6838–6843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; St-Gelais, F.; Grabner, C.P.; Trinidad, J.C.; Sumioka, A.; Morimoto-Tomita, M.; Kim, K.S.; Straub, C.; Burlingame, A.L.; Howe, J.R.; et al. A Transmembrane Accessory Subunit That Modulates Kainate-Type Glutamate Receptors. Neuron 2009, 61, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe-Iida, I.; Konno, K.; Akashi, K.; Abe, M.; Natsume, R.; Watanabe, M.; Sakimura, K. Determination of Kainate Receptor Subunit Ratios in Mouse Brain Using Novel Chimeric Protein Standards. J. Neurochem. 2016, 136, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Ryazantseva, M.; Englund, J.; Shintyapina, A.; Huupponen, J.; Shteinikov, V.; Pitkänen, A.; Partanen, J.M.; Lauri, S.E. Kainate Receptors Regulate Development of Glutamatergic Synaptic Circuitry in the Rodent Amygdala. Elife 2020, 9, e52798. [Google Scholar] [CrossRef]
- Zhu, Y.; Armstrong, J.N.; Contractor, A. Kainate Receptors Regulate the Functional Properties of Young Adult-Born Dentate Granule Cells. Cell Rep. 2021, 36, 109751. [Google Scholar] [CrossRef]
- Juuri, J.; Clarke, V.R.J.; Lauri, S.E.; Taira, T. Kainate Receptor–Induced Ectopic Spiking of CA3 Pyramidal Neurons Initiates Network Bursts in Neonatal Hippocampus. J. Neurophysiol. 2010, 104, 1696–1706. [Google Scholar] [CrossRef] [Green Version]
- Lanore, F.; Labrousse, V.F.; Szabo, Z.; Normand, E.; Blanchet, C.; Mulle, C. Deficits in Morphofunctional Maturation of Hippocampal Mossy Fiber Synapses in a Mouse Model of Intellectual Disability. J. Neurosci. 2012, 32, 17882–17893. [Google Scholar] [CrossRef] [Green Version]
- Marchal, C.; Mulle, C. Postnatal Maturation of Mossy Fibre Excitatory Transmission in Mouse CA3 Pyramidal Cells: A Potential Role for Kainate Receptors. J. Physiol. 2004, 561, 27–37. [Google Scholar] [CrossRef]
- Lauri, S.E.; Vesikansa, A.; Segerstråle, M.; Collingridge, G.L.; Isaac, J.T.R.; Taira, T. Functional Maturation of CA1 Synapses Involves Activity-Dependent Loss of Tonic Kainate Receptor-Mediated Inhibition of Glutamate Release. Neuron 2006, 50, 415–429. [Google Scholar] [CrossRef] [Green Version]
- Sakha, P.; Vesikansa, A.; Orav, E.; Heikkinen, J.; Kukko-Lukjanov, T.-K.; Shintyapina, A.; Franssila, S.; Jokinen, V.; Huttunen, H.J.; Lauri, S.E. Axonal Kainate Receptors Modulate the Strength of Efferent Connectivity by Regulating Presynaptic Differentiation. Front. Cell Neurosci. 2016, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Monnerie, H.; le Roux, P.D. Glutamate Receptor Agonist Kainate Enhances Primary Dendrite Number and Length from Immature Mouse Cortical Neurons in Vitro. J. Neurosci. Res. 2006, 83, 944–956. [Google Scholar] [CrossRef]
- Xu, J.; Marshall, J.J.; Fernandes, H.B.; Nomura, T.; Copits, B.A.; Procissi, D.; Mori, S.; Wang, L.; Zhu, Y.; Swanson, G.T.; et al. Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice. Cell Rep. 2017, 18, 1848–1857. [Google Scholar] [CrossRef] [Green Version]
- Tashiro, A.; Dunaevsky, A.; Blazeski, R.; Mason, C.A.; Yuste, R. Bidirectional Regulation of Hippocampal Mossy Fiber Filopodial Motility by Kainate Receptors. Neuron 2003, 38, 773–784. [Google Scholar] [CrossRef] [Green Version]
- Losada-Ruiz, P.; Falcón-Moya, R.; Rodríguez-Moreno, A. Kainate Receptors Modulating Glutamate Release in the Cerebellum. In Biogenic Amines in Neurotransmission and Human Disease; IntechOpen: London, UK, 2019. [Google Scholar]
- Rabacchi, S.; Bailly, Y.; Delhaye-Bouchaud, N.; Mariani, J. Involvement of the N -Methyl D-Aspartate (NMDA) Receptor in Synapse Elimination During Cerebellar Development. Science 1992, 256, 1823–1825. [Google Scholar] [CrossRef] [PubMed]
- Komuro, H.; Rakic, P. Modulation of Neuronal Migration by NMDA Receptors. Science 1993, 260, 95–97. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.C.; Wang, L.; Howe, J.R. Distinct Kainate Receptor Phenotypes in Immature and Mature Mouse Cerebellar Granule Cells. J. Physiol. 1999, 517, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Stolz, J.R.; Foote, K.M.; Veenstra-Knol, H.E.; Pfundt, R.; ten Broeke, S.W.; de Leeuw, N.; Roht, L.; Pajusalu, S.; Part, R.; Rebane, I.; et al. Clustered Mutations in the GRIK2 Kainate Receptor Subunit Gene Underlie Diverse Neurodevelopmental Disorders. Am. J. Hum. Genet. 2021, 108, 1692–1709. [Google Scholar] [CrossRef] [PubMed]
- Mulle, C.; Crépel, V. Regulation and Dysregulation of Neuronal Circuits by KARs. Neuropharmacology 2021, 197, 108699. [Google Scholar] [CrossRef]
- Marshall, J.J.; Xu, J.; Contractor, A. Kainate Receptors Inhibit Glutamate Release Via Mobilization of Endocannabinoids in Striatal Direct Pathway Spiny Projection Neurons. J. Neurosci. 2018, 38, 3901–3910. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, D.; Frerking, M.; Nicoll, R.A. Synaptic Activation of Presynaptic Kainate Receptors on Hippocampal Mossy Fiber Synapses. Neuron 2000, 27, 327–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorlewicz, A.; Barthet, G.; Zucca, S.; Vincent, P.; Griguoli, M.; Grosjean, N.; Wilczynski, G.; Mulle, C. The Deletion of GluK2 Alters Cholinergic Control of Neuronal Excitability. Cereb. Cortex 2022, 32, 2907–2923. [Google Scholar] [CrossRef] [PubMed]
- Sihra, T.S.; Rodríguez-Moreno, A. Metabotropic Actions of Kainate Receptors in the Control of GABA Release. Adv. Exp. Med. Biol. 2011, 717, 1–10. [Google Scholar]
- Shi, T.-Y.; Feng, S.-F.; Wei, M.-X.; Huang, Y.; Liu, G.; Wu, H.-T.; Zhang, Y.-X.; Zhou, W.-X. Kainate Receptor Mediated Presynaptic LTP in Agranular Insular Cortex Contributes to Fear and Anxiety in Mice. Neuropharmacology 2018, 128, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Englund, J.; Haikonen, J.; Shteinikov, V.; Amarilla, S.P.; Atanasova, T.; Shintyapina, A.; Ryazantseva, M.; Partanen, J.; Voikar, V.; Lauri, S.E. Downregulation of Kainate Receptors Regulating GABAergic Transmission in Amygdala after Early Life Stress Is Associated with Anxiety-like Behavior in Rodents. Transl. Psychiatry 2021, 11, 538. [Google Scholar] [CrossRef]
- Garand, D.; Mahadevan, V.; Woodin, M.A. Ionotropic and Metabotropic Kainate Receptor Signalling Regulates Cl − Homeostasis and GABAergic Inhibition. J. Physiol. 2019, 597, 1677–1690. [Google Scholar] [CrossRef] [Green Version]
- Mahadevan, V.; Pressey, J.C.; Acton, B.A.; Uvarov, P.; Huang, M.Y.; Chevrier, J.; Puchalski, A.; Li, C.M.; Ivakine, E.A.; Airaksinen, M.S.; et al. Kainate Receptors Coexist in a Functional Complex with KCC2 and Regulate Chloride Homeostasis in Hippocampal Neurons. Cell Rep. 2014, 7, 1762–1770. [Google Scholar] [CrossRef] [Green Version]
- Arora, V.; Pecoraro, V.; Aller, M.I.; Román, C.; Paternain, A.V.; Lerma, J. Increased Grik4 Gene Dosage Causes Imbalanced Circuit Output and Human Disease-Related Behaviors. Cell Rep. 2018, 23, 3827–3838. [Google Scholar] [CrossRef]
- Andrade-Talavera, Y.; Duque-Feria, P.; Sihra, T.S.; Rodríguez-Moreno, A. Pre-Synaptic Kainate Receptor-Mediated Facilitation of Glutamate Release Involves PKA and Ca 2+ -Calmodulin at Thalamocortical Synapses. J. Neurochem. 2013, 126, 565–578. [Google Scholar] [CrossRef]
- Negrete-Díaz, J.V.; Duque-Feria, P.; Andrade-Talavera, Y.; Carrión, M.; Flores, G.; Rodríguez-Moreno, A. Kainate Receptor-Mediated Depression of Glutamatergic Transmission Involving Protein Kinase A in the Lateral Amygdala. J. Neurochem. 2012, 121, 36–43. [Google Scholar] [CrossRef]
- Rodríguez-Moreno, A.; Sihra, T.S. Presynaptic Kainate Receptor-Mediated Facilitation of Glutamate Release Involves Ca 2+ -Calmodulin and PKA in Cerebrocortical Synaptosomes. FEBS Lett. 2013, 587, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Sihra, T.S.; Rodríguez-Moreno, A. Presynaptic Kainate Receptor-Mediated Bidirectional Modulatory Actions: Mechanisms. Neurochem. Int. 2013, 62, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Delaney, A.J.; Jahr, C.E. Kainate Receptors Differentially Regulate Release at Two Parallel Fiber Synapses. Neuron 2002, 36, 475–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcón-Moya, R.; Losada-Ruiz, P.; Rodríguez-Moreno, A. Kainate Receptor-Mediated Depression of Glutamate Release Involves Protein Kinase A in the Cerebellum. Int. J. Mol. Sci. 2019, 20, 4124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcón-Moya, R.; Losada-Ruiz, P.; Sihra, T.S.; Rodríguez-Moreno, A. Cerebellar Kainate Receptor-Mediated Facilitation of Glutamate Release Requires Ca2+-Calmodulin and PKA. Front. Mol. Neurosci. 2018, 11, 195. [Google Scholar] [CrossRef]
DCN | GluK1 | GluK2 | GluK3 | GluK4 | GluK5 | References | |
---|---|---|---|---|---|---|---|
Molecular layer | +? | √ | √ | n.d. | √ | [62,64] | |
Stellate cells | +? | √ | √ | n.d. | n.d. | [64] | |
Fusiform cell layer | +? | √ | √ | n.d. | √ | [62,64] | |
Fusiform cells | +? | √ | √ | n.d. | √ | [64] | |
Cartwheel cells | +? | √ | √ | n.d. | +/- | [64] | |
Granule cells | +? | √ | √ | n.d. | √ | [62,64] | |
Deep layer | +/- | +/- | +/- | n.d. | n.d. | [62,64] |
- √, positive staining of mRNA or protein.
- +/-, weak or no staining.
- +?, uncertain expression as absence of specific antibody.
- n.d., no data.
Cerebellum | GluK1 | GluK2 | GluK3 | GluK4 | GluK5 | References | |
---|---|---|---|---|---|---|---|
Molecular layer | +/- | n.d. | √ | +/- | √ | [58,62,66] | |
Stellate cells | n.d. | n.d. | √ | +/- | n.d. | [67] | |
Basket cells | n.d. | n.d. | √ | +/- | n.d. | [67] | |
Purkinje cell layer | √ | n.d. | √ | √ | √ | [67,68,69,70] | |
Purkinje cells | √ | √ | n.d. | √ | n.d. | [67,68,69,70,71] | |
Granule cell layer | √ | √ | n.d. | +/- | √ | [57,66] | |
Granule cells | √ | √ | n.d. | +/- | √ | [58,66,67] | |
Golgi cells | n.d. | √ | n.d. | +/- | n.d. | [69] |
- √, positive staining of mRNA or protein.
- +/-, weak or no staining.
- n.d., no data.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.-W.; Tang, Z.-Q. Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. Int. J. Mol. Sci. 2023, 24, 1718. https://doi.org/10.3390/ijms24021718
Wu Q-W, Tang Z-Q. Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. International Journal of Molecular Sciences. 2023; 24(2):1718. https://doi.org/10.3390/ijms24021718
Chicago/Turabian StyleWu, Qin-Wei, and Zheng-Quan Tang. 2023. "Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum" International Journal of Molecular Sciences 24, no. 2: 1718. https://doi.org/10.3390/ijms24021718
APA StyleWu, Q. -W., & Tang, Z. -Q. (2023). Focusing on the Emerging Role of Kainate Receptors in the Dorsal Cochlear Nucleus (DCN) and Cerebellum. International Journal of Molecular Sciences, 24(2), 1718. https://doi.org/10.3390/ijms24021718