Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements
Abstract
:1. Introduction
2. Methods
2.1. Literature Review
2.2. Data Extraction
2.3. Outcomes
2.4. Risk of Bias Assessment
2.5. Statistical Analysis
3. Results and Discussion
3.1. Literature Review Results
3.2. Data Analysis
3.3. Discussion
3.3.1. Immunosuppressive Mechanisms Employed by GBM
3.3.2. Immunotherapeutic Strategies
Immune Checkpoint Inhibitors
Cancer Vaccines
Oncolytic Viruses
CAR T Cell
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
References
- Yuan, B.; Wang, G.; Tang, X.; Tong, A.; Zhou, L. Immunotherapy of glioblastoma: Recent advances and future prospects. Hum. Vaccin. Immunother. 2022, 18, 2055417. [Google Scholar] [CrossRef]
- Vik-Mo, E.O.; Nyakas, M.; Mikkelsen, B.V.; Moe, M.C.; Due-Tønnesen, P.; Suso, E.M.; Sæbøe-Larssen, S.; Sandberg, C.; Brinchmann, J.E.; Helseth, E.; et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol. Immunother. 2013, 62, 1499–1509. [Google Scholar] [CrossRef]
- Markovic, D.S.; Glass, R.; Synowitz, M.; van Rooijen, N.; Kettenmann, H. Microglia stimulate the invasiveness of glioma cells by increasing the activity of metalloprotease-2. J. Neuropathol. Exp. Neurol. 2005, 64, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Wahyuhadi, J.; Immadoel Haq, I.B.; Arifianto, M.R. Active Immunotherapy for Glioblastoma Treatment: A Systematic Review and Meta-Analysis. Cancer Control 2022, 29, 10732748221079474. [Google Scholar] [CrossRef] [PubMed]
- Agosti, E.; Panciani, P.P.; Zeppieri, M.; De Maria, L.; Pasqualetti, F.; Tel, A.; Zanin, L.; Fontanella, M.M.; Ius, T. Tumor Microenvironment and Glioblastoma Cell Interplay as Promoters of Therapeutic Resistance. Biology 2023, 12, 736. [Google Scholar] [CrossRef] [PubMed]
- Majc, B.; Novak, M.; Kopitar-Jerala, N.; Jewett, A.; Breznik, B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells 2021, 10, 265. [Google Scholar] [CrossRef]
- Bausart, M.; Préat, V.; Malfanti, A. Immunotherapy for glioblastoma: The promise of combination strategies. J. Exp. Clin. Cancer Res. 2022, 41, 35. [Google Scholar] [CrossRef] [PubMed]
- Mende, A.L.; Schulte, J.D.; Okada, H.; Clarke, J.L. Current Advances in Immunotherapy for Glioblastoma. Curr. Oncol. Rep. 2021, 23, 21. [Google Scholar] [CrossRef]
- Chowdhury, S.; Bappy, M.H.; Clocchiatti-Tuozzo, S.; Cheeti, S.; Chowdhury, S.; Patel, V. Current Advances in Immunotherapy for Glioblastoma Multiforme and Future Prospects. Cureus 2021, 13, e20604. [Google Scholar] [CrossRef]
- Mahmoud, A.B.; Ajina, R.; Aref, S.; Darwish, M.; Alsayb, M.; Taher, M.; AlSharif, S.A.; Hashem, A.M.; Alkayyal, A.A. Advances in immunotherapy for glioblastoma multiforme. Front. Immunol. 2022, 13, 944452. [Google Scholar] [CrossRef]
- Hanaei, S.; Afshari, K.; Hirbod-Mobarakeh, A.; Mohajer, B.; Amir Dastmalchi, D.; Rezaei, N. Therapeutic efficacy of specific immunotherapy for glioma: A systematic review and meta-analysis. Rev. Neurosci. 2018, 29, 443–461. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Riva, P.; Arista, A.; Tison, V.; Sturiale, C.; Franceschi, G.; Spinelli, A.; Riva, N.; Casi, M.; Moscatelli, G.; Frattarelli, M. Intralesional radioimmunotherapy of malignant gliomas. An effective treatment in recurrent tumors. Cancer 1994, 73 (Suppl. S3), 1076–1082. [Google Scholar] [CrossRef] [PubMed]
- Riva, P.; Arista, A.; Franceschi, G.; Frattarelli, M.; Sturiale, C.; Riva, N.; Casi, M.; Rossitti, R. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: Comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res. 1995, 55 (Suppl. S23), 5952s–5956s. [Google Scholar] [PubMed]
- Pöpperl, G.; Götz, C.; Gildehaus, F.J.; Yousry, T.A.; Reulen, H.J.; Hahn, K.; Tatsch, K. [Initial experiences with adjuvant locoregional radioimmunotherapy using 131I-labeled monoclonal antibodies against tenascin (BC-4) for treatment of glioma (WHO III and IV)]. Nuklearmedizin 2002, 41, 120–128. [Google Scholar]
- Fukushima, T.; Yamamoto, M.; Oshiro, S.; Tsugu, H.; Hirakawa, K.; Soma, G.I. Recombinant mutant human tumor necrosis factor-alpha (TNF-SAM2) immunotherapy with ranimustine chemotherapy and concurrent radiation therapy for malignant astrocytomas. Anticancer Res. 2003, 23, 4473–4481. [Google Scholar]
- Yu, J.S.; Liu, G.; Ying, H.; Yong, W.H.; Black, K.L.; Wheeler, C.J. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 2004, 64, 4973–4979. [Google Scholar] [CrossRef]
- Steiner, H.H.; Bonsanto, M.M.; Beckhove, P.; Brysch, M.; Geletneky, K.; Ahmadi, R.; Schuele-Freyer, R.; Kremer, P.; Ranaie, G.; Matejic, D.; et al. Antitumor vaccination of patients with glioblastoma multiforme: A pilot study to assess feasibility, safety, and clinical benefit. J. Clin. Oncol. 2004, 22, 4272–4281. [Google Scholar] [CrossRef]
- Yamanaka, R.; Homma, J.; Yajima, N.; Tsuchiya, N.; Sano, M.; Kobayashi, T.; Yoshida, S.; Abe, T.; Narita, M.; Takahashi, M.; et al. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: Results of a clinical phase I/II trial. Clin. Cancer Res. 2005, 11, 4160–4167. [Google Scholar] [CrossRef]
- De Vleeschouwer, S.; Fieuws, S.; Rutkowski, S.; Van Calenbergh, F.; Van Loon, J.; Goffin, J.; Sciot, R.; Wilms, G.; Demaerel, P.; Warmuth-Metz, M.; et al. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin. Cancer Res. 2008, 14, 3098–3104. [Google Scholar] [CrossRef] [PubMed]
- Izumoto, S.; Tsuboi, A.; Oka, Y.; Suzuki, T.; Hashiba, T.; Kagawa, N.; Hashimoto, N.; Maruno, M.; Elisseeva, O.A.; Shirakata, T.; et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J. Neurosurg. 2008, 108, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Ardon, H.; Van Gool, S.; Lopes, I.S.; Maes, W.; Sciot, R.; Wilms, G.; Demaerel, P.; Bijttebier, P.; Claes, L.; Goffin, J.; et al. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: A pilot study. J. Neurooncol. 2010, 99, 261–272. [Google Scholar] [CrossRef]
- Sampson, J.H.; Heimberger, A.B.; Archer, G.E.; Aldape, K.D.; Friedman, A.H.; Friedman, H.S.; Gilbert, M.R.; Herndon, J.E.; McLendon, R.E.; Mitchell, D.A.; et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J. Clin. Oncol. 2010, 28, 4722–4729. [Google Scholar] [CrossRef] [PubMed]
- Okada, H.; Kalinski, P.; Ueda, R.; Hoji, A.; Kohanbash, G.; Donegan, T.E.; Mintz, A.H.; Engh, J.A.; Bartlett, D.L.; Brown, C.K.; et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 2011, 29, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Prins, R.M.; Soto, H.; Konkankit, V.; Odesa, S.K.; Eskin, A.; Yong, W.H.; Nelson, S.F.; Liau, L.M. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin. Cancer Res. 2011, 17, 1603–1615. [Google Scholar] [CrossRef]
- Akiyama, Y.; Oshita, C.; Kume, A.; Iizuka, A.; Miyata, H.; Komiyama, M.; Ashizawa, T.; Yagoto, M.; Abe, Y.; Mitsuya, K.; et al. α-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: A phase I clinical trial. BMC Cancer 2012, 12, 623. [Google Scholar] [CrossRef]
- Valle, R.D.; de Cerio, A.L.D.; Inoges, S.; Tejada, S.; Pastor, F.; Villanueva, H.; Gallego, J.; Espinos, J.; Aristu, J.; Idoate, M.A.; et al. Dendritic cell vaccination in glioblastoma after fluorescence-guided resection. World J. Clin. Oncol. 2012, 3, 142–149. [Google Scholar] [CrossRef]
- Cho, D.Y.; Yang, W.K.; Lee, H.C.; Hsu, D.M.; Lin, H.L.; Lin, S.Z.; Chen, C.C.; Harn, H.J.; Liu, C.L.; Lee, W.Y.; et al. Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: A phase II clinical trial. World Neurosurg. 2012, 77, 736–744. [Google Scholar] [CrossRef]
- Crane, C.A.; Han, S.J.; Ahn, B.; Oehlke, J.; Kivett, V.; Fedoroff, A.; Butowski, N.; Chang, S.M.; Clarke, J.; Berger, M.S.; et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin. Cancer Res. 2013, 19, 205–214. [Google Scholar] [CrossRef]
- Phuphanich, S.; Wheeler, C.J.; Rudnick, J.D.; Mazer, M.; Wang, H.; Nuño, M.A.; Richardson, J.E.; Fan, X.; Ji, J.; Chu, R.M.; et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol. Immunother. 2013, 62, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Tsuno, N.H.; Fujii, T.; Todo, T.; Saito, N.; Takahashi, K. Human umbilical vein endothelial cell vaccine therapy in patients with recurrent glioblastoma. Cancer Sci. 2013, 104, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Pellegatta, S.; Eoli, M.; Frigerio, S.; Antozzi, C.; Bruzzone, M.G.; Cantini, G.; Nava, S.; Anghileri, E.; Cuppini, L.; Cuccarini, V.; et al. The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncoimmunology 2013, 2, e23401. [Google Scholar] [CrossRef]
- Pollack, I.F.; Jakacki, R.I.; Butterfield, L.H.; Hamilton, R.L.; Panigrahy, A.; Potter, D.M.; Connelly, A.K.; Dibridge, S.A.; Whiteside, T.L.; Okada, H.; et al. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J. Clin. Oncol. 2014, 32, 2050–2058. [Google Scholar] [CrossRef]
- Schuessler, A.; Smith, C.; Beagley, L.; Boyle, G.M.; Rehan, S.; Matthews, K.; Jones, L.; Crough, T.; Dasari, V.; Klein, K.; et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014, 74, 3466–3476. [Google Scholar] [CrossRef]
- Bloch, O.; Crane, C.A.; Fuks, Y.; Kaur, R.; Aghi, M.K.; Berger, M.S.; Butowski, N.A.; Chang, S.M.; Clarke, J.L.; McDermott, M.W.; et al. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: A phase II, single-arm trial. Neuro Oncol. 2014, 16, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, E.; Muragaki, Y.; Yamamoto, T.; Maruyama, T.; Tsuboi, K.; Ikuta, S.; Hashimoto, K.; Uemae, Y.; Ishihara, T.; Matsuda, M.; et al. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J. Neurosurg. 2014, 121, 543–553. [Google Scholar] [CrossRef]
- Hashimoto, N.; Tsuboi, A.; Kagawa, N.; Chiba, Y.; Izumoto, S.; Kinoshita, M.; Kijima, N.; Oka, Y.; Morimoto, S.; Nakajima, H.; et al. Wilms tumor 1 peptide vaccination combined with temozolomide against newly diagnosed glioblastoma: Safety and impact on immunological response. Cancer Immunol. Immunother. 2015, 64, 707–716. [Google Scholar] [CrossRef]
- Schijns, V.E.J.C.; Pretto, C.; Devillers, L.; Pierre, D.; Hofman, F.M.; Chen, T.C.; Mespouille, P.; Hantos, P.; Glorieux, P.; Bota, D.A.; et al. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine 2015, 33, 2690–2696. [Google Scholar] [CrossRef]
- Sakai, K.; Shimodaira, S.; Maejima, S.; Udagawa, N.; Sano, K.; Higuchi, Y.; Koya, T.; Ochiai, T.; Koide, M.; Uehara, S.; et al. Dendritic cell-based immunotherapy targeting Wilms’ tumor 1 in patients with recurrent malignant glioma. J. Neurosurg. 2015, 123, 989–997. [Google Scholar] [CrossRef]
- Kalkanis, S.N.; Aghi, M.K.; Cloughsy, T.F.; Kaptain, G.; Portnow, J.; Vogelbaum, M.A.; Kesari, S.; Mikkelsen, T.; Elder, J.B.; Chen, C.C.; et al. Ddel-06preliminary Safety of Toca 511, A Retroviral Replicating Vector, In Patients with Recurrent High Grade Glioma across Three Separate Phase 1 Studies. Neuro-Oncology 2015, 17 (Suppl. S5), v74. [Google Scholar] [CrossRef]
- Westphal, M.; Heese, O.; Steinbach, J.P.; Schnell, O.; Schackert, G.; Mehdorn, M.; Schulz, D.; Simon, M.; Schlegel, U.; Senft, C.; et al. A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma. Eur. J. Cancer 2015, 51, 522–532. [Google Scholar] [CrossRef] [PubMed]
- Akasaki, Y.; Kikuchi, T.; Homma, S.; Koido, S.; Ohkusa, T.; Tasaki, T.; Hayashi, K.; Komita, H.; Watanabe, N.; Suzuki, Y.; et al. Phase I/II trial of combination of temozolomide chemotherapy and immunotherapy with fusions of dendritic and glioma cells in patients with glioblastoma. Cancer Immunol. Immunother. 2016, 65, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.E.; Alizadeh, D.; Starr, R.; Weng, L.; Wagner, J.R.; Naranjo, A.; Ostberg, J.R.; Blanchard, M.S.; Kilpatrick, J.; Simpson, J.; et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N. Engl. J. Med. 2016, 375, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Landolfi, J.; Hogan, D.J.; Bloomfield, S.; Carter, B.; Chen, C.C.; Elder, J.B.; Kalkanis, S.N.; Kesari, S.; Lai, A.; et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl. Med. 2016, 8, 341ra75. [Google Scholar] [CrossRef]
- Fenstermaker, R.A.; Ciesielski, M.J.; Qiu, J.; Yang, N.; Frank, C.L.; Lee, K.P.; Mechtler, L.R.; Belal, A.; Ahluwalia, M.S.; Hutson, A.D. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol. Immunother. 2016, 65, 1339–1352. [Google Scholar] [CrossRef]
- Oji, Y.; Hashimoto, N.; Tsuboi, A.; Murakami, Y.; Iwai, M.; Kagawa, N.; Chiba, Y.; Izumoto, S.; Elisseeva, O.; Ichinohasama, R.; et al. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int. J. Cancer 2016, 139, 1391–1401. [Google Scholar] [CrossRef]
- Wheeler, L.A.; Manzanera, A.G.; Bell, S.D.; Cavaliere, R.; McGregor, J.M.; Grecula, J.C.; Newton, H.B.; Lo, S.S.; Badie, B.; Portnow, J.; et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016, 18, 1137–1145. [Google Scholar] [CrossRef]
- Alonso, M.M.; García-Moure, M.; Gonzalez-Huarriz, M.; Marigil, M.; Hernandez-Alcoceba, R.; Buñales, M.; Hervás, S.; Gallego, J.; Gomez-Manzano, C.; Fueyo, J.; et al. Abstract CT027: Oncolytic virus DNX-2401 with a short course of temozolomide for glioblastoma at first recurrence: Clinical data and prognostic biomarkers. Cancer Res. 2017, 77 (Suppl. S13), CT027. [Google Scholar] [CrossRef]
- O’Rourke, D.M.; Nasrallah, M.P.; Desai, A.; Melenhorst, J.J.; Mansfield, K.; Morrissette, J.J.D.; Martinez-Lage, M.; Brem, S.; Maloney, E.; Shen, A.; et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Transl. Med. 2017, 9, eaaa0984. [Google Scholar] [CrossRef]
- Kong, D.S.; Nam, D.H.; Kang, S.H.; Lee, J.W.; Chang, J.H.; Kim, J.H.; Lim, Y.J.; Koh, Y.C.; Chung, Y.G.; Kim, J.M.; et al. Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget 2017, 8, 7003–7013. [Google Scholar] [CrossRef] [PubMed]
- Ursu, R.; Carpentier, A.; Metellus, P.; Lubrano, V.; Laigle-Donadey, F.; Capelle, L.; Guyotat, J.; Langlois, O.; Bauchet, L.; Desseaux, K.; et al. Intracerebral injection of CpG oligonucleotide for patients with de novo glioblastoma-A phase II multicentric, randomised study. Eur. J. Cancer 2017, 73, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Inogés, S.; Tejada, S.; de Cerio, A.L.D. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J. Transl. Med. 2017, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Geletneky, K.; Hajda, J.; Angelova, A.L. Oncolytic H-1 Parvovirus Shows Safety and Signs of Immunogenic Activity in a First Phase I/IIa Glioblastoma Trial. Mol. Ther. 2017, 25, 2620–2634. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Butowski, N.; Tran, D.D. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): A randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017, 18, 1373–1385. [Google Scholar] [CrossRef]
- Zadeh, G.; Lang, F.; Daras, M. Atim-24. Interim Results of a Phase II Multicenter Study of The Conditionally Replicative Oncolytic Adenovirus Dnx-2401 with Pembrolizumab (Keytruda) for Recurrent Glioblastoma; Captive Study (Keynote-192). Neuro Oncol. 2018, 20 (Suppl. S6), vi6. [Google Scholar] [CrossRef]
- Phase 2 trial of SL-701 in relapsed/refractory (r/r) glioblastoma (GBM): Correlation of immune response with longer-term survival. J. Clin. Oncol. 2018, 36 (Suppl. S15), 2058. [CrossRef]
- Cloughesy, T.F.; Landolfi, J.; Vogelbaum, M.A. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 2018, 20, 1383–1392. [Google Scholar] [CrossRef]
- Fried, I.; Lossos, A.; Ben Ami, T. Preliminary results of immune modulating antibody MDV9300 (pidilizumab) treatment in children with diffuse intrinsic pontine glioma. J. Neurooncol. 2018, 136, 189–195. [Google Scholar] [CrossRef]
- Pellegatta, S.; Eoli, M.; Cuccarini, V. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide. Oncoimmunology 2018, 7, e1412901. [Google Scholar] [CrossRef]
- Yao, Y.; Luo, F.; Tang, C. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: An exploratory randomized phase II clinical trial. Cancer Immunol. Immunother. 2018, 67, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Wick, W.; van den Bent, M.J. First results on the DCVax phase III trial: Raising more questions than providing answers. Neuro Oncol. 2018, 20, 1283–1284. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.; Gromeier, M.; Herndon, J.E. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N. Engl. J. Med. 2018, 379, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Buchroithner, J.; Erhart, F.; Pichler, J. Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial. Cancers 2018, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Bota, D.A.; Chung, J.; Dandekar, M. Phase II study of ERC1671 plus bevacizumab versus bevacizumab plus placebo in recurrent glioblastoma: Interim results and correlations with CD4+ T-lymphocyte counts. CNS Oncol. 2018, 7, CNS22. [Google Scholar] [CrossRef]
- Phase I Study of DNX-2401 (Delta-24-RGD) Oncolytic Adenovirus: Replication and Immunotherapeutic Effects in Recurrent Malignant Glioma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29432077/ (accessed on 12 September 2023).
- Kieran, M.W.; Goumnerova, L.; Manley, P. Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Neuro Oncol. 2019, 21, 537–546. [Google Scholar] [CrossRef]
- Todo, T.; Ino, Y.; Ohtsu, H.; Shibahara, J.; Tanaka, M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat. Commun. 2022, 13, 4119. [Google Scholar] [CrossRef]
- Wen, P.Y.; Reardon, D.A.; Armstrong, T.S. A Randomized Double-Blind Placebo-Controlled Phase II Trial of Dendritic Cell Vaccine ICT-107 in Newly Diagnosed Patients with Glioblastoma. Clin. Cancer Res. 2019, 25, 5799–5807. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Yu, J.S.; Lukas, R.V. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci. Transl. Med. 2019, 11, eaaw5680. [Google Scholar] [CrossRef]
- Cloughesy, T.; Petrecca, K.; Walbert, T. Ltbk-08. Toca 511 & Toca Fc versus Standard of Care in Patients with Recurrent High Grade Glioma. Neuro Oncol. 2019, 21 (Suppl. S6), vi284. [Google Scholar] [CrossRef]
- Migliorini, D.; Dutoit, V.; Allard, M. Phase I/II trial testing safety and immunogenicity of the multipeptide IMA950/poly-ICLC vaccine in newly diagnosed adult malignant astrocytoma patients. Neuro Oncol. 2019, 21, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Eoli, M.; Corbetta, C.; Anghileri, E. Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neuro-Oncol. Adv. 2019, 1, vdz022. [Google Scholar] [CrossRef] [PubMed]
- Goff, S.L.; Morgan, R.A.; Yang, J.C. Pilot Trial of Adoptive Transfer of Chimeric Antigen Receptor-transduced T Cells Targeting EGFRvIII in Patients with Glioblastoma. J. Immunother. 2019, 42, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Cloughesy, T.F.; Brenner, A.; de Groot, J.F. A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro-Oncology 2020, 22, 705–717. [Google Scholar] [CrossRef]
- Mueller, S.; Taitt, J.M.; Villanueva-Meyer, J.E. Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. J. Clin. Investig. 2020, 130, 6325–6337. [Google Scholar] [CrossRef] [PubMed]
- Mishinov, S.V.; Budnik, A.Y.; Stupak, V.V. Autologous and Pooled Tumor Lysates in Combined Immunotherapy of Patients with Glioblastoma. Sovrem. Tekhnologii Med. 2020, 12, 34–41. [Google Scholar] [CrossRef]
- Awada, G.; Ben Salama, L.; De Cremer, J. Axitinib plus avelumab in the treatment of recurrent glioblastoma: A stratified, open-label, single-center phase 2 clinical trial (GliAvAx). J. Immunother. Cancer 2020, 8, e001146. [Google Scholar] [CrossRef]
- Smith, C.; Lineburg, K.E.; Martins, J.P. Autologous CMV-specific T cells are a safe adjuvant immunotherapy for primary glioblastoma multiforme. J. Clin. Investig. 2020, 130, 6041–6053. [Google Scholar] [CrossRef]
- Reardon, D.A.; Brandes, A.A.; Omuro, A. Effect of Nivolumab vs Bevacizumab in Patients with Recurrent Glioblastoma: The CheckMate 143 Phase 3 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1003–1010. [Google Scholar] [CrossRef]
- Reardon, D.A.; Desjardins, A.; Vredenburgh, J.J. Rindopepimut with Bevacizumab for Patients with Relapsed EGFRvIII-Expressing Glioblastoma (ReACT): Results of a Double-Blind Randomized Phase II Trial. Clin. Cancer Res. 2020, 26, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Mitsuya, K.; Akiyama, Y.; Iizuka, A. Alpha-type-1 Polarized Dendritic Cell-based Vaccination in Newly Diagnosed High-grade Glioma: A Phase II Clinical Trial. Anticancer Res. 2020, 40, 6473–6484. [Google Scholar] [CrossRef] [PubMed]
- Weathers, S.P.; Penas-Prado, M.; Pei, B.L. Glioblastoma-mediated Immune Dysfunction Limits CMV-specific T Cells and Therapeutic Responses: Results from a Phase I/II Trial. Clin. Cancer Res. 2020, 26, 3565–3577. [Google Scholar] [CrossRef]
- Yuce Sari, S.; Aktas, B.Y.; Kertmen, N. Does Combined Fractionated Stereotactic Radiotherapy and Immunotherapy Change the Outcome of Recurrent High-Grade Gliomas? Cureus 2021, 13, e15852. [Google Scholar] [CrossRef] [PubMed]
- Duerinck, J.; Schwarze, J.K.; Awada, G. Intracerebral administration of CTLA-4 and PD-1 immune checkpoint blocking monoclonal antibodies in patients with recurrent glioblastoma: A phase I clinical trial. J. Immunother. Cancer 2021, 9, e002296. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Park, Y.; Ahn, J.W. Autologous adoptive immune-cell therapy elicited a durable response with enhanced immune reaction signatures in patients with recurrent glioblastoma: An open label, phase I/IIa trial. PLoS ONE 2021, 16, e0247293. [Google Scholar] [CrossRef] [PubMed]
- Jacques, F.H.; Nicholas, G.; Lorimer, I.A.J. Avelumab in newly diagnosed glioblastoma. Neurooncol Adv. 2021, 3, vdab118. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, K.; Cui, Y. Combination of Immunotherapy and Radiotherapy for Recurrent Malignant Gliomas: Results from a Prospective Study. Front. Immunol. 2021, 12, 632547. [Google Scholar] [CrossRef]
- Werlenius, K.; Stragliotto, G.; Strandeus, M. A randomized phase II trial of efficacy and safety of the immunotherapy ALECSAT as an adjunct to radiotherapy and temozolomide for newly diagnosed glioblastoma. Neuro-Oncol. Adv. 2021, 3, vdab156. [Google Scholar] [CrossRef]
- Reardon, D.A.; Kim, T.M.; Frenel, J.S. Treatment with pembrolizumab in programmed death ligand 1-positive recurrent glioblastoma: Results from the multicohort phase 1 KEYNOTE-028 trial. Cancer 2021, 127, 1620–1629. [Google Scholar] [CrossRef]
- Nayak, L.; Molinaro, A.M.; Peters, K. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin. Cancer Res. 2021, 27, 1048–1057. [Google Scholar] [CrossRef]
- Sahebjam, S.; Forsyth, P.A.; Tran, N.D. Hypofractionated stereotactic re-irradiation with pembrolizumab and bevacizumab in patients with recurrent high-grade gliomas: Results from a phase I study. Neuro-Oncology 2021, 23, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Bota, D.A.; Taylor, T.H.; Lomeli, N. A Prospective, Cohort Study of SITOIGANAP to Treat Glioblastoma When Given in Combination with Granulocyte-Macrophage Colony-Stimulating Factor/Cyclophosphamide/Bevacizumab/Nivolumab or Granulocyte-Macrophage Colony-Stimulating Factor/Cyclophosphamide/Bevacizumab/Pembrolizumab in Patients Who Failed Prior Treatment with Surgical Resection, Radiation, and Temozolomide. Front. Oncol. 2022, 12, 934638. [Google Scholar] [CrossRef] [PubMed]
- Bota, D.A.; Taylor, T.H.; Piccioni, D.E. Phase 2 study of AV-GBM-1 (a tumor-initiating cell targeted dendritic cell vaccine) in newly diagnosed Glioblastoma patients: Safety and efficacy assessment. J. Exp. Clin. Cancer Res. 2022, 41, 344. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.L.; Omofoye, O.A.; Rudnick, J.D. A Phase I Study of Autologous Dendritic Cell Vaccine Pulsed with Allogeneic Stem-like Cell Line Lysate in Patients with Newly Diagnosed or Recurrent Glioblastoma. Clin. Cancer Res. 2022, 28, 689–696. [Google Scholar] [CrossRef]
- Sampson, J.H.; Singh Achrol, A.; Aghi, M.K. Targeting the IL4 receptor with MDNA55 in patients with recurrent glioblastoma: Results of a phase IIb trial. Neuro Oncol. 2023, 25, 1085–1097. [Google Scholar] [CrossRef]
- Omuro, A.; Reardon, D.A.; Sampson, J.H. Nivolumab plus radiotherapy with or without temozolomide in newly diagnosed glioblastoma: Results from exploratory phase I cohorts of CheckMate 143. Neuro-Oncol. Adv. 2022, 4, vdac025. [Google Scholar] [CrossRef]
- Lim, M.; Weller, M.; Idbaih, A. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro-Oncology 2022, 24, 1935–1949. [Google Scholar] [CrossRef]
- Parney, I.F.; Anderson, S.K.; Gustafson, M.P. Phase I trial of adjuvant mature autologous dendritic cell/allogeneic tumor lysate vaccines in combination with temozolomide in newly diagnosed glioblastoma. Neuro-Oncol. Adv. 2022, 4, vdac089. [Google Scholar] [CrossRef]
- Chiocca, E.A.; Gelb, A.B.; Chen, C.C. Combined immunotherapy with controlled interleukin-12 gene therapy and immune checkpoint blockade in recurrent glioblastoma: An open-label, multi-institutional phase I trial. Neuro-Oncology 2022, 24, 951–963. [Google Scholar] [CrossRef]
- Ogino, H.; Taylor, J.W.; Nejo, T. Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. J. Clin. Investig. 2022, 132, e151239. [Google Scholar] [CrossRef]
- Muragaki, Y.; Ishikawa, E.; Maruyama, T. A multicenter, randomized, placebo-controlled phase IIb trial of an autologous formalin-fixed tumor vaccine for newly diagnosed glioblastomas. J. Neurosurg. 2023, 139, 344–354. [Google Scholar] [CrossRef] [PubMed]
- Mahase, S.S.; Roytman, M.; Roth O’Brien, D. Concurrent immunotherapy and re-irradiation utilizing stereotactic body radiotherapy for recurrent high-grade gliomas. Cancer Rep. 2023, 6, e1788. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, J.; Yang, X. Safety and antitumor activity of GD2-Specific 4SCAR-T cells in patients with glioblastoma. Mol. Cancer 2023, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Yang, Q.; Xu, P. Adjuvant Temozolomide Chemotherapy with or without Interferon Alfa Among Patients with Newly Diagnosed High-grade Gliomas: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2253285. [Google Scholar] [CrossRef] [PubMed]
- Liau, L.M.; Ashkan, K.; Brem, S. Association of Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination with Extension of Survival Among Patients with Newly Diagnosed and Recurrent Glioblastoma: A Phase 3 Prospective Externally Controlled Cohort Trial. JAMA Oncol. 2023, 9, 112–121. [Google Scholar] [CrossRef]
- Burger, M.C.; Forster, M.T.; Romanski, A. Intracranial injection of NK cells engineered with a HER2-targeted chimeric antigen receptor in patients with recurrent glioblastoma. Neuro-Oncology 2023, noad087. [Google Scholar] [CrossRef]
- Lepski, G.; Bergami-Santos, P.C.; Pinho, M.P. Adjuvant Vaccination with Allogenic Dendritic Cells Significantly Prolongs Overall Survival in High-Grade Gliomas: Results of a Phase II Trial. Cancers 2023, 15, 1239. [Google Scholar] [CrossRef]
- Jackson, C.M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat. Immunol. 2019, 20, 1100–1109. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Yeung, Y.T.; Bryce, N.S.; Adams, S. p38 MAPK inhibitors attenuate pro-inflammatory cytokine production and the invasiveness of human U251 glioblastoma cells. J. Neurooncol. 2012, 109, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Rempel, S.A.; Dudas, S.; Ge, S.; Gutiérrez, J.A. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin. Cancer Res. 2000, 6, 102–111. [Google Scholar]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef] [PubMed]
- Butowski, N.; Colman, H.; De Groot, J.F. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro-Oncology 2016, 18, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Förnvik, K.; Maddahi, A.; Persson, O.; Osther, K.; Salford, L.G.; Nittby Redebrandt, H. C1-inactivator is upregulated in glioblastoma. PLoS ONE 2017, 12, e0183086. [Google Scholar] [CrossRef] [PubMed]
- Current State of Immunotherapy for Glioblastoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29643471/ (accessed on 12 September 2023).
- Shen, S.; Chen, L.; Liu, J. Current state and future of co-inhibitory immune checkpoints for the treatment of glioblastoma. Cancer Biol. Med. 2020, 17, 555–568. [Google Scholar] [CrossRef]
- Zhang, N.; Wei, L.; Ye, M.; Kang, C.; You, H. Treatment Progress of Immune Checkpoint Blockade Therapy for Glioblastoma. Front. Immunol. 2020, 11, 592612. [Google Scholar] [CrossRef]
- Fife, B.T.; Bluestone, J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008, 224, 166–182. [Google Scholar] [CrossRef]
- Kim, J.E.; Patel, M.A.; Mangraviti, A. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas. Clin. Cancer Res. 2017, 23, 124–136. [Google Scholar] [CrossRef]
- Harris-Bookman, S.; Mathios, D.; Martin, A.M. Expression of LAG-3 and efficacy of combination treatment with anti-LAG-3 and anti-PD-1 monoclonal antibodies in glioblastoma. Int. J. Cancer 2018, 143, 3201–3208. [Google Scholar] [CrossRef]
- Liau, L.M.; Ashkan, K.; Tran, D.D. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J. Transl. Med. 2018, 16, 142. [Google Scholar] [CrossRef]
- Narita, Y.; Arakawa, Y.; Yamasaki, F. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro-Oncology 2019, 21, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Kaulich, K.; Hentschel, B. Assessment and prognostic significance of the epidermal growth factor receptor vIII mutation in glioblastoma patients treated with concurrent and adjuvant temozolomide radiochemotherapy. Int. J. Cancer 2014, 134, 2437–2447. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; Lai, R.K.; Recht, L.D. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: The ACT III study. Neuro-Oncology 2015, 17, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.H.; Aldape, K.D.; Archer, G.E. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology 2011, 13, 324–333. [Google Scholar] [CrossRef]
- Schumacher, T.; Bunse, L.; Pusch, S. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512, 324–327. [Google Scholar] [CrossRef]
- Andrews, D.W.; Judy, K.D.; Scott, C.B. Phase Ib Clinical Trial of IGV-001 for Patients with Newly Diagnosed Glioblastoma. Clin. Cancer Res. 2021, 27, 1912–1922. [Google Scholar] [CrossRef]
- Matsumoto, K.; Noguchi, M.; Satoh, T. A phase I study of personalized peptide vaccination for advanced urothelial carcinoma patients who failed treatment with methotrexate, vinblastine, adriamycin and cisplatin. BJU Int. 2011, 108, 831–838. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef]
- Patente, T.A.; Pinho, M.P.; Oliveira, A.A.; Evangelista, G.C.M.; Bergami-Santos, P.C.; Barbuto, J.A.M. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front. Immunol. 2018, 9, 3176. [Google Scholar] [CrossRef]
- Rutkowski, S.; De Vleeschouwer, S.; Kaempgen, E. Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br. J. Cancer. 2004, 91, 1656–1662. [Google Scholar] [CrossRef] [PubMed]
- Aiken, R.; Chen, C.; Cloughesy, T. Atim-33. Interim Results of a Phase II Multi-Center Study of Oncolytic Adenovirus Dnx-2401 with Pembrolizumab for Recurrent Glioblastoma; Captive Study (Keynote-192). Neuro-Oncology 2019, 21 (Suppl. S6), vi8–vi9. [Google Scholar] [CrossRef]
- Clinica Universidad de Navarra, Universidad de Navarra. Phase I Trial of DNX-2440 Oncolytic Adenovirus in Patients with Recurrent Glioblastoma. clinicaltrials.gov; 2023. Available online: https://clinicaltrials.gov/study/NCT03714334 (accessed on 15 August 2023).
- Benmebarek, M.R.; Karches, C.H.; Cadilha, B.L.; Lesch, S.; Endres, S.; Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. Int. J. Mol. Sci. 2019, 20, 1283. [Google Scholar] [CrossRef] [PubMed]
- Larson, R.C.; Maus, M.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer 2021, 21, 145–161. [Google Scholar] [CrossRef]
- Gardner, R.A.; Finney, O.; Annesley, C. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 2017, 129, 3322–3331. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, X.; Liu, R.; Zhang, F.; Zhao, H. HLA Tetramer Based Artificial Antigen-Presenting Cells Efficiently Stimulate CTLs Specific for Malignant Glioma. Clin. Cancer Res. 2007, 13, 7329–7334. [Google Scholar] [CrossRef]
- Thaci, B.; Brown, C.E.; Binello, E.; Werbaneth, K.; Sampath, P.; Sengupta, S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro-Oncology 2014, 16, 1304–1312. [Google Scholar] [CrossRef]
- Tu, M.; Wange, W.; Cai, L.; Zhu, P.; Gao, Z.; Zheng, W. IL-13 receptor α2 stimulates human glioma cell growth and metastasis through the Src/PI3K/Akt/mTOR signaling pathway. Tumour Biol. 2016, 37, 14701–14709. [Google Scholar] [CrossRef]
- Brown, C.E.; Warden, C.D.; Starr, R. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS ONE 2013, 8, e77769. [Google Scholar] [CrossRef]
- Kong, S.; Sengupta, S.; Tyler, B. Suppression of human glioma xenografts with second-generation IL13R-specific chimeric antigen receptor-modified T cells. Clin. Cancer Res. 2012, 18, 5949–5960. [Google Scholar] [CrossRef]
- Felsberg, J.; Hentschel, B.; Kaulich, K. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors. Clin. Cancer Res. 2017, 23, 6846–6855. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wei, W.; Zhao, Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy. Int. J. Biol. Sci. 2020, 16, 1767–1773. [Google Scholar] [CrossRef] [PubMed]
- Majzner, R.G.; Theruvath, J.L.; Nellan, A. CAR T Cells Targeting B7-H3, a Pan-Cancer Antigen, Demonstrate Potent Preclinical Activity Against Pediatric Solid Tumors and Brain Tumors. Clin. Cancer Res. 2019, 25, 2560–2574. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Wang, Y.; Huang, J. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduct. Target. Ther. 2021, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Pieńkowski, T.; Zielinski, C.C. Trastuzumab treatment in patients with breast cancer and metastatic CNS disease. Ann. Oncol. 2010, 21, 917–924. [Google Scholar] [CrossRef]
- Bielamowicz, K.; Fousek, K.; Byrd, T.T. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro-Oncology 2018, 20, 506–518. [Google Scholar] [CrossRef]
Author | Year | Trial Name | Phase | Patients (N) | Diagnosis (Target Glioma) | Follow Up (Months, Median Value) | Treatment | Endpoints | |
---|---|---|---|---|---|---|---|---|---|
OS | PFS | ||||||||
Riva et al. [14] | 1994 | N/A | I | 24 | Recurrent HGG | N/A | Adjuvant RIT: murine monoclonal anti-Tenascin Ab (BC-2 and BC-4) labeled with 131I injected directly into the tumor through a catheter | mOS: 16 mo | N/A |
Riva et al. [15] | 1995 | N/A | I | 50 | GBM | N/A | Adjuvant RIT: murine monoclonal anti-Tenascin Ab (BC-2 and BC-4) labeled with 131I locally infused in the site of neoplastic disease through a catheter + RT and CHT | mOS: 20 mo | N/A |
Pöpperl et al. [16] | 2002 | N/A | I | 12 | GBM | N/A | Adjuvant RIT: murine monoclonal anti-Tenascin Ab (BC-2 and BC-4) labeled with 131I locally infused in the surgical cavity (compared with an historical control group (n = 85) treated with standard therapy) | mOS: 18.5, mOS in historical control group: 9.7 mo | N/A |
Fukushima et al. [17] | 2003 | N/A | I | 26 | GBM | N/A | RT + MCNU (ranimustine) + TNF-SAM2 (recombinant human mutant TNF-α) (compared with an historical control group (n = 26) treated with standard therapy) | mOS: 330 wk | N/A |
Yu et al. [18] | 2004 | N/A | I | 14 | GBM | N/A | Autologous tumor lysate-pulsed DCV | mOS: 133 wk | N/A |
Steiner et al. [19] | 2004 | N/A | II | 10 | GBM | 49 | (1) ATV-NDV (NDV-modified autologous tumor vaccine) + SOC (2) Standard therapy | (1) mOS: 100 wk, OS-1 y/2 y/3 y: 91%/39%/4% (2) mOS: 49 wk, OS-1 y/2 y/3 y: 45%/11%/0% | (1) mPFS: 40 wk, PFS-1 y/2 y: 21%/4% (2) mPFS: 26 wk, PFS-1 y/2 y: 8%/1% |
Yamanaka et al. [20] | 2005 | N/A | I/II | 35 | Recurrent GBM | 24 | (1) Autologous tumor lysate-pulsed DCV + KLH or KLH/OK-432 (2) EBRT + nitrosourea-based CHT | (1) OS-2 y: 23.5% (2) OS-2 y: 3.7% | N/A |
Vleeschouwer et al. [21] | 2008 | N/A | I | 56 | Recurrent GBM | 16 | Adjuvant autologous resected GBM lysate-pulsed (mature) DCV | mOS: 9.6 mo OS-12 mo/24 mo/36 mo: 37.4%/14.8%/11.1% | mPFS: 3 mo, PFS-12 mo: 10.7% |
Izumoto et al. [22] | 2008 | N/A | II | 21 | Recurrent GBM | N/A | WT1-235 peptide vaccination | N/A | mPFS: 20 wk, PFS-6 mo: 33.3% |
Ardon et al. [23] | 2010 | N/A | N/A | 8 | GBM | N/A | SOC + autologous GBM lysate-loaded DCV | N/A | PFS-6 mo: 75%, mOS: 24 mo |
Sampson et al. [24] | 2010 | NCT00643097 | II | 35 | GBM | N/A | (1) Newly diagnosed GBM EGFRvIII + PEPvIII-KLH (2) TMZ | N/A | (1) mPFS: 14.2 mo, mOS: 26 mo (2) mPFS: 6.3 mo, mOS: 15 mo |
Okada et al. [25] | 2011 | N/A | I/II | 22 | Recurrent GBM | N/A | Vaccination with α-type 1 polarized DCs (αDC1) loaded with GAAs + immunoadjuvant poly-ICLC | N/A | PFS-12 mo: 41% |
Prins et al. [26] | 2011 | NCT00068510 | I | 23 | GBM | N/A | Autologous tumor lysate-pulsed DCV + Imiquimod or Poly-ICLC adjuvant | mOS: 31.4 mo, OS-1 y/2 y/3 y: 91%/55%/47% | N/A |
Akiyama et al. [27] | 2012 | UMIN000000914 | I | 9 | GBM | N/A | 5 synthetic peptides-pulsed DCV + KLH (compared with an historical control group treated with standard therapy) | mOS 19 mo, mOS 16 mo of the historical control group | N/A |
Valle et al. [28] | 2012 | N/A | I | 5 | GBM | N/A | Autologous tumor lysate-pulsed DCV | mOS: 27 mo, 2 y-OS: 80% | mPFS: 16.1 mo |
Cho et al. [29] | 2012 | N/A | II | 34 | Newly diagnosed GBM | 33 | (1) SOC + adjuvant autologous tumor lysate-pulsed DCV (2) SOC (surgery + RT + CHT) | (1) mOS: 31.9 mo OS-1 y/2 y/3 y: 88.8%/44.4%/16.7% (2) mOS: 15 mo, OS-1 y/2 y/3 y: 75%/18.8%/0% | (1) mPFS: 8.5 mo (2) mPFS: 8 mo |
Crane et al. [30] | 2013 | NCT00293423 | I | 12 | Recurrent GBM | N/A | Adjuvant autologous HSPPC-96 vaccine | mOS in responder: 47 wk, mOS in non-responder: 16 wk | N/A |
Phuphanich et al. [31] | 2013 | N/A | I | 21 | GBM | 40 | Autologous tumor lysate-pulsed DCV | mOS: 38.4 moOS-6 mo/12 mo/24 mo/36 mo: 100%/100%/93.7%/55.6%/38.4% | PFS-6 mo/12 mo/18 mo/24 mo: 100%/62.5%/43.8%/43.8% |
Tanaka et al. [32] | 2013 | N/A | I | 17 | Recurrent GBM | N/A | Glutaraldehyde-fixed HUVEC vaccine (human umbilical vein endothelial cell) | OS-6 mo/1 y/5 y: 88.2%/47.1%/17.6% | mPFS: 5.5 mo |
Pellegatta et al. [33] | 2013 | N/A | N/A | 15 | Recurrent GBM | N/A | Autologous tumor lysate-pulsed DCV | mOS: 8 mo | mPFS: 4.4 mo |
Vik-Mo et al. [2] | 2013 | NCT00846456 | I/II | 17 | GBM | N/A | (1) DCV with mRNA from GSC (2) without DCV | N/A | (1) mPFS: 694 d, mOS: 759 d (2) mPFS: 236 d, mOS: 585 d |
Pollack et al. [34] | 2014 | NCT01130077 | I | 26 | Pediatric BSG | N/A | Autologous tumor lysate-pulsed DCV | mOS in BSG patients: 12.7 mo; median OS in HGG patients: 25.1 mo | N/A |
Schuessler et al. [35] | 2014 | ACTRN12609000338268 | I | 11 | Recurrent GBM | N/A | ACT with CMV-specific autologous cytotoxic T cells | mOS: 403 d | mPFS: 246 d |
Bloch et al. [36] | 2014 | NCT00293423 | II | 41 | Recurrent GBM | N/A | Adjuvant autologous HSPPC-96 vaccine (peptide complexes bound to chaperon HSP-96, overexpressed in HGG) | OS-6 mo/12 mo: 90.2%/29.3%, mOS: 42.6 wk | N/A |
Ishikawa et al. [37] | 2014 | UMIN000001426 | I/II | 24 | Newly diagnosed GBM | 30 | Autologous formalin-fixed GBM tumor vaccine (AFTV) + FRT and TMZ | OS-2 y/3 y: 47%/38%, mOS: 22.2 mo | PFS-2 y: 33%, mPFS: 8.2 mo |
Hashimoto et al. [38] | 2015 | N/A | I | 7 | GBM | N/A | WT1-peptide vaccination + TMZ | N/A | PFS: range 5.2–49-1 mo |
Schijns et al. [39] | 2015 | N/A | I | 48 | Recurrent GBM | 10 | (1) Gliovac (or ERC 1671) vaccine (2) SOC | (1) OS-6 mo: 100%, OS-40 wk: 77% (2) OS-6 mo: 33%, OS-40 wk: 10% | N/A |
Sakai et al. [40] | 2015 | N/A | I | 10 | Recurrent GBM | 21 | Autologous tumor lysate-pulsed DCV | mOS: 26 mo, OS-21 mo: 50% | N/A |
Kalkanis et al. [41] | 2015 | NCT01156584 | I | 54 | Recurrent HGG | N/A | (1) Toca 511 + Toca FC (2) External control | (1) mOS: 13.6 mo (2) mOS: 7.1 mo | N/A |
Westphal et al. [42] | 2015 | N/A | III | 142 | Newly diagnosed GBM | N/A | (1) Nimotuzumab + SOC (2) SOC | (1) mOS: 19.5 mo (residual tumor) and 23.3 mo (no residual tumor) (2) mOS: 16,7 mo (residual tumor) and 21 mo (no residual tumor) | (1) PFS-12 mo: 25.6%, mPFS: 5.6 mo (residual tumor) and 10.6 mo (no residual tumor) (2) PFS-12 mo: 20.3% mPFS: 4 mo (residual tumor) and 9.9 mo (no residual tumor) |
Akasaki et al. [43] | 2016 | N/A | I/II | 32 | Recurrent and newly diagnosed GBM | N/A | TMZ + immunotherapy with fusion cell (FC): autologous cultured GBM cell were fused with autologous DC using polyethylene glycol | Recurrent GBM: mOS: 18 mo; newly diagnosed GBM: mOS: 30.5 mo | Recurrent GBM: PFS: 10.3 mo; newly diagnosed GBM: mPFS: 18.3 mo |
Brown et al. [44] | 2016 | NCT02208362 | I | 92 | Recurrent GBM | N/A | IL13 Rα2-specific CAR T cells | N/A | PFS: 7.5 mo |
Cloughesy et al. [45] | 2016 | NCT01156584 | I | 54 | Recurrent GBM | N/A | (1) Toca 511 + Toca FC (2) External control | (1) mOS: 13.6 mo (2) mOS: 7.1 mo | N/A |
Fenstermaker et al. [46] | 2016 | NCT01250470 | I | 9 | Recurrent GBM SURVIVIN+ | N/A | SVN53-67/M57-KLH (SurVaxM): conjugated survivin peptide mimic vaccine with KLH | mOS: 86.6 wk, OS-1 y: 77.8% | mPFS: 17.6 wk |
Oji et al. [47] | 2016 | UMIN000002001 | II | 50 | GBM | N/A | WT1-235 peptide vaccination | OS significantly prolonged (p = 0.001) | PFS significantly prolonged (p = 0.028) |
Wheeler et al. [48] | 2016 | NCT00589875 | II | 182 | Newly diagnosed GBM | 36 | (1) GMCI + SOC (2) SOC | (1) OS-1 y/2 y/3 y: 67%/35%/19% (2) OS-1 y/2 y/3 y: 57%/22%/8% | N/A |
Alonso et al. [49] | 2017 | NCT01956734 | I | 61 | Recurrent GBM | N/A | DNX-2401 + TMZ | OS-9 mo: 100% | N/A |
O’Rourke et al. [50] | 2017 | NCT02209376 | I | 10 | Recurrent GBM EGFRvIII+ | N/A | CAR T-EGFRvIII+ | mOS: 251 d | N/A |
Kong et al. [51] | 2017 | NCT00807027 | III | 180 | Newly diagnosed GBM | N/A | (1) ACT w/expansion of autologous CIK (cytokine-induced killer cells) + SOC (2) SOC | (1) mOS: 22.5 mo, OS-12 mo/18 mo/24 mo: 78.2%/57.2%/38.2% (2) mOS: 16.9 mo, OS-12 mo/18 mo/24 mo: 75.2%/45.1%/38.5% | (1) mPFS: 8.1 mo, PFS-12 mo/18 mo/24 mo: 28.3%/25.6%/18.4% (2) mPFS: 5.4 mo, PFS-12 mo/18 mo/24 mo: 22.6%/21.2%/13.4% |
Ursu et al. [52] | 2017 | N/A | II | 81 | GBM | N/A | (1) CpG-ODN (administrated locally around the surgical cavity) + SOC (2) SOC | (1) OS-2 y: 31% (2) OS-2 y: 26% | (1) mPFS: 9 mo (2) mPFS: 8.5 mo |
Inogés et al. [53] | 2017 | NCT01006044 | II | 31 | Newly diagnosed GBM | N/A | Autologous whole tumor lysate-pulsed DCV + RT and CHT | mOS: 23.4 mo | mPFS: 12.7 mo |
Geletneky et al. [54] | 2017 | NCT01301430 | I/II | 18 | Progressive primary or recurrent GBM | 6 | H-1 PV (H-1 parvovirus) | mOS: 15.5 mo | PFS: 4 mo |
Weller et al. [55] | 2017 | NCT01480479 | III | 745 | Newly diagnosed GBM EGFRvIII+ | 12 | (1) Rindopepimut (with KLH) + GM-CSF and TMZ (2) KLH and TMZ | (1) mOS: 20.1 mo (2) mOS: 20 mo | N/A |
Zadeh et al. [56] | 2018 | NCT02798406 | II | 49 | Recurrent GBM | N/A | DNX-2401, pembrolizumab | OS-9 mo: 100% | N/A |
Peereboom et al. [57] | 2018 | NCT02078648 | I/II | 74 | Recurrent GBM HLA-A2+ | N/A | SL701/GM-CSF + poly-ICLC and bevacizumab | OS-12: 37% | |
Cloughesy et al. [58] | 2018 | NCT01470794 | I | 56 | Recurrent GBM | 36 | Toca 511 + Toca FC | mOS: 11.9 mo (95% CI, 10.7 mo to 15.1 mo) | N/A |
Fried et al. [59] | 2018 | N/A | I | 9 | Pediatric DIPG | N/A | Pidilizumab (MDV9300) + RT | mOS: 15.6 mo | mPFS: 9.3 mo |
Pellegatta et al. [60] | 2018 | N/A | II | 24 | GBM | 17 | Autologous tumor lysate-pulsed DCV + TMZ | mOS: 20.1, OS-1 y/2 y: 75%/37% | mPFS: 10.5 mo, PFS-6 mo: 79%, PFS-12 mo: 37.5% |
Yao et al. [61] | 2018 | N/A | II | 47 | GBM | N/A | Autologous tumor lysate-pulsed DCV vs. placebo | OS significantly prolonged (p < 0.01) | PFS significantly prolonged (p = 0.03) |
Wick et al. [62] | 2018 | NCT02149225 | I | 16 | Newly diagnosed GBM HLA-A*02:01 or HLA-A*24:02+ | N/A | APVAC1 or APVAC2 (multi-peptide vaccines)/GM-CSF + poly-ICLC + TMZ | mOS: 29 mo | mPFS: 14.2 mo |
Desjardins et al. [63] | 2018 | NCT01491893 | I | 61 | Recurrent supratentorial GBM | N/A | PVSRIPO (compared with an historical control group (n = 104) treated with standard therapy) | OS-6 mo/12 mo/24 mo/36 mo/48 mo/60 mo: 90%/54%/21%/21%/21%/21% | N/A |
Buchroithner et al. [64] | 2018 | N/A | II | 76 | Newly diagnosed GBM | N/A | (1) Tumor lysate-charged autologous DCV (Audencel) + SOC (2) SOC | (1) mOS: 564 d (2) mOS: 568 d | (1) PFS-12 mo: 28.4% (2) PFS-12 mo: 24.5% |
Bota et al. [65] | 2018 | N/A | II | 9 | Recurrent GBM | N/A | (1) Gliovac (ERC 1671) vaccine + bevacizumab (2) Placebo + bevacizumab | (1) mOS: 12.1 mo, OS-12 mo: 50% (2) mOS: 7.6 mo, OS-12 mo: 26% | (1) mPFS: 7.3 mo (2) mPFS: 5.4 mo |
Lang et al. [66] | 2018 | NCT00805376 | I | 37 | Recurrent HGG | N/A | (1) DNX-2401 intratecal injection (2) DNX-2401 intrathecal infusion + resection | (1) mOS: 9.5 mo (2) mOS: 13.0 mo | N/A |
Kieran et al. [67] | 2019 | NCT00634231 | I | 12 | GBM | N/A | AdV-tk plus valacyclovir + RT | OS: 24 mo | PFS: 37.3 and 47.7 mo |
Todo et al. [68] | 2019 | UMIN000015995 | II | 30 | Recurrent GBM | N/A | G47 delta (compared with an historical control group treated with standard therapy) | OS-12: 84.4% | N/A |
Wen et al. [69] | 2019 | NCT01280552 | II | 124 | Newly diagnosed GBM | 40 | (1) ICT-107 (peptide-pulsed DC vaccine) (2) Un-pulsed DCs | (1) mOS: 17.0 mo (2) mOS: 15.0 mo (HR = 0.87, p = 0.58) | N/A |
Chiocca et al. [70] | 2019 | NCT02026271 | I | 31 | Recurrent HGG | 13 | hIL-12 vector (Ad–RTS–hIL–12) injected in resection cavity + Veledimex (VDX, oral activator for hIL-12) | mOS in VDX 20 mg cohort: 12.7 mo, OS-12 mo/18 mo/24 mo in VDX 20 mg cohort: 60%/26.7%/13.3%, OS-12 mo in 10 mg/ 20 mg/ 30 mg/ 40 mg cohorts: 0%/60%/0%/30% | N/A |
Cloughesy et al. [71] | 2019 | NCT02414165 | II/III | 403 | Recurrent GBM | 23 | Toca 511 + Toca FC | mOS: 11.1 mo | N/A |
Migliorini et al. [72] | 2019 | NCT01920191 | I/II | 19 | Newly diagnosed GBM | N/A | RCHT + IMA950 multipeptide vaccine (w/ adjuvant poly-ICLC) | mOS: 10 mo (all patients) and 9.5 mo (GBM patients) | mPFS: 10 mo (all pt.) and 9.5 (GBM patients), PFS-6 mo/9 mo: 84% (all patients) and 63% (GBM patients) |
Eoli et al. [73] | 2019 | NCT04002804 | I/II | 20 | Recurrent GBM | 9 | (1) Autologous tumor lysate-pulsed DCV + TMZ (2) Autologous tumor lysate-pulsed DCV + TT preconditioning of the vaccine site | (1) OS-9: 33% (2) OS-9: 62.5% | N/A |
Goff et al. [74] | 2019 | NCT01454596 | I | 18 | Recurrent GBM EGFRvIII+ | N/A | Autologous EGFRvIII-specific CAR T cells | mOS: 6.9 mo | mPFS: 1.3 mo |
Cloughesy et al. [75] | 2019 | N/A | I | 32 | Recurrent GBM | 16 | (1) Neoadjuvant pembrolizumab + adjuvant pembrolizumab (2) Adjuvant pembrolizumab | N/A | (1) mPFS: 99.5 d (2) mPFS: 72.5 d |
Cloughesy et al. [76] | 2020 | NCT02511405 | III | 256 | Recurrent GBM | N/A | (1) VB-111, bevacizumab (2) Bevacizumab | (1) mOS: 6.8 mo (2) mOS: 7.9 mo | N/A |
Mueller et al. [77] | 2020 | NCT02960230 | I | 29 | New GBM with H3.3 K27M mutation | 18 | (1) H3.3 K27M peptide vaccine (2) H3.3 K27M peptide vaccine + Nivolumab | (1) mOS: 16.1 mo (2) mOS: 9.8 mo | N/A |
Mishinov et al. [78] | 2020 | N/A | I | 58 | GBM | N/A | (1) Autologous tumor lysate-pulsed DCV + standard treatment (2) Allogeneic pooled lysates from more tumors—pulsed DCV + standard treatment (3) Maximum safe tumor resection + RT + CHT | (1) mOS: 16 mo (2) mOS: 15 mo (3) mOS: 14.5 mo | N/A |
Awada et al. [79] | 2020 | NCT03291314 | II | 54 | Recurrent GBM | 25 | (1) Axitinib + avelumab (2) Axitinib | (1) mOS: 26.6 wk (2) mOS: 18 wk | (1) PFS-6 mo: 22.2% (2) PFS-6 mo: 18.5% |
Smith et al. [80] | 2020 | ACTRN12615000656538 | I | 25 | Newly diagnosed GBM | 12 | ACT with CMV-specific autologous cytotoxic T cells | mOS: 21 mo, OS-6 mo/1 y/2 y: 92%/84%/36% | mPFS: 10 mo, PFS-6 mo/1 y/2 y: 72%/28%/16% |
Reardon et al. [81] | 2020 | NCT02017717 | III | 369 | Recurrent GBM | 10 | (1) Nivolumab (2) Bevacizumab | (1) mOS: 9.8 mo OS-6 mo/12 mo/18 mo:72.3%/42%/21% (2) mOS: 10 mo, OS-6 mo/12 mo/18 mo:78.2%/42%/21% | (1) mPFS: 1.5 mo, PFS-6 mo/12 mo/18 mo:15.7%/10.5%/5.8% (2) PFS-6 mo/12 mo/18 mo:29.6%/17.4%/8.9% |
Reardon et al. [82] | 2020 | NCT01498328 | II | 73 | Recurrent GBM EGFRvIII+ | N/A | (1) Rindopepimut (with KLH) + GM-CSF and bevacizumab (2) KLH and bevacizumab | (1) PFS-6 mo: 28%, OS-24 mo: 20% (2) PFS-6 mo: 16%, OS-24 mo: 3% | (1) OS-24 mo: 20% (2) OS-24 mo: 3% |
Mitsuya et al. [83] | 2020 | NTC0190103 | II | 16 | Newly diagnosed GBM | 72 | 5 synthetic peptides-pulsed DCV | mOS: 19 mo | N/A |
Weathers et al. [84] | 2020 | NCT02661282 | I/II | 20 | GBM | 12 | ACT with CMV-specific autologous cytotoxic T cells | OS-1 y: 50%, mOS: 12 mo | PFS-6 mo: 19%, mPFS: 1.3 mo |
Yuce Sari et al. [85] | 2021 | N/A | I | 8 | Recurrent GBM | 21 | FSRT + neoadjuvant, concomitant, adjuvant nivolumab | mOS: 21.3 mo (from diagnosis) and 12.6 mo (from progression), OS-1 y/2 y: 88%/33% (from diagnosis) and 73%/0% (from progression) | mPFS: 2.3 mo |
Duerinck et al. [86] | 2021 | NCT03233152 | I | 27 | Recurrent GBM | 22 | IC (in the brain tissue lining the resection cavity) nivolumab and ipilimumab + intravenous nivolumab (compared with an historical control group (n = 469) treated with standard therapy) | mOS: 38 wk, OS-6 mo/1 y/2 y: 74.1%/40.7%/27% | N/A |
Lim et al. [87] | 2021 | KCT0003815 | I/II | 14 | Recurrent GBM | 24 | ACT (adoptive immune cell therapy) with activated NK cells and T lymphocytes from PBMC | mOS: 22. mo, OS-2 y: 35.7% | mPF6: 10 mo |
Jacques et al. [88] | 2021 | NCT03047473 | II | 30 | Newly diagnosed GBM | 42 | Avelumab (ICI) + SOC | mOS: 15.3 mo | mPFS: 9.7 mo |
Jiang et al. [89] | 2021 | NCT03392545 | I | 30 | Recurrent GBM and DMG (H3K27M-mutant) | 23 | Cyclophosphamide (Treg depletion) IC, immunoadjuvant Poly I:C + systemic immunoadjuvant Poly I:C and GM-CSF, low-dose re-irradiation | mOS: 362 d | mPFS: 88 d |
Werlenius et al. [90] | 2021 | NCT02799238 | II | 62 | Newly diagnosed GBM | N/A | (1) ALECSAT + SOC (2) SOC | (1) mOS: 19.2 mo (2) mOS: 18.3 mo | (1) mPFS: 7.8 mo (2) mPFS: 7.9 mo |
Reardon et al. [91] | 2021 | NCT02054806 | I | 26 | Recurrent GBM PD-L1+ | 14 | Pembrolizumab | mOS: 13.1 mo, OS-6 mo/1 y/2 y: 75.8%/58%/31% | mPFS: 2.8 mo, PFS-6 mo/1 y/2 y: 37.7%/16.8%/8.4% |
Nayak et al. [92] | 2021 | NCT02337491 | II | 80 | Recurrent GBM | 49 | (1) Pembrolizumab + bevacizumab (2) Pembrolizumab | (1) mOS: 8.8 mo, OS-6 mo/12 mo/18 mo: 79.7%/44.3%/16.9% (2) mOS: 10.3 mo, OS-6 mo/12 mo/18 mo: 70%/30%/23.3% | (1) mPFS: 4.1 mo, PFS-6 mo/12 mo/18 mo: 26%/14%/10% (2) mPFS: 1.4 mo, PFS-6 mo/12 mo/18 mo: 6.7%/6.7%/3.3% |
Sahebjam et al. [93] | 2021 | NCT02313272 | I | 32 | Recurrent GBM | 3 | Pembrolizumab + RT + bevacizumab | (1) Bevacizumab-naïve: mOS: 13.4 mo, OS-6 mo/1 y/2 y: 91.7%/58.3%/16.7% (2) Bevacizumab-resistant: mOS: 9.3 mo, OS-6 mo/1 y: 87.5%/25% | (1) Bevacizumab-naïve: mPFS: 7.9 mo, PFS-6 mo/1 y: 66.7%/29.2% (2) Bevacizumab-resistant: mPFS: 6,5 mo, mOS: 9.3 mo, PFS-6 mo/1 y: 87.5%/25% |
Bota et al. [94] | 2022 | N/A | N/A | 21 | Recurrent GBM | N/A | Bevacizumab + pembrolizumab or nivolumab + ERC 1671 vaccine | mOS: 19.63 mo, mOS-6 mo/1 y/2 y: 90.5%/61.1%/45.3% | mPFS: 9.14 mo, PFS-6 mo/1 y/2 y: 76.2%/47.62%/21.4% |
Bota et al. [95] | 2022 | NCT03400917 | II | 57 | GBM | N/A | Autologous tumor lysate-pulsed DCV + GM-CSF | mOS: 14 mo, OS-6 mo/12 mo/18 mo/24 mo: 87.5%/55.4%/38.5%/25.2% | mPFS: 8.5 mo, PFS-6 mo/12 mo/18 mo/24 mo: 69.7%/26.8%/16.1%/10% |
Hu et al. [96] | 2022 | NCT02010606 | I | 36 | GBM | N/A | Autologous tumor lysate-pulsed DCV + SOC | mOS: 20.36 mo | mPFS: 8.75 mo |
Sampson et al. [97] | 2022 | NCT02858895 | II | 44 | Recurrent GBM | N/A | MDNA55 (IL4 R targeting toxin) administered intratumorally using convection-enhanced delivery | (1) mOS: 11.6 mo, OS-1 y: 46% (2) Subgroup (n = 32) of IL4 R high and low patients treated with high-dose MDNA55]: mOS: 15 mo, OS-1 y: 55% | N/A |
Omuro et al. [98] | 2022 | NCT02017717 | I | 117 | Newly diagnosed GBM | N/A | (1) PART A: COHORT 1 c (n = 31) nivolumab + RT + TMZ; COHORT 1 d (n = 30) nivolumab + RT (2) PART B: COHORT 1 c (n = 28) nivolumab + RT + TMZ; COHORT 1 d (n = 28) nivolumab + RT | (1) PART A: COHORT 1 c mOS: 22 mo, COHORT 1 d mOS: 14.4 mo (2) PART B: COHORT 1 c mOS: 15 mo, COHORT 1 d mOS: 14 mo | (1) PART A: COHORT 1 c mPFS: 10 mo, COHORT 1 d mPFS: 5.6 mo (2) PART B: COHORT 1 c mPFS: 6.4 mo, COHORT 1 d mPFS: 6 mo |
Lim et al. [99] | 2022 | NCT02667587 | III | 716 | Newly diagnosed GBM with UNmethylated MGMT promoter | N/A | (1) Nivolumab + SOC (2) Placebo + SOC | (1) mOS: 28.9 mo (2) mOS: 32.1 mo | (1) mPFS: 10.6 mo (2) mPFS: 10.3 mo |
Parney et al. [100] | 2022 | NCT01957956 | I | 20 | Newly diagnosed GBM | 35 | Allogenetic GBM lysate-pulsed (mature) DCV + TMZ | mOS: 19 mo, OS-2 y/4 y: 25%/10% | mPFS: 9.7 mo |
Chiocca et al. [101] | 2022 | NCT03636477 | I | 21 | Recurrent GBM | N/A | Nivolumab + peritumoral injection of hIL-12 vector (Ad–RTS–hIL–12) + VDX | mOS all patients: 9.8 mo, mOS in VDX 10 mg: 16.9 mo, mOS in VDX 20 mg: 8.5 mo | N/A |
Ogino et al. [102] | 2022 | NCT02549833 | I | 17 | GBM | 21 | GBM6-AD + Poly-ICLC adjuvant: (1) neoadjuvant vaccination + surgery + adjuvant vaccination (2) surgery + adjuvant vaccination | N/A | No significant differences between PFS between two arms |
Muragaki et al. [103] | 2023 | UMIN000010602 | II | 57 | Newly diagnosed supratentorial GBM | N/A | (1) Autologous formalin-fixed GBM tumor vaccine (AFTV) + immune adjuvants (2) Identical placebo without fixed tumor tissue | (1) mOS: 25.6 mo, OS-3 y: 38%, PFS-3 y: 81%, OS-3 y: 80% (2) mOS: 31 mo, OS-3 y: 41%, PFS-3 y: 46%, OS-3 y: 54% | N/A |
Mahase et al. [104] | 2023 | N/A | I | 21 | Recurrent GBM | N/A | (1) ICI + SBRT (fractionated stereotactic radiosurgery) (2) ICI (Pembrolizumab and Nivolumab) | (1) mOS: 7 mo (2) mOS: 6 mo | (1) mPFS: 2.8 mo (2) mPFS: 1 mo |
Liu et al. [105] | 2023 | NCT03170141 | I | 8 | GBM GD2+ | 24 | Autologous GD2-specific 4SCAR-T cells | mOS: 10 mo | N/A |
Guo et al. [106] | 2023 | NCT01765088 | III | 199 | Newly diagnosed HGG | 66 | (1) IFN-α + TMZ (2) TMZ | (1) mOS: 26.7 mo and 24.7 mo (subgroup with UNmet MGMT prom), OS-2 y/5 y: 57.4%/18.1% (2) mOS: 18.8 mo and 17.4 mo (subgroup with UNmet MGMT prom), OS-2 y/5 y: 37.3%/9.1% | (1) mPFS: 14.8 mo, PFS-2 y/5 y: 27.9%/9.6% (2) mPFS: 12.9 mo, PFS-2 y/5 y: 18.5%/4.8% |
Liau et al. [107] | 2023 | NCT00045968 | III | 331 | GBM | N/A | Autologous tumor lysate-pulsed DCV + SOC | mOS: 19.3 mo (nGBM) and 13.2 mo (rGBM), OS-48 mo/60 mo: 15.7%/13% (nGBM), OS-24 mo/30 mo: 20.7%/9.7% (rGBM) | N/A |
Burge et al. [108] | 2023 | NCT03383978 | I | 9 | Recurrent GBM IDH wild type HER2 + | N/A | IC injection (into the margin of surgical cavity) of HER2-targeted CAR-NK cells NK-92/5.28 z (ACT, adoptive cell therapy) | mOS: 31 wk | mPFS: 7 wk |
Lepski et al. [109] | 2023 | N/A | I/II | 37 | Recurrent GMB | N/A | Allogenic DC vaccination for GBM | OS: 26.9 mo, OS-6 mo/12 mo/18 mo/24 mo: 61.3%/46.6%/34.9%/26% | N/A |
Trial Name | Phase | Patients (N) | Treatment | Outcomes |
---|---|---|---|---|
NCT02311920 | I | 32 | Ipilimumab and/or nivolumab in combination with temozolomide | PFS and OS |
NCT02336165 | II | 159 | Durvalumab monotherapy, with bevacizumab or with radiotherapy | OS and PFS |
NCT02658981 | I | 63 | Anti-LAG3 or urelumab alone in combination with nivolumab | MTD |
NCT03673787 | I/II | 87 | Atezolizumab in combination with ipatasertib | DLT |
NCT03743662 | II | 94 | Nivolumab with radiation therapy and bevacizumab | T-lymphocyte density and safety |
NCT03961971 | I | 15 | Anti-Tim-3 in combination with anti-PD-1 and stereotactic radiosurgery | Serious adverse events |
NCT04145115 | II | 37 | Ipilimumab and nivolumab | DLT |
NCT04396860 | II/III | 485 | Ipilimumab and nivolumab plus radiation therapy | Efficacy and safety |
NCT04606316 | I | 60 | Nivolumab in combination with ipilimumab and surgery | Tumor infiltrating |
Trial Name | Phase | Patients (N) | Treatment | Outcomes |
---|---|---|---|---|
NCT02366728 | II | 100 | CMV pp65 DC vaccine +111In-labeled DC vaccine + Td Toxoid + basiliximab | OS |
NCT02465268 | II | 175 | pp65-shLAMP DC dendritic cell vaccine with GM-CSF | OS |
NCT02924038 | I | 30 | IMA-950 (peptide vaccine comprising multiple GAAs) and poly-ICLC ± varlilumab (immunostimulatory antiCD27 antibody) | Safety and T-cell responses |
NCT02960230 | I | 29 | H3.3K27 M peptide vaccine plus Td and poly-ICLC | Safety and OS |
NCT03018288 | II | 108 | pembrolizumab ± HSPPC-96 vaccine | 1-year OS |
NCT03400917 | II | 55 | AV-GBM-1 (autologous dendritic cells loaded with tumor associated antigens from a short-term cell culture of autologous tumor cells) | OS |
NCT04116658 | II | 52 | EO2401 peptide vaccine | Safety and tolerability |
Trial Name | Phase | Patients (N) | Treatment | Outcomes |
---|---|---|---|---|
NCT01301430 | II | 18 | Human mesenchymal stem cells TG6002 (modified vaccinia virus) and 5-FC | Safety and DLT |
NCT01470794 | I | 58 | DNX-2440 conditionally replication-competent adenovirus with O × 40 ligand (T-cell stimulator) | DLT |
NCT02062827 | I | 36 | DNX-2401 (Delta-24-RGD adenovirus) ± surgery | MTD |
NCT02798406 | II | 48 | DNX-2401 (Delta-24-RGD adenovirus) and i.v. pembrolizumab (anti-PD-1 antibody) | ORR by interval tumor size change |
NCT02986178 | II | 62 | G207 (modified oncolytic strain of HSV-1) single-dose inoculation | OS at 24 months |
NCT03152318 | I | 108 | PVSRIPO (genetically recombinant nonpathogenic poliovirus:rhinovirus chimera) ± lomustine | MTD |
NCT03294486 | II | 78 | Ad5-DNX-2401 (oncolytic adenovirus) in bone marrow | Progression at 6 months |
NCT03714334 | I | 24 | rQNestin 34.5 v.2 (oncolytic HSV-1) + cyclophosphamide | Treatment-related adverse events |
NCT03896568 | I | 36 | Ad-RTS-hIL-12 + veledimex | Safety, DLT, and rate of tumor |
NCT00390299 | I | 40 | M032 (modified strain of HSV-1) by intratumoral infusion | Toxicity and MTD |
Trial Name | Phase | Patients (N) | Treatment | Outcomes |
---|---|---|---|---|
NCT01109095 | I | 16 | HER2 CMV-specific CAR T cells | DLT |
NCT01454596 | I/II | 18 | EGFRvIII-directed CAR T cells with cyclophosphamide, fludarabine and aldesleukin | AEs and PFS |
NCT02208362 | I | 92 | IL13 Rα2-targeted CAR T cells | AEs and DLT |
NCT02209376 | I | 11 | EGFRvIII-directed CAR T cells | AEs |
NCT04003649 | I | 60 | IL13 Rα2-targeted CAR T cells with or without nivolumab and ipilimumab | AEs, DLT, feasibility, and OS |
NCT04077866 | I/II | 40 | B7-H3-targeted CAR T cells with or without temozolomide | OS and PFS |
NCT04385173 | I | 12 | B7-H3-targeted CAR T cells with temozolomide | AEs, MTD, OS, and PFS |
NCT04661384 | I | 30 | IL13 Rα2-targeted CAR T cells | AEs and OS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agosti, E.; Zeppieri, M.; De Maria, L.; Tedeschi, C.; Fontanella, M.M.; Panciani, P.P.; Ius, T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. Int. J. Mol. Sci. 2023, 24, 15037. https://doi.org/10.3390/ijms242015037
Agosti E, Zeppieri M, De Maria L, Tedeschi C, Fontanella MM, Panciani PP, Ius T. Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. International Journal of Molecular Sciences. 2023; 24(20):15037. https://doi.org/10.3390/ijms242015037
Chicago/Turabian StyleAgosti, Edoardo, Marco Zeppieri, Lucio De Maria, Camilla Tedeschi, Marco Maria Fontanella, Pier Paolo Panciani, and Tamara Ius. 2023. "Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements" International Journal of Molecular Sciences 24, no. 20: 15037. https://doi.org/10.3390/ijms242015037
APA StyleAgosti, E., Zeppieri, M., De Maria, L., Tedeschi, C., Fontanella, M. M., Panciani, P. P., & Ius, T. (2023). Glioblastoma Immunotherapy: A Systematic Review of the Present Strategies and Prospects for Advancements. International Journal of Molecular Sciences, 24(20), 15037. https://doi.org/10.3390/ijms242015037