miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer
Abstract
:1. Introduction
2. Results
2.1. Isolation and Characterization of Extracellular Vesicles (EVs) Derived from Healthy Controls and Breast Cancer Patients
2.2. Transcriptomic Analysis of miRNAs Derived from EVs Isolated from Healthy Controls and Breast Cancer Patients
2.3. Comparison of the EV-Derived miRNA Signatures in the Validation Cohort and Bioinformatic Analysis for Selected miRNAs and Their Targets
2.4. Clinical Value of miRNA-27a and miRNA-128 in Breast Cancer Patients
2.5. Systematic Review of the Diagnostic Value of miRNA-27a and miRNA-128 in Breast Cancer Cohorts
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Blood Sample Collection and Extracellular Vesicles Isolation
4.3. Transmission Electron Microscopy (TEM)
4.4. Nanoparticle Tracking Analysis (NTA)
4.5. Immunoblot Analysis
4.6. RNA Isolation
4.7. miRNA Sequencing and Data Analysis
4.8. qRT-PCR Analysis
4.9. Identification of miRNA Target Genes and Their Molecular Pathways
4.10. Construction of the Regulatory Network
4.11. MetaCore Functional Analysis
4.12. Systematic Review Design
4.13. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Prat, A.; Perou, C.M. Deconstructing the Molecular Portraits of Breast Cancer. Mol. Oncol. 2011, 5, 5–23. [Google Scholar] [CrossRef] [PubMed]
- De Rubis, G.; Rajeev Krishnan, S.; Bebawy, M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol. Sci. 2019, 40, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Yáñez-Mó, M.; Siljander, P.R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F.E.; Buzas, E.I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. J. Extracell. Vesicles 2015, 4, 27066. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; McAndrews, K.M. The Role of Extracellular Vesicles in Cancer. Cell 2023, 186, 1610–1626. [Google Scholar] [CrossRef] [PubMed]
- La Camera, G.; Gelsomino, L.; Caruso, A.; Panza, S.; Barone, I.; Bonofiglio, D.; Andò, S.; Giordano, C.; Catalano, S. The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers 2021, 13, 1160. [Google Scholar] [CrossRef]
- Giordano, C.; La Camera, G.; Gelsomino, L.; Barone, I.; Bonofiglio, D.; Andò, S.; Catalano, S. The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers 2020, 12, 2179. [Google Scholar] [CrossRef]
- Jonas, S.; Izaurralde, E. Towards a Molecular Understanding of MicroRNA-Mediated Gene Silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes 2021, 12, 1289. [Google Scholar] [CrossRef]
- Reda El Sayed, S.; Cristante, J.; Guyon, L.; Denis, J.; Chabre, O.; Cherradi, N. MicroRNA Therapeutics in Cancer: Current Advances and Challenges. Cancers 2021, 13, 2680. [Google Scholar] [CrossRef]
- Coenen-Stass, A.M.L.; Pauwels, M.J.; Hanson, B.; Martin Perez, C.; Conceição, M.; Wood, M.J.A.; Mäger, I.; Roberts, T.C. Extracellular MicroRNAs Exhibit Sequence-Dependent Stability and Cellular Release Kinetics. RNA Biol. 2019, 16, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Ono, S.; Lam, S.; Nagahara, M.; Hoon, D. Circulating MicroRNA Biomarkers as Liquid Biopsy for Cancer Patients: Pros and Cons of Current Assays. J. Clin. Med. 2015, 4, 1890–1907. [Google Scholar] [CrossRef]
- Cardinali, B.; Tasso, R.; Piccioli, P.; Ciferri, M.C.; Quarto, R.; Del Mastro, L. Circulating MiRNAs in Breast Cancer Diagnosis and Prognosis. Cancers 2022, 14, 2317. [Google Scholar] [CrossRef] [PubMed]
- Hannafon, B.N.; Trigoso, Y.D.; Calloway, C.L.; Zhao, Y.D.; Lum, D.H.; Welm, A.L.; Zhao, Z.J.; Blick, K.E.; Dooley, W.C.; Ding, W.Q. Plasma Exosome MicroRNAs Are Indicative of Breast Cancer. Breast Cancer Res. 2016, 18, 90. [Google Scholar] [CrossRef]
- Kim, M.W.; Park, S.; Lee, H.; Gwak, H.; Hyun, K.; Kim, J.Y.; Jung, H.; Il Kim, S. Multi-miRNA Panel of Tumor-derived Extracellular Vesicles as Promising Diagnostic Biomarkers of Early-stage Breast Cancer. Cancer Sci. 2021, 112, 5078–5087. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, A.; de Miguel-Pérez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Exposito, J.; Martorell-Marugan, J.; Carmona-Sáez, P.; Del Carmen Garrido-Navas, M.; Rolfo, C.; et al. Exosomal MiRNA Profile as Complementary Tool in the Diagnostic and Prediction of Treatment Response in Localized Breast Cancer under Neoadjuvant Chemotherapy. Breast Cancer Res. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Wang, Y.; Xu, W.; Dong, X. Serum Exosomal MiR-17-5p as a Promising Biomarker Diagnostic Biomarker for Breast Cancer. Clin. Lab. 2020, 66. [Google Scholar] [CrossRef]
- Sueta, A.; Yamamoto, Y.; Tomiguchi, M.; Takeshita, T.; Yamamoto-Ibusuki, M.; Iwase, H. Differential Expression of Exosomal MiRNAs between Breast Cancer Patients with and without Recurrence. Oncotarget 2017, 8, 69934–69944. [Google Scholar] [CrossRef] [PubMed]
- Sueta, A.; Fujiki, Y.; Goto-Yamaguchi, L.; Tomiguchi, M.; Yamamoto-Ibusuki, M.; Iwase, H.; Yamamoto, Y. Exosomal MiRNA Profiles of Triple-negative Breast Cancer in Neoadjuvant Treatment. Oncol. Lett. 2021, 22, 819. [Google Scholar] [CrossRef]
- Todorova, V.K.; Byrum, S.D.; Gies, A.J.; Haynie, C.; Smith, H.; Reyna, N.S.; Makhoul, I. Circulating Exosomal MicroRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer. Curr. Oncol. 2022, 29, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhou, T.; Chen, J.; Li, R.; Chen, H.; Luo, S.; Chen, D.; Cai, C.; Li, W. The Role of Exosomal MiRNAs in Cancer. J. Transl. Med. 2022, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Vu, L.T.; Gong, J.; Pham, T.T.; Kim, Y.; Le, M.T.N. MicroRNA Exchange via Extracellular Vesicles in Cancer. Cell Prolif. 2020, 53, e12877. [Google Scholar] [CrossRef] [PubMed]
- Git, A.; Dvinge, H.; Salmon-Divon, M.; Osborne, M.; Kutter, C.; Hadfield, J.; Bertone, P.; Caldas, C. Systematic Comparison of Microarray Profiling, Real-Time PCR, and next-Generation Sequencing Technologies for Measuring Differential MicroRNA Expression. RNA 2010, 16, 991–1006. [Google Scholar] [CrossRef]
- Hruštincová, A.; Votavová, H.; Merkerová, M.D. Circulating MicroRNAs: Methodological Aspects in Detection of These Biomarkers. Folia Biol. 2015, 61, 203–218. [Google Scholar]
- Yu, W.; Hurley, J.; Roberts, D.; Chakrabortty, S.K.; Enderle, D.; Noerholm, M.; Breakefield, X.O.; Skog, J.K. Exosome-Based Liquid Biopsies in Cancer: Opportunities and Challenges. Ann. Oncol. 2021, 32, 466–477. [Google Scholar] [CrossRef]
- Benesova, S.; Kubista, M.; Valihrach, L. Small RNA-Sequencing: Approaches and Considerations for MiRNA Analysis. Diagnostics 2021, 11, 964. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018): A Position Statement of the International Society for Extracellular Vesicles and Update of the MISEV2014 Guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef]
- Ramshani, Z.; Zhang, C.; Richards, K.; Chen, L.; Xu, G.; Stiles, B.L.; Hill, R.; Senapati, S.; Go, D.B.; Chang, H.-C. Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Commun. Biol. 2019, 2, 189. [Google Scholar] [CrossRef]
- Pathan, M.; Fonseka, P.; Chitti, S.V.; Kang, T.; Sanwlani, R.; Van Deun, J.; Hendrix, A.; Mathivanan, S. Vesiclepedia 2019: A Compendium of RNA, Proteins, Lipids and Metabolites in Extracellular Vesicles. Nucleic Acids Res. 2019, 47, D516–D519. [Google Scholar] [CrossRef]
- Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; et al. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688–692. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Q.; Zheng, S.; Lin, K.; You, J.; Zhang, X. MiR-27a Regulates the Sensitivity of Breast Cancer Cells to Cisplatin Treatment via BAK-SMAC/DIABLO-XIAP Axis. Tumor Biol. 2016, 37, 6837–6845. [Google Scholar] [CrossRef] [PubMed]
- Seddik, M.I.; Osama, O.; Jabir, M.A.; Abdelrahman, E.M.; Nigm, D.A. Diagnostic Values of MicroRNA 27a in Breast Cancer Patients. Egypt. J. Immunol. 2021, 28, 127–137. [Google Scholar] [CrossRef]
- Zhao, Q.; Shen, L.; Lü, J.; Xie, H.; Li, D.; Shang, Y.; Huang, L.; Meng, L.; An, X.; Zhou, J.; et al. A Circulating MiR-19b-Based Model in Diagnosis of Human Breast Cancer. Front. Mol. Biosci. 2022, 9, 980841. [Google Scholar] [CrossRef]
- Swellam, M.; Zahran, R.F.K.; Ghonem, S.A.; Abdel-Malak, C. Serum MiRNA-27a as Potential Diagnostic Nucleic Marker for Breast Cancer. Arch. Physiol. Biochem. 2021, 127, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Stückrath, I.; Rack, B.; Janni, W.; Jäger, B.; Pantel, K.; Schwarzenbach, H. Aberrant Plasma Levels of Circulating MiR-16, MiR-107, MiR-130a and MiR-146a Are Associated with Lymph Node Metastasis and Receptor Status of Breast Cancer Patients. Oncotarget 2015, 6, 13387–13401. [Google Scholar] [CrossRef]
- Luo, J.; Zhao, Q.; Zhang, W.; Zhang, Z.; Gao, J.; Zhang, C.; Li, Y.; Tian, Y. A Novel Panel of MicroRNAs Provides a Sensitive and Specific Tool for the Diagnosis of Breast Cancer. Mol. Med. Rep. 2014, 10, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Jurkovicova, D.; Smolkova, B.; Magyerkova, M.; Sestakova, Z.; Kajabova, V.H.; Kulcsar, L.; Zmetakova, I.; Kalinkova, L.; Krivulcik, T.; Karaba, M.; et al. Down-Regulation of Traditional OncomiRs in Plasma of Breast Cancer Patients. Oncotarget 2017, 8, 77369–77384. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Isanejad, A.; Sadighi, S.; Khalighfard, S.; Alizadeh, A.M. Effect of a High-Intensity Interval Training on Serum MicroRNA Levels in Women with Breast Cancer Undergoing Hormone Therapy. A Single-Blind Randomized Trial. Ann. Phys. Rehabil. Med. 2019, 62, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Li, Q.; Yin, Q.; Wang, Y.; Shang, J.M.; Wang, L.H. Evaluation of Color Doppler Ultrasound Combined with Plasma MiR-21 and MiR-27a in the Diagnosis of Breast Cancer. Clin. Transl. Oncol. 2021, 23, 709–717. [Google Scholar] [CrossRef]
- Khadka, V.S.; Nasu, M.; Deng, Y.; Jijiwa, M. Circulating MicroRNA Biomarker for Detecting Breast Cancer in High-Risk Benign Breast Tumors. Int. J. Mol. Sci. 2023, 24, 7553. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Jin, X.; Wang, Z.; Wu, Y.; Zhao, D.; Chen, G.; Li, D.; Wang, X.; Cao, H.; et al. A Circulating MiRNA Signature as a Diagnostic Biomarker for Non-Invasive Early Detection of Breast Cancer. Breast Cancer Res. Treat. 2015, 154, 423–434. [Google Scholar] [CrossRef]
- Tang, W.; Yu, F.; Yao, H.; Cui, X.; Jiao, Y.; Lin, L.; Chen, J.; Yin, D.; Song, E.; Liu, Q. MiR-27a Regulates Endothelial Differentiation of Breast Cancer Stem like Cells. Oncogene 2014, 33, 2629–2638. [Google Scholar] [CrossRef]
- Zanetti, K.A.; Haznadar, M.; Welsh, J.A.; Robles, A.I.; Ryan, B.M.; McClary, A.C.; Bowman, E.D.; Goodman, J.E.; Bernig, T.; Chanock, S.J.; et al. 3′-UTR and Functional Secretor Haplotypes in Mannose-Binding Lectin 2 Are Associated with Increased Colon Cancer Risk in African Americans. Cancer Res. 2012, 72, 1467–1477. [Google Scholar] [CrossRef]
- Chintharlapalli, S.; Papineni, S.; Abdelrahim, M.; Abudayyeh, A.; Jutooru, I.; Chadalapaka, G.; Wu, F.; Mertens-Talcott, S.; Vanderlaag, K.; Cho, S.D.; et al. Oncogenic MicroRNA-27a Is a Target for Anticancer Agent Methyl 2-Cyano-3,11-Dioxo-18β-Olean-1,12-Dien-30-Oate in Colon Cancer Cells. Int. J. Cancer 2009, 125, 1965–1974. [Google Scholar] [CrossRef] [PubMed]
- Pathi, S.S.; Jutooru, I.; Chadalapaka, G.; Sreevalsan, S.; Anand, S.; Thatcher, G.R.; Safe, S. GT-094, a NO-NSAID, Inhibits Colon Cancer Cell Growth by Activation of a Reactive Oxygen Species-MicroRNA-27a: ZBTB10-Specificity Protein Pathway. Mol. Cancer Res. 2011, 9, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, X.; Ding, J.; Liang, L.; Zhao, Y.; Zhang, Z.; Yao, X.; Pan, Z.; Zhang, P.; Li, J.; et al. Upregulation of MiR-23a∼27a∼24 Decreases Transforming Growth Factor-Beta-Induced Tumor-Suppressive Activities in Human Hepatocellular Carcinoma Cells. Int. J. Cancer 2008, 123, 972–978. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, J.; Su, S.; Wu, W.; Liu, Q.; Su, F.; Yu, F. MiR-27 as a Prognostic Marker for Breast Cancer Progression and Patient Survival. PLoS ONE 2012, 7, e51702. [Google Scholar] [CrossRef]
- Che, F.; Wan, C.; Dai, J.; Chen, J. Increased Expression of MiR-27 Predicts Poor Prognosis and Promotes Tumorigenesis in Human Multiple Myeloma. Biosci. Rep. 2019, 39, BSR20182502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, X.; Dai, Y.; Niu, X.; Zhou, M. MiR-27a Downregulation Promotes Cutaneous Squamous Cell Carcinoma Progression via Targeting EGFR. Front. Oncol. 2020, 9, 1565. [Google Scholar] [CrossRef]
- Bao, Y.; Chen, Z.; Guo, Y.; Feng, Y.; Li, Z.; Han, W.; Wang, J.; Zhao, W.; Jiao, Y.; Li, K.; et al. Tumor Suppressor MicroRNA-27a in Colorectal Carcinogenesis and Progression by Targeting SGPP1 and Smad2. PLoS ONE 2014, 9, e105991. [Google Scholar] [CrossRef] [PubMed]
- Adlakha, Y.K.; Saini, N. Brain MicroRNAs and Insights into Biological Functions and Therapeutic Potential of Brain Enriched MiRNA-128. Mol. Cancer 2014, 13, 33. [Google Scholar] [CrossRef] [PubMed]
- Budi, H.S.; Younus, L.A.; Lafta, M.H.; Parveen, S.; Mohammad, H.J.; Al-qaim, Z.H.; Jawad, M.A.; Parra, R.M.R.; Mustafa, Y.F.; Alhachami, F.R.; et al. The Role of MiR-128 in Cancer Development, Prevention, Drug Resistance, and Immunotherapy. Front. Oncol. 2023, 12, 1067974. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, J.; Le, Y.; Zhou, C.; Zhang, S.; Gong, Z. PFKL/MiR-128 Axis Regulates Glycolysis by Inhibiting AKT Phosphorylation and Predicts Poor Survival in Lung Cancer. Am. J. Cancer Res. 2016, 6, 473–485. [Google Scholar] [PubMed]
- Pan, J.; Zhou, C.; Zhao, X.; He, J.; Tian, H.; Shen, W.; Han, Y.; Chen, J.; Fang, S.; Meng, X.; et al. A Two-MiRNA Signature (MiR-33a-5p and MiR-128-3p) in Whole Blood as Potential Biomarker for Early Diagnosis of Lung Cancer. Sci. Rep. 2018, 8, 16699. [Google Scholar] [CrossRef]
- Cao, X.-Z.; Bin, H.; Zang, Z.-N. MiR-128 Suppresses the Growth of Thyroid Carcinoma by Negatively Regulating SPHK1. Biomed Pharm. 2019, 109, 1960–1966. [Google Scholar] [CrossRef] [PubMed]
- Kefas, B.; Godlewski, J.; Comeau, L.; Li, Y.; Abounader, R.; Hawkinson, M.; Lee, J.; Fine, H.; Chiocca, E.A.; Lawler, S.; et al. MicroRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-Regulated in Glioblastoma. Cancer Res. 2008, 68, 3566–3572. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Zhu, H.; Zhao, Q.; Huang, J.; Zhou, C.; He, J.; Liang, Y. MiR-128 Suppresses Metastatic Capacity by Targeting Metadherin in Breast Cancer Cells. Biol. Res. 2020, 53, 43. [Google Scholar] [CrossRef]
- Xiao, M.; Lou, C.; Xiao, H.; Yang, Y.; Cai, X.; Li, C.; Jia, S.; Huang, Y. MiR-128 Regulation of Glucose Metabolism and Cell Proliferation in Triple-Negative Breast Cancer. Br. J. Surg. 2017, 105, 75–85. [Google Scholar] [CrossRef]
- Zhou, X.; Qi, L.; Tong, S.; Cui, Y.; Chen, J.; Huang, T.; Chen, Z.; Zu, X. MiR-128 Downregulation Promotes Growth and Metastasis of Bladder Cancer Cells and Involves VEGF-C Upregulation. Oncol. Lett. 2015, 10, 3183–3190. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shen, X.; Han, X. MiR-128 Functions as an OncomiR for the Downregulation of HIC1 in Breast Cancer. Front. Pharmacol. 2019, 10, 1202. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A MicroRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yu, F.; Jiao, Y.; Feng, J.; Tang, W.; Yao, H.; Gong, C.; Chen, J.; Su, F.; Zhang, Y.; et al. Reduced MiR-128 in Breast Tumor–Initiating Cells Induces Chemotherapeutic Resistance via Bmi-1 and ABCC5. Clin. Cancer Res. 2011, 17, 7105–7115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, D.; Fang, L. MiR-128-3p Suppresses Breast Cancer Cellular Progression via Targeting LIMK1. Biomed Pharm. 2019, 115, 108947. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, Z.; Yang, G.; You, L.; Zhang, T.; Zhao, Y. MicroRNA-27a (MiR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front. Oncol. 2019, 9, 893. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Y.; Cao, X.; Mou, P. MiR-27a Facilitates Breast Cancer Progression via GSK-3β. Technol. Cancer Res. Treat. 2020, 19, 1533033820965576. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z.; Sun, H.; Li, Y. MicroRNA-27a Promotes Tumorigenesis via Targeting AKT in Triple Negative Breast Cancer. Mol. Med. Rep. 2018, 17, 562–570. [Google Scholar] [CrossRef]
- Scheibner, K.A.; Teaboldt, B.; Hauer, M.C.; Chen, X.; Cherukuri, S.; Guo, Y.; Kelley, S.M.; Liu, Z.; Baer, M.R.; Heimfeld, S.; et al. MiR-27a Functions as a Tumor Suppressor in Acute Leukemia by Regulating 14-3-3θ. PLoS ONE 2012, 7, e50895. [Google Scholar] [CrossRef]
- Zhu, L.; Wang, Z.; Fan, Q.; Wang, R.; Sun, Y. MicroRNA-27a Functions as a Tumor Suppressor in Esophageal Squamous Cell Carcinoma by Targeting KRAS. Oncol. Rep. 2014, 31, 280–286. [Google Scholar] [CrossRef]
- Acunzo, M.; Romano, G.; Palmieri, D.; Laganá, A.; Garofalo, M.; Balatti, V.; Drusco, A.; Chiariello, M.; Nana-Sinkam, P.; Croce, C.M. Cross-Talk between MET and EGFR in Non-Small Cell Lung Cancer Involves MiR-27a and Sprouty2. Proc. Natl. Acad. Sci. USA 2013, 110, 8573–8578. [Google Scholar] [CrossRef]
- Li, M.; Han, Y.; Zhou, H.; Li, X.; Lin, C.; Zhang, E.; Chi, X.; Hu, J.; Xu, H. Transmembrane Protein 170B Is a Novel Breast Tumorigenesis Suppressor Gene That Inhibits the Wnt/β-Catenin Pathway. Cell Death Dis. 2018, 9, 91. [Google Scholar] [CrossRef]
- Ueda, S.; Takanashi, M.; Sudo, K.; Kanekura, K.; Kuroda, M. MiR-27a Ameliorates Chemoresistance of Breast Cancer Cells by Disruption of Reactive Oxygen Species Homeostasis and Impairment of Autophagy. Lab. Investig. 2020, 100, 863–873. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, N.; Liu, L.; Dong, H.; Liu, X. MicroRNA-128-3p Overexpression Inhibits Breast Cancer Stem Cell Characteristics through Suppression of Wnt Signalling Pathway by Down-regulating NEK2. J. Cell Mol. Med. 2020, 24, 7353–7369. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Shi, R.; Zhao, G. MiR-27 Promotes Human Gastric Cancer Cell Metastasis by Inducing Epithelial-to-Mesenchymal Transition. Cancer Genet. 2011, 204, 486–491. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, X.; Shi, D.; Xiang, Z.; Wang, S.; Yang, C.; Liu, Q.; Huang, S.; Fang, Y.; Zhang, W.; et al. Exosomal MiR-128-3p Promotes Epithelial-to-Mesenchymal Transition in Colorectal Cancer Cells by Targeting FOXO4 via TGF-β/SMAD and JAK/STAT3 Signaling. Front. Cell Dev. Biol. 2021, 9, 568738. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, B.P. Epithelial-Mesenchymal Transition—A Hallmark of Breast Cancer Metastasis. Hallm. Cancer 2013, 1, 38–49. [Google Scholar] [CrossRef]
- Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell 2017, 168, 629–643. [Google Scholar] [CrossRef]
- Ryall, K.A.; Shin, J.; Yoo, M.; Hinz, T.K.; Kim, J.; Kang, J.; Heasley, L.E.; Tan, A.C. Identifying Kinase Dependency in Cancer Cells by Integrating High-Throughput Drug Screening and Kinase Inhibition Data. Bioinformatics 2015, 31, 3799–3806. [Google Scholar] [CrossRef]
- Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of Epidermal Growth Factor Receptor in Breast Cancer. Breast Cancer Res. Treat. 2012, 136, 331–345. [Google Scholar] [CrossRef]
- Xu, X.; Wang, X.; Chen, Q.; Zheng, A.; Li, D.; Meng, Z.; Li, X.; Cai, H.; Li, W.; Huang, S.; et al. Sp1 Promotes Tumour Progression by Remodelling the Mitochondrial Network in Cervical Cancer. J. Transl. Med. 2023, 21, 307. [Google Scholar] [CrossRef]
- Paranjape, A.N.; Balaji, S.A.; Mandal, T.; Krushik, E.V.; Nagaraj, P.; Mukherjee, G.; Rangarajan, A. Bmi1 Regulates Self-Renewal and Epithelial to Mesenchymal Transition in Breast Cancer Cells through Nanog. BMC Cancer 2014, 14, 785. [Google Scholar] [CrossRef]
- Zati Zehni, A.; Batz, F.; Cavaillès, V.; Sixou, S.; Kaltofen, T.; Keckstein, S.; Heidegger, H.H.; Ditsch, N.; Mahner, S.; Jeschke, U.; et al. Cytoplasmic Localization of RXRα Determines Outcome in Breast Cancer. Cancers 2021, 13, 3756. [Google Scholar] [CrossRef]
- Oshi, M.; Takahashi, H.; Tokumaru, Y.; Yan, L.; Rashid, O.M.; Matsuyama, R.; Endo, I.; Takabe, K. G2M Cell Cycle Pathway Score as a Prognostic Biomarker of Metastasis in Estrogen Receptor (ER)-Positive Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2921. [Google Scholar] [CrossRef]
- Sanchez, A.M.; Flamini, M.I.; Russo, E.; Casarosa, E.; Pacini, S.; Petrini, M.; Genazzani, A.R.; Simoncini, T. LH and FSH Promote Migration and Invasion Properties of a Breast Cancer Cell Line through Regulatory Actions on the Actin Cytoskeleton. Mol. Cell Endocrinol. 2016, 437, 22–34. [Google Scholar] [CrossRef]
- Bergandi, L.; Canosa, S.; Pittatore, G.; Silvagno, F.; Doublier, S.; Gennarelli, G.; Benedetto, C.; Revelli, A. Human Recombinant FSH Induces Chemoresistance in Human Breast Cancer Cells via HIF-1α Activation†. Biol. Reprod. 2019, 100, 1521–1535. [Google Scholar] [CrossRef]
- Anestis, A.; Zoi, I.; Papavassiliou, A.G.; Karamouzis, M.V. Androgen Receptor in Breast Cancer—Clinical and Preclinical Research Insights. Molecules 2020, 25, 358. [Google Scholar] [CrossRef]
- Kontomanolis, E.N.; Kalagasidou, S.; Pouliliou, S.; Anthoulaki, X.; Georgiou, N.; Papamanolis, V.; Fasoulakis, Z.N. The Notch Pathway in Breast Cancer Progression. Sci. World J. 2018, 2018, 2415489. [Google Scholar] [CrossRef]
- Barone, I.; Brusco, L.; Fuqua, S.A.W. Estrogen Receptor Mutations and Changes in Downstream Gene Expression and Signaling. Clin. Cancer Res. 2010, 16, 2702–2708. [Google Scholar] [CrossRef]
- Cheng, L.; Sharples, R.A.; Scicluna, B.J.; Hill, A.F. Exosomes Provide a Protective and Enriched Source of MiRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. J. Extracell. Vesicles 2014, 3, 23743. [Google Scholar] [CrossRef]
- Endzeliņš, E.; Berger, A.; Melne, V.; Bajo-Santos, C.; Soboļevska, K.; Ābols, A.; Rodriguez, M.; Šantare, D.; Rudņickiha, A.; Lietuvietis, V.; et al. Detection of Circulating MiRNAs: Comparative Analysis of Extracellular Vesicle-Incorporated MiRNAs and Cell-Free MiRNAs in Whole Plasma of Prostate Cancer Patients. BMC Cancer 2017, 17, 730. [Google Scholar] [CrossRef]
- Capriglione, F.; Verrienti, A.; Celano, M.; Maggisano, V.; Sponziello, M.; Pecce, V.; Gagliardi, A.; Giacomelli, L.; Aceti, V.; Durante, C.; et al. Analysis of Serum MicroRNA in Exosomal Vehicles of Papillary Thyroid Cancer. Endocrine 2022, 75, 185–193. [Google Scholar] [CrossRef]
- Barone, I.; Gelsomino, L.; Accattatis, F.M.; Giordano, F.; Gyorffy, B.; Panza, S.; Giuliano, M.; Veneziani, B.M.; Arpino, G.; De Angelis, C.; et al. Analysis of Circulating Extracellular Vesicle Derived MicroRNAs in Breast Cancer Patients with Obesity: A Potential Role for Let-7a. J. Transl. Med. 2023, 21, 232. [Google Scholar] [CrossRef]
- Giordano, C.; Gelsomino, L.; Barone, I.; Panza, S.; Augimeri, G.; Bonofiglio, D.; Rovito, D.; Naimo, G.; Leggio, A.; Catalano, S.; et al. Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. J. Clin. Med. 2019, 8, 1027. [Google Scholar] [CrossRef] [PubMed]
- Gionfriddo, G.; Plastina, P.; Augimeri, G.; Catalano, S.; Giordano, C.; Barone, I.; Morelli, C.; Giordano, F.; Gelsomino, L.; Sisci, D.; et al. Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARγ Ligands as a Potential Target in Breast Cancer. Cells 2020, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Espinoza-Sánchez, N.A.; El-Damen, A.; Fahim, S.A.; Badawy, M.A.; Greve, B.; El-Shinawi, M.; Götte, M.; Ibrahim, S.A. Small Extracellular Vesicle-Encapsulated MiR-181b-5p, MiR-222-3p and Let-7a-5p: Next Generation Plasma Biopsy-Based Diagnostic Biomarkers for Inflammatory Breast Cancer. PLoS ONE 2021, 16, e0250642. [Google Scholar] [CrossRef]
- Stevic, I.; Müller, V.; Weber, K.; Fasching, P.A.; Karn, T.; Marmé, F.; Schem, C.; Stickeler, E.; Denkert, C.; van Mackelenbergh, M.; et al. Specific MicroRNA Signatures in Exosomes of Triple-Negative and HER2-Positive Breast Cancer Patients Undergoing Neoadjuvant Therapy within the GeparSixto Trial. BMC Med. 2018, 16, 179. [Google Scholar] [CrossRef]
- Ranches, G.; Zeidler, M.; Kessler, R.; Hoelzl, M.; Hess, M.W.; Vosper, J.; Perco, P.; Schramek, H.; Kummer, K.K.; Kress, M.; et al. Exosomal Mitochondrial TRNAs and MiRNAs as Potential Predictors of Inflammation in Renal Proximal Tubular Epithelial Cells. Mol. Ther. Nucleic Acids 2022, 28, 794–813. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Dong, J.; Wang, L.-E.; Ma, H.; Liu, J.; Zhao, Y.; Tang, J.; Chen, X.; Dai, J.; Wei, Q.; et al. Serum MicroRNA Profiling and Breast Cancer Risk: The Use of MiR-484/191 as Endogenous Controls. Carcinogenesis 2012, 33, 828–834. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. MiRDB: An Online Database for Prediction of Functional MicroRNA Targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed]
- Licursi, V.; Conte, F.; Fiscon, G.; Paci, P. MIENTURNET: An Interactive Web Tool for MicroRNA-Target Enrichment and Network-Based Analysis. BMC Bioinform. 2019, 20, 545. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
Clinical Variables | Breast Cancer Patients (BC) | Healthy Subjects (C) |
---|---|---|
Sample Size (n) | 27 | 27 |
Age, y | ||
Median | 50 | 51 |
Range | 30–76 | 23–61 |
Histology, % | ||
In situ ductal carcinoma | 3.7 | |
Invasive ductal carcinoma | 81.5 | |
Invasive lobular carcinoma | 7.4 | |
Grading, % | ||
Well differentiated (G1) | 7.4 | |
Moderately differentiated (G2) | 33.3 | |
Poor/undifferentiated (G3) | 33.3 | |
Unknown | 25.9 | |
Estrogen receptor status, % | ||
Negative | 11 | |
Positive (>1%) | 89 | |
Progesterone receptor status, % | ||
Negative | 18.5 | |
Positive (>1%) | 78 | |
HER2/Neu status, % | ||
Negative | 55.5 | |
Positive | 41 | |
Ki-67, % | ||
<14 | 7.4 | |
≥14 | 89 |
miRNAs | Fold Change | padj |
---|---|---|
hsa-miR-28-5p | 102.18 | 2.59 × 107 |
hsa-miR-27a-3p | −114.83 | 4.60 × 107 |
hsa-miR-128-3p | −112.14 | 2.30 × 105 |
hsa-miR-15b-5p | −1.88 | 1.00 × 104 |
hsa-miR-181a-5p | −1.90 | 1.28 × 103 |
hsa-miR-148a-3p | −1.74 | 1.29 × 103 |
Clinical Variables | Breast Cancer Patients (BC) | Healthy Controls (C) |
---|---|---|
Sample Size (n) | 18 | 9 |
Age, y | ||
Median | 57 | 41 |
Range | 33–79 | 26–54 |
Histology, % | ||
In Situ ductal carcinoma | - | |
Invasive ductal carcinoma | 83.3 | |
Invasive lobular carcinoma | 5 | |
Grading, % | ||
Well differentiated (G1) | 5.5 | |
Moderately differentiated (G2) | 22.2 | |
Poor/undifferentiated (G3) | 50 | |
Unknown | 11.1 | |
Estrogen receptor status, % | ||
Negative | 22.2 | |
Positive (>1%) | 77.8 | |
Progesterone receptor status, % | ||
Negative | 33.3 | |
Positive (>1%) | 66.7 | |
HER2/Neu status, % | ||
Negative | 88.8 | |
Positive | 11.1 | |
Ki-67, % | ||
<14 | 11.1 | |
≥14 | 83.3 |
miRNA-27a | miRNA-128 | Combined | |
---|---|---|---|
HER2 status (Mann-Whitney, p-value) | 0.21 | 0.1 | 0.17 |
Grade (Kruskal-Wallis, p-value) | 0.22 | 0.4 | 0.42 |
Estrogen Receptor Expression (Pearson correlation coefficient) | 0.39 | 0.23 | 0.25 |
Progesterone Receptor Expression (Pearson correlation coefficient) | 0.39 | 0.30 | 0.44 |
Ki-67 Expression (Pearson correlation coefficient) | 0.33 | 0.40 | 0.38 |
MicroRNA | Biofluid Type | Deregulation | Reference |
---|---|---|---|
miRNA-27a | Serum | ↑ BC vs. C | [32] |
Plasma | ↑ BC vs. C | [33] | |
↑ Late BC vs. early BC | |||
=Benign vs. C vs. high risk BC | |||
=high risk BC vs. C | |||
Plasma | ↑ BC vs. C | [34] | |
Serum | ↑ Primary BC vs. benign breast lesions | [35] | |
↑ Primary BC vs. C | |||
↑ Benign breast lesions vs. C | |||
Plasma | ↑ BC vs. C | [36] | |
↓ BC after chemotherapy vs. BC before chemotherapy | |||
↑ BC after chemotherapy vs. C | |||
Serum | ↓ BC vs. C | [37] | |
Plasma | ↓ BC vs. C | [38] | |
Serum | ↑ BC vs. C | [39] | |
Plasma | ↑ BC vs. C | [40] | |
miRNA-128 | Plasma | ↓ BC vs. high-risk BC | [41] |
Serum | =BC vs. C | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giordano, C.; Accattatis, F.M.; Gelsomino, L.; Del Console, P.; Győrffy, B.; Giuliano, M.; Veneziani, B.M.; Arpino, G.; De Angelis, C.; De Placido, P.; et al. miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 15695. https://doi.org/10.3390/ijms242115695
Giordano C, Accattatis FM, Gelsomino L, Del Console P, Győrffy B, Giuliano M, Veneziani BM, Arpino G, De Angelis C, De Placido P, et al. miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. International Journal of Molecular Sciences. 2023; 24(21):15695. https://doi.org/10.3390/ijms242115695
Chicago/Turabian StyleGiordano, Cinzia, Felice Maria Accattatis, Luca Gelsomino, Piercarlo Del Console, Balázs Győrffy, Mario Giuliano, Bianca Maria Veneziani, Grazia Arpino, Carmine De Angelis, Pietro De Placido, and et al. 2023. "miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer" International Journal of Molecular Sciences 24, no. 21: 15695. https://doi.org/10.3390/ijms242115695
APA StyleGiordano, C., Accattatis, F. M., Gelsomino, L., Del Console, P., Győrffy, B., Giuliano, M., Veneziani, B. M., Arpino, G., De Angelis, C., De Placido, P., Pietroluongo, E., Zinno, F., Bonofiglio, D., Andò, S., Barone, I., & Catalano, S. (2023). miRNAs in the Box: Potential Diagnostic Role for Extracellular Vesicle-Packaged miRNA-27a and miRNA-128 in Breast Cancer. International Journal of Molecular Sciences, 24(21), 15695. https://doi.org/10.3390/ijms242115695