Resiniferatoxin: Nature’s Precision Medicine to Silence TRPV1-Positive Afferents
Abstract
:1. Resiniferatoxin: A 2000-Year History in a Snapshot
2. The Mechanism of Action of RTX and Capsaicin: Similarities and Differences
3. RTX and Bladder Disorders: Experimental Models
4. RTX and Bladder Disorders: Clinical Studies
5. RTX for Pain Relief: Animal Studies
6. Intrathecal RTX for Permanent Pain Relief in Companion Dogs with Bone Cancer
7. Clinical Trials: Intrathecal or Epidural RTX for Permanent Analgesia in Cancer Patients
8. Clinical Trials: Breakthrough Therapy Designation for Intra-Articular RTX to Treat Pain Associated with Knee Osteoarthritis
9. Innovative RTX Uses: Beyond Bladder Control and Pain Relief
10. Conclusions and Future Research Directions
Funding
Conflicts of Interest
References
- Appendino, G.; Szallasi, A. Euphorbium: Modern research on its active principle, resiniferatoxin, revives an ancient medicine. Life Sci. 1997, 60, 681–696. [Google Scholar] [CrossRef] [PubMed]
- Tschirch, A.; Stock, D. Die Harze und Die Harzbehälter; Gebrüder Borntraeger: Berlin, Germany, 1935. [Google Scholar]
- Hashimoto, S.; Katoh, S.I.; Kato, T.; Urabe, D.; Inoue, M. Total synthesis of resiniferatoxin enabled by radical-mediated three-component coupling and 7-endo cyclization. J. Am. Chem. Soc. 2017, 138, 16420–16429. [Google Scholar] [CrossRef] [PubMed]
- Plinii Secundi, G. Naturalis Historae. Tomus Primus. Apud Hackios, Rotterdam, 1669. Available online: http://penelope.uchicago.edu/Thayer/e/Roman/texts/pliny_the_elder/home.html (accessed on 27 September 2023).
- Available online: https://www.prnewswire.com/news-releases/grunenthlas-resiniferatoxin-receives-breakthrough-therapy-designation-from-us-fda-for-pain-associated-with-osteroarthritis-of-the-knee-301830645.html (accessed on 27 September 2023).
- Virchow, R. Reizung und Reizbarkeit. Arch. Pathol. Anat. Physiol. Klin. Med. 1858, 14, 1–62. [Google Scholar] [CrossRef]
- Brune, K.; Kalin, H.; Schmidt, R.; Hecker, E. Inflammatory, tumor initiating and promoting activities of polycyclic aromatic hydrocarbons and diterpene esters in mouse skin compared with their prostaglandin releasing potency in vitro. Cancer Lett. 1978, 4, 333–342. [Google Scholar] [CrossRef]
- Hergenhahn, M.; Kusumoto, M.; Hecker, E. On the active principles of the spurge family (Euphorbiaceae). V. Extremely skin-irritant and moderate tumor-promoting diterpene esters from Euphorbia resinifera Berg. J. Cancer Res. Clin. Oncol. 1984, 108, 98–109. [Google Scholar] [CrossRef]
- Zur Hausen, H.; Bornkamm, G.W.; Schmidt, R.; Hecker, E. Tumor initiators and promoters in the induction of Epstein—Barr virus. Proc. Natl. Acad. Sci. USA 1979, 76, 782–785. [Google Scholar] [CrossRef]
- Driedger, P.E.; Blumberg, P.M. Different biological targets for resiniferatoxin and phorbol 12-myristate 13-acetate. Cancer Res. 1980, 40, 1400–1404. [Google Scholar]
- Szallasi, A.; Blumberg, P.M. Resiniferatoxin, a phorbol-related diterpene, acts as an ultrapotent analog of capsaicin, the irritant constituent in red pepper. Neuroscience 1989, 30, 515–520. [Google Scholar] [CrossRef]
- Szallasi, A.; Blumberg, P.M. Specific binding of resiniferatoxin, an ultrapotent capsaicin analog, by dorsal root ganglion membranes. Brain Res. 1990, 524, 106–111. [Google Scholar] [CrossRef]
- Szallasi, A.; Blumberg, P.M. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor. Life Sci. 1990, 47, 1399–1408. [Google Scholar] [CrossRef]
- Montell, C.; Birnbaumer, L.; Flockerzi, V.; Bindels, R.J.; Bruford, E.A.; Caterina, M.J.; Clapham, D.E.; Harteneck, C.; Heller, S.; Julius, D.; et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 2002, 9, 229–231. [Google Scholar] [CrossRef] [PubMed]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, R.E.; Kovács, K.J.; Honda, C.N.; Nunez, M.G.; Larson, A.A. Resiniferatoxin (RTX) causes a uniquely protracted musculoskeletal hyperalgesia in mice by activation of TRPV1 receptors. J. Pain 2013, 14, 1629–1641. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J.; Szallasi, A.; Szallasi, Z.; Joó, F.; Blumberg, P.M. Resiniferatoxin: An ultrapotent neurotoxin of capsaicin-sensitive primary afferent neurons. Ann. N. Y. Acad. Sci. 1991, 632, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.A.; Patacchini, R.; Tramontana, M.; Amann, R.; Giuliani, S.; Santicioli, P. Similarities and differences in the action of resiniferatoxin and capsaicin on central and peripheral endings of primary sensory neurons. Neuroscience 1990, 37, 531–539. [Google Scholar] [CrossRef]
- Ács, G.; Bíró, T.; Ács, P.; Modarres, S.; Blumberg, P.M. Differential activation and desensitization of sensory neurons by resiniferatoxin. J. Neurosci. 1997, 17, 5622–5628. [Google Scholar] [CrossRef]
- Caterina, M.J.; Leffler, A.; Malmberg, A.B.; Trafton, J.; Petersen-Zeitz, K.R.; Koltzenburg, M.; Basbaum, A.I.; Julius, D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000, 288, 303–306. [Google Scholar] [CrossRef]
- Davis, J.B.; Gray, J.; Gunthorpe, M.J.; Hatcher, J.P.; Davey, P.T.; Overend, P.; Harries, M.H.; Latcham, J.; Clapham, C.; Atkinson, K.; et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 2000, 405, 183–187. [Google Scholar] [CrossRef]
- Szallasi, A.; Cortright, D.N.; Blum, C.A.; Eid, S.R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 2007, 6, 357–372. [Google Scholar] [CrossRef]
- Eid, S.R. Therapetic targeting of TRP channels—The TR(i)P to pain relief. Curr. Top. Med. Chem. 2011, 11, 2118–2130. [Google Scholar] [CrossRef]
- Derry, S.; Rice, A.S.; Cole, P.; Moore, R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2017, 1, CD007393. [Google Scholar] [PubMed]
- Campbell, J.N.; Stevens, R.; Hanson, P.; Conolly, J.; Meske, D.S.; Chung, M.K.; Lascelles, B.D.K. Injectable capsaicin for the management of pain due to osteoarthritis. Molecules 2021, 26, 778. [Google Scholar] [CrossRef] [PubMed]
- Patapoutian, A.; Peier, A.M.; Story, G.M.; Viswanath, V. ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nat. Rev. Neurosci. 2003, 4, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ávila, M.; Islas, L.D. What is new about mild temperature sensing? A review of recent findings. Temperature 2019, 6, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.; Zaguri, R.; Edvardson, S.; Maayan, C.; Elpeleg, O.; Lev, S.; Davidson, E.; Peters, M.; Kfir-Erenfeld, S.; Berger, E.; et al. Nociception and pain in humans lacking a functional TRPV1 channel. J. Clin. Investig. 2023, 133, e153558. [Google Scholar] [CrossRef]
- He, S.; Zambelli, V.O.; Sinharoy, P.; Brabenec, L.; Bian, Y.; Rwere, F.; Hell, R.C.; Stein Neto, B.; Hung, B.; Yu, X.; et al. A human TRPV1 genetic variant within the channel gating domain regulates pain sensitivity in rodents. J. Clin. Investig. 2023, 133, 3163735. [Google Scholar] [CrossRef]
- Clapham, D.E.; Montell, C.; Schultz, G.; Julius, D. International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: Transient receptor potential channels. Pharmacol. Rev. 2003, 55, 591–596. [Google Scholar] [CrossRef]
- Ramsey, I.S.; Delling, M.; Clapham, D.E. An introduction to TRP channels. Annu. Rev. Physiol. 2006, 68, 619–647. [Google Scholar] [CrossRef]
- Wu, L.J.; Sweet, T.B.; Clapham, D.E. International Union of Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 2010, 62, 381–404. [Google Scholar] [CrossRef]
- Nilius, B.; Szallasi, A. Transient receptor potential channels as drug targets: From the science of basic research to the art of medicine. Pharmacol. Rev. 2014, 66, 676–814. [Google Scholar] [CrossRef]
- Cosens, D.J.; Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 1969, 224, 285–287. [Google Scholar] [CrossRef]
- Pringle, S.C.; Matta, J.A.; Ahern, G.P. Capsaicin receptor: TRPV1, a promiscuous TRP channel. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 179, pp. 155–171. [Google Scholar]
- Nagy, I.; Friston, D.; Valente, J.S.; Torres Perez, J.V.; Andreou, A.P. Pharmacology of the capsaicin receptor, transient receptor potential vanilloid type-1 channel. Prog. Drug Res. 2014, 68, 39–76. [Google Scholar] [PubMed]
- Díaz-Franulic, I.; Caceres-Molina, J.; Sepulveda, R.V.; Gonzalez-Nilo, F.; Latorre, R. Structure-driven pharmacology of transient receptor potential vanilloid 1. Mol. Pharmacol. 2016, 90, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Angeles, M.; Morales-Lázaro, S.L.; Juárez-González, E.; Rosenbaum, T. TRPV1: Structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 2020, 21, 3421. [Google Scholar] [CrossRef] [PubMed]
- Jordt, S.E.; Tominaga, M.; Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA 2000, 97, 8134–8139. [Google Scholar] [CrossRef]
- Siemens, J.; Zhou, S.; Piskorowski, R.; Nikai, T.; Lumpkin, E.A.; Basbaum, A.I.; King, D.; Julius, D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature 2006, 444, 208–212. [Google Scholar] [CrossRef]
- Bohlen, C.J.; Priel, A.; Zhou, S.; King, D.; Siemens, J.; Julius, D. A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 2010, 141, 834–845. [Google Scholar] [CrossRef]
- Cuypers, E.; Yanagihara, A.; Karlsson, E.; Tytgat, J. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 2006, 580, 5728–5732. [Google Scholar] [CrossRef]
- Voets, T.; Droogmans, G.; Wissenbach, U.; Janssens, A.; Flockerzi, V.; Nilius, B. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 2004, 430, 748–754. [Google Scholar] [CrossRef]
- Chuang, H.H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from Ptdlns(4,5)P2-mediated inhibition. Nature 2001, 411, 957–962. [Google Scholar] [CrossRef]
- Premkumar, L.S.; Ahern, G.P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 2000, 408, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Oláh, Z.; Karai, L.; Iadarola, M.J. Protein kinase C (alpha) is required for vanilloid receptor activation. Evidence for multiple signaling pathways. J. Biol. Chem. 2002, 277, 35752–35759. [Google Scholar] [CrossRef]
- Bhave, G.; Hu, H.J.; Glauner, K.S.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W., IV. Protein kinase C phosphorylation sensitizes but does not activate the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Proc. Natl. Acad. Sci. USA 2003, 100, 12480–12485. [Google Scholar] [CrossRef] [PubMed]
- Pareek, T.K.; Keller, J.; Kesavapany, S.; Pant, H.C.; Iadarola, M.J.; Brady, R.O.; Kulkarni, A.B. Cyclin-dependent kinase 5 activity regulates pain signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Jendryke, T.; Prochazkova, M.; Hall, B.E.; Nordmann, G.C.; Schladt, M.; Milenkovic, V.M.; Kulkarni, A.B.; Wetzel, C.H. TRPV1 function is modulated by Cdk5-mediated phosphorylation: Insights into the molecular mechanism of nociception. Sci. Rep. 2016, 6, 22007. [Google Scholar] [CrossRef]
- Bhave, G.; Zhu, W.; Wang, H.; Brasier, D.J.; Oxford, G.S.; Gereau, R.W., IV. cAMP-dependent protein kinase regulates desensitization of the capsaicin receptor VR1 by direct phosphorylation. Neuron 2002, 35, 721–731. [Google Scholar] [CrossRef]
- Juárez-Contreras, R.; Méndez-Reséndiz, K.A.; Rosenbaum, T.; González-Ramírez, R.; Morales-Lázaro, S.L. TRPV1 channel: A noxious signal transducer that affects mitochondrial function. Int. J. Mol. Sci. 2020, 21, 8882. [Google Scholar] [CrossRef]
- Kedei, N.; Szabó, T.; Lile, J.D.; Treanor, J.J.; Olah, Z.; Iadarola, M.J.; Blumberg, P.M. Analysis of the native quaternary structure of vanilloid receptor 1*210. J. Biol. Chem. 2001, 276, 28613–28619. [Google Scholar] [CrossRef]
- Fischer, M.J.; Balasuriya, D.; Jeggle, P.; Goetze, T.A.; McNaughton, P.A.; Reeh, P.W.; Edwardson, J.M. Direct evidence for functional TRPV1/TRPA1 hemeromers. Pflügers Arch. 2014, 466, 2229–2241. [Google Scholar] [CrossRef]
- Kuzhikandathil, E.V.; Wang, H.; Szabo, T.; Morozova, N.; Blumberg, P.M.; Oxford, G.S. Functional analysis of capsaicin receptor (vanilloid receptor subtype-1) multimerization and agonist responsiveness using a dominant negative mutation. J. Neurosci. 2001, 21, 8697–8706. [Google Scholar] [CrossRef]
- Wang, C.; Hu, H.Z.; Colton, C.K.; Wood, J.D.; Zhu, M.X. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of TRPV1 channels. J. Biol. Chem. 2004, 279, 37423–37430. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Cao, E.; Julius, D. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 2013, 504, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Cao, E.; Liao, M.; Cheng, Y.; Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 2013, 504, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Xiao, X.; Cheng, W.; Yang, W.; Yu, P.; Song, Z.; Yarov-Yarovoy, V.; Zheng, J. Structural mechanisms underlying capsaicin binding and activation of TRPV1 ion channel. Nat. Chem. Biol. 2016, 11, 518–524. [Google Scholar] [CrossRef]
- Li, S.; Nguyen, P.T.; Vu, S.; Yarov-Yarovoy, V.; Zheng, J. Opening of the capsaicin receptor TRPV1 is stabilized equally by its four subunits. J. Biol. Chem. 2023, 299, 104828. [Google Scholar] [CrossRef]
- Mezey, E.; Tóth, Z.E.; Cortright, D.N.; Arzubi, M.K.; Elde, R.; Guo, A.; Blumberg, P.M.; Szallasi, A. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA 2000, 97, 3655–3660. [Google Scholar] [CrossRef]
- Tóth, A.; Boczán, J.; Kedei, N.; Lizanecz, E.; Bagi, Z.; Papp, Z.; Édes, I.; Csiba, L.; Blumberg, P.M. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res. Mol. Brain Res. 2005, 135, 162–168. [Google Scholar] [CrossRef]
- Inoue, K.; Koizumi, S.; Fuziwara, S.; Denda, S.; Inoue, K.; Denda, M. Functional vanilloid receptors in cultured normal human epidermal keratinocytes. Biochem. Biophys. Res. Commun. 2002, 291, 124–129. [Google Scholar] [CrossRef]
- Golech, S.A.; McCarron, R.M.; Chen, Y.; Bembry, J.; Lenz, F.; Mechoulam, R.; Shohami, E.; Spatz, M. Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptors. Brain Res. Mol. Brain Res. 2004, 132, 87–92. [Google Scholar] [CrossRef]
- Phan, T.X.; Ton, H.T.; Gulyás, H.; Pórszász, G.; Tóth, A.; Russo, R.; Kay, M.W.; Sahibzada, N.; Ahern, G.P. TRPV1 expressed throughout the arterial circulation regulates vasoconstriction and blood pressure. J. Physiol. 2020, 598, 5639–5659. [Google Scholar] [CrossRef]
- Jancsó, N.; Jancsó-Gábor, A.; Szolcsányi, J. Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br. J. Pharmacol. Chemother. 1967, 31, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Buck, S.H.; Burks, T.F. The neuropharmacology of capsaicin: Review of some recent observations. Pharmacol. Rev. 1986, 38, 179–226. [Google Scholar] [PubMed]
- Bevan, S.; Szolcsányi, J. Sensory neuron-specific actions of capsaicin: Mechanisms and applications. Trends Pharmacol. Sci. 1991, 11, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Maggi, C.A. Therapeutic potential of capsaicin-like molecules: Studies in animals and humans. Life Sci. 1992, 51, 1777–1781. [Google Scholar] [CrossRef] [PubMed]
- Szallasi, A.; Blumberg, P.M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 1999, 51, 159–212. [Google Scholar] [PubMed]
- Gavva, N.R. Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol. Sci. 2008, 29, 550–557. [Google Scholar] [CrossRef]
- Romanovsky, A.A.; Almeida, M.C.; Garami, A.; Steiner, A.A.; Norman, M.H.; Morrison, S.F.; Nakamura, K.; Burmeister, J.J.; Nucci, T.B. The transient receptor potential vanilloid-1 channel in thermoregulation: A thermosensor it is not. Pharmacol. Rev. 2009, 61, 228–2610. [Google Scholar] [CrossRef]
- Szolcsányi, J. The effect of capsaicin on thermoregulation: An update with new aspects. Temperature 2015, 2, 277–296. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Simon, S.A. A rapid capsaicin-activated current in rat trigeminal ganglion neurons. Proc. Natl. Acad. Sci. USA 1994, 91, 738–741. [Google Scholar] [CrossRef]
- Raisinghani, M.; Pabbidi, R.M.; Premkumar, L.S. Activation of transient receptor potential vanilloid 1 (TRPV1) by resiniferatoxin. J. Physiol. 2005, 567, 771–786. [Google Scholar] [CrossRef]
- Karai, L.J.; Russell, J.T.; Iadarola, M.J.; Oláh, Z. Vanilloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+-release in sensory neurons. J. Biol. Chem. 2004, 279, 16377–16387. [Google Scholar] [CrossRef]
- Jung, J.; Hwang, S.K.; Kwak, J.; Lee, S.Y.; Kang, C.J.; Kim, W.B.; Kim, D.; Oh, U. Capsaicin binds to the intracellular domain of the capsaicin-activated ion channel. J. Neurosci. 1999, 19, 529–538. [Google Scholar] [CrossRef]
- Ursu, D.; Knopp, K.; Beattie, R.E.; Liu, B.; Sher, E. Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. Eur. J. Pharmacol. 2010, 641, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Caudle, R.M.; Karai, K.; Mena, N.; Cooper, B.Y.; Mannes, A.J.; Perez, F.M.; Iadarola, M.J.; Oláh, Z. Resiniferatoxin-induced loss of plasma membrane in vanilloid receptor expressing cells. Neuro Toxicol. 2003, 24, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.; Dray, A.; Wood, J.N.; Yeats, J.C.; Bevan, S. Cellular mechanism of action of resiniferatoxin: A potent sensory neuron excititoxin. Brain Res. 1990, 520, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Oláh, Z.; Szabó, T.; Karai, L.; Hough, C.; Fields, R.D.; Caudle, R.M.; Blumberg, P.M.; Iadarola, M.J. Ligand-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. J. Biol. Chem. 2001, 276, 11021–11030. [Google Scholar] [CrossRef]
- Karai, L.; Brown, D.C.; Mannes, A.J.; Connelly, S.T.; Brown, J.; Gandal, M.; Wellisch, O.M.; Neubert, J.K.; Oláh, Z.; Iadarola, M.J. Deletion of vanilloid receptor 1-expressing afferent neurons for pain control. J. Clin. Investig. 2004, 113, 1344–1352. [Google Scholar] [CrossRef]
- Silva, C.; Rio, M.E.; Cruz, F. Desensitization of bladder sensory fibers by intravesical resiniferatoxin, a capsaicin analog: Long-term results for the treatment of detrusor hyperreflexia. Eur. Urol. 2000, 38, 444–452. [Google Scholar] [CrossRef]
- Lebovitz, E.F.; Keller, J.M.; Kominsky, H.; Kaszas, K.; Maric, D.; Iadarola, M.J. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism. Mol. Pain 2012, 8, 70. [Google Scholar] [CrossRef]
- Szallasi, A, Vanilloid-sensitive neurons: A fundamental subdivision of the peripheral nervous system. J. Peripher. Nerv. Syst. 1996, 1, 6–18.
- Szallasi, A.; Farkas-Szallasi, T.; Tucker, J.B.; Lundberg, J.M.; Hökfelt, T.; Krause, J.E. Effects of systemic resiniferatoxin treatment on substance P mRNA in rat dorsal root ganglia and substance P receptor mRNA in the spinal dorsal horn. Brain Res. 1999, 815, 177–184. [Google Scholar] [CrossRef]
- Avelino, A.; Cruz, C.; Cruz, F. Nerve growth factor regulates galanin and c-jun overexpression occurring in dorsal root ganglion cells after intravesical resiniferatoxin application. Brain Res. 2002, 951, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Singla, R.K.; Sultana, A.; Alam, M.S.; Shen, B. Regulation of pain genes—Capsaicin vs. resiniferatoxin: Reassessment of transcriptomic data. Front. Pharmacol. 2020, 11, 551786. [Google Scholar] [CrossRef] [PubMed]
- Avelino, A.; Cruz, F. Peptide immunoreactivity and ultrastructure of rat urinary bladder nerve fibers after topical desensitization by capsaicin or resiniferatoxin. Auton. Neurosci. 2000, 86, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Hockman, T.M.; Cisternas, A.F.; Jones, B.; Butt, M.T.; Osborn, K.G.; Steinauer, J.J.; Malkmus, S.A.; Yaksh, T.L. Target engagement and histopathology of neuroaxial resiniferatoxin in dog. Vet. Anaesth. Analg. 2018, 45, 212–226. [Google Scholar] [CrossRef]
- Silva, C.; Avelino, A.; Souto-Moura, C.; Cruz, F. A light- and electron-microscopic study of human bladder mucosa after intravesical resiniferatoxin application. BJU Int. 2001, 88, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Szolcsányi, J.; Joó, F.; Jancsó-Gábor, A. Mitochondrial changes in preoptic neurons after capsaicin desensitization of the hypothalamic thermodetectors in rats. Nature 1971, 229, 116–117. [Google Scholar] [CrossRef]
- Pórszász, J.; György, L.; Pórszász-Gibiszer, K. Cardiovascular and respiratory effects of capsaicin. Acta Physiol. Acad. Sci. Hung. 1955, 8, 61–76. [Google Scholar]
- Hajós, M.; Obál, F., Jr.; Jancsó, G.; Obál, F. The capsaicin sensitivity of the preoptic region is preserved in adult rats pretreated as neonates, but lost in rats pretreated as adults. Naunyn-Schmiedebergs Arch. Pharmacol. 1983, 324, 219–222. [Google Scholar] [CrossRef]
- Szolcsányi, J.; Szallasi, A.; Szallasi, Z.; Joó, F.; Blumberg, P.M. Resiniferatoxin: An ultrapotent selective modulator of capsaicin-sensitive primary afferent neurons. J. Pharmacol. Exp. Ther. 1990, 255, 923–928. [Google Scholar]
- Wallengren, J.; Chen, D. Local skin lesions in the rat after subcutaneous deposition of capsaicin. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 154–165. [Google Scholar] [CrossRef]
- Szallasi, A.; Conte, B.; Goso, C.; Blumberg, P.M.; Manzini, S. Vanilloid receptors in the urinary bladder: Regional distribution, localization on sensory nerves, and species-related differences. Naunyn-Schmiedebergs Arch. Pharmacol. 1993, 347, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Avelino, A.; Cruz, C.; Nagy, I.; Cruz, F. Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience 2002, 109, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Ost, D.; Roskams, T.; Van der Aa, F.; De Ridder, D. Topography of vanilloid receptor in the human bladder: More than just the nerve fibers. J. Urol. 2002, 168, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Birder, L.A.; Kanai, A.J.; de Groat, W.C.; Kiss, S.; Nealen, M.L.; Burke, N.E.; Dineley, K.E.; Watkins, S.; Reynolds, I.J.; Caterina, M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA 2001, 98, 13396–13401. [Google Scholar] [CrossRef]
- Charrua, A.; Reguenga, C.; Cordeiro, J.M.; Correiade-Sá, P.; Paule, C.; Nagy, I.; Cruz, F.; Avelino, A. Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J. Urol. 2009, 182, 2944–2950. [Google Scholar] [CrossRef]
- Birder, L.A. Urinary bladder urothelium: Molecular sensors of chemical/thermal/mechanical stimuli. Vascul. Pharmacol. 2006, 45, 221–226. [Google Scholar] [CrossRef]
- Shabir, S.; Cross, W.; Kirkwood, L.A.; Pearson, J.F.; Appleby, P.A.; Walker, D.; Eardley, I.; Southgate, J. Functional expression of purinergic P2 receptors and transient receptor potential channels by the human urothelium. Am. J. Physiol. Renal Physiol. 2013, 305, F396–F406. [Google Scholar] [CrossRef]
- Sadananda, P.; Shang, F.; Liu, L.; Mansfield, K.J.; Burcher, E. Release of ATP from rat urinary bladder mucosa: Role of acid, vanilloids and stretch. Br. J. Pharmacol. 2009, 158, 1655–1662. [Google Scholar] [CrossRef]
- Birder, L.A.; Nakamura, Y.; Kiss, S.; Nealen, M.L.; Barrick, S.; Kanai, A.J.; Wang, E.; Ruiz, G.; De Groat, W.C.; Apodaca, G.; et al. Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat. Neurosci. 2002, 5, 856–860. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Chu, J.F.; Li, N.; Lv, Z.H. Expression and diagnosis of transient receptor potential vanilloid 1 in urothelium of patients with overactive bladder. J. Biol. Regul. Homeost. Agents 2015, 29, 875–879. [Google Scholar] [PubMed]
- Apostolidis, A.; Brady, C.M.; Yiangou, Y.; Davis, J.; Fowler, C.J.; Anand, P. Capsaicin receptor TRPV1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology 2005, 65, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-H.; Jhang, J.-F.; Birder, L.A.; Kuo, H.-C. Sensory receptor, inflammatory, and apoptotic protein expression in the bladder urothelium of patients with different subtypes of interstitial cystitis/bladder pain syndrome. Int. J. Mol. Sci. 2023, 24, 820. [Google Scholar] [CrossRef] [PubMed]
- Holzer-Petsche, U.; Lembeck, F. Systemic capsaicin treatment impairs the micturition reflex in the rat. Br. J. Pharmacol. 1984, 83, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Santicioli, P.; Maggi, C.A.; Meli, A. The effect of capsaicin pretreatment on the cystometrograms of urethane anesthesized rats. J. Urol. 1985, 133, 700–703. [Google Scholar] [CrossRef]
- Daly, D.; Rong, W.; Chess-Williams, R.; Chapple, C.; Grundy, D. Bladder afferent sensitivity in wild-type and TRPV1 knockout mice. J. Physiol. 2007, 583, 663–674. [Google Scholar] [CrossRef]
- Charrua, A.; Cruz, C.D.; Narayanan, S.; Gharat, L.; Gullapalli, S.; Cruz, F.; Avelino, A. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol. 2009, 181, 379–386. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Wang, P.; Merriam, F.V.; Bjorling, D.E. Lack of TRPV1 inhibits cystitis-induced increased mechanical sensitivity in mice. Pain 2008, 139, 158–167. [Google Scholar] [CrossRef]
- Saleh, H.A.M. Vanilloid receptor type 1-immunoreactive nerves in the rat urinary bladder and primary afferent neurons: The effects of age. Folia Morphol. 2006, 65, 213–220. [Google Scholar]
- Craft, R.M.; Porreca, F. Temporal parameters of desensitization to intravesical resiniferatoxin in the rat. Physiol. Behav. 1994, 56, 479–485. [Google Scholar] [CrossRef]
- Saitoh, C.; Chancellor, M.B.; de Groat, W.C.; Yoshimura, N. Effects of intravesical instillation of resiniferatoxin on bladder function and nociceptive behavior in freely moving, conscious rats. J. Urol. 2008, 179, 359–364. [Google Scholar] [CrossRef]
- Craft, R.M.; Porreca, F. Tetracaine attenuates irritancy without attenuating desensitization produced by intravesical resiniferatoxin in the rat. Pain 1994, 57, 351–359. [Google Scholar] [CrossRef]
- Avelino, A.; Cruz, F.; Coimbra, A. Intravesical resiniferatoxin desensitizes rat bladder sensory fibers without causing intense noxious excitation. A c-fos study. Eur. J. Pharmacol. 1999, 378, 17–22. [Google Scholar] [CrossRef]
- Ishizuka, O.; Mattiasson, A.; Andersson, K.E. Urodynamic effects of intravesical resiniferatoxin and capsaicin in conscious rats with and without outflow obstruction. J. Urol. 1995, 154, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Jasmin, K.; Janni, G.; Ohara, P.T.; Rabkin, S.D. CNS induced neurogenic cystitis is associated with bladder mast cell degranulation in the rat. J. Urol 2000, 164, 852–855. [Google Scholar]
- Komiyama, I.; Igawa, Y.; Ishizuka, O.; Nishizawa, O.; Andersson, K.E. Effects of intravesical resiniferatoxin on distension-induced bladder contraction in conscious rats with and without chronic spinal cord injury. J. Urol. 1999, 161, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Dinis, P.; Charrua, A.; Avelino, A.; Cruz, F. Intravesical resiniferatoxin decreases spinal c-fos expression and increases bladder volume to reflex micturition in rats with chronic inflamed urinary bladders. BJU Int. 2004, 94, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Heng, Y.J.; Saunders, C.I.M.; Kunde, D.A.; Geraghty, D.P. TRPV1, NK1 receptor and substance P immunoreactivity and gene expression in the rat lumbosacral spinal cord and urinary bladder after systemic, low dose vanilloid administration. Regul. Pept. 2011, 167, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Barletta, M.; Gordon, J.; Escobar, A.; Mitchell, K.; Trenhome, H.N.; Grimes, J.A.; Jiménez-Andrade, J.; Nahama, A.; Cisternas, A. Safety and efficacy of intravesical instillation of resiniferatoxin in healthy cats: A preliminary study. Front. Vet. Sci. 2023, 9, 922305. [Google Scholar] [CrossRef]
- March, P.; Teng, B.; Westropp, J.; Buffington, T. Effects of resiniferatoxin on the neurogenic component of feline interstitial cystitis. Urology 2001, 6 (Suppl. S1), 114. [Google Scholar] [CrossRef]
- Lazzeri, M.; Beneforti, P.; Turini, D. Urodynamic effects of intravesical resiniferatoxin in humans: Preliminary results in stable and unstable detrusor. J. Urol. 1997, 158, 2093–2096. [Google Scholar] [CrossRef]
- Cruz, F.; Guimaraes, M.; Silva, C.; Reis, M. Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet 1997, 350, 640–641. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Spinelli, M.; Beneforti, P.; Zanollo, A.; Turini, D. Intravesical resiniferatoxin for the treatment of hyperreflexia refractory to capsaicin in patients with chronic spinal cord diseases. Scand. J. Urol. Nephrol. 1998, 32, 331–334. [Google Scholar] [PubMed]
- De Séze, M.; Wiart, L.; de Séze, M.-P.; Soyeur, L.; Dosque, J.-P.; Blajezewski, S.; Moore, N.; Brochert, B.; Mazaux, J.-M.; Barat, M.; et al. Intravesical capsaicin versus resiniferatoxin for the treatment of detrusor hyperreflexia in spinal cord injured patients: A double-blind, randomized, controlled study. J. Urol. 2004, 171, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Rivas, D.A.; Shenot, P.J.; Green, B.; Kenelly, M.; Erickson, J.R.; O’Leary, M.; Yoshimura, N.; Chancellor, M.B. Intravesical resiniferatoxin for refractory detrusor hyperreflexia: A multicenter, blinded, randomized, placebo-controlled trial. J. Spinal Cord Med. 2003, 26, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Yokoyama, T.; Sasaki, K.; Nozaki, K.; Ozawa, H.; Kumon, H. Intravesical resiniferatoxin for patients with neurogenic detrusor overactivity. Int. J. Urol. 2004, 11, 200–205. [Google Scholar] [CrossRef]
- Giannantoni, A.; Mearini, E.; Di Stasi, S.; Costantini, E.; Zucchi, A.; Mearini, L.; Fornetti, P.; Del Zingaro, M.; Navarra, P.; Porena, M. New therapeutic options for refractory neurogenic detrusor overactivity. Miverva Urol. Nefrol. 2004, 56, 79–87. [Google Scholar]
- Giannantoni, A.; Di Stasi, S.; Stephen, R.L.; Bini, V.; Costantini, E.; Porena, M. Intravesical resiniferatoxin versus botulinum-A toxin injections for neurogenic detrusor overactivity: A prospective randomized study. J. Urol. 2004, 172, 243–340. [Google Scholar] [CrossRef]
- Phé, V.; Schneider, M.P.; Peyronnet, B.; Youssef, N.A.; Mordasini, L.; Chartier-Kastler, E.; Bachmann, L.M.; Kessler, T.M. Intravesical vanilloids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: A report from the Neuro-Urology Promotion Committee of the International Continence Society (ISC). Neurourol. Urodyn. 2018, 37, 67–82. [Google Scholar] [CrossRef]
- Kuo, H.-C.; Liu, H.-T.; Yang, W.C. Therapeutic effect of multiple resiniferatoxin intravesical instillations in patients with refractory detrusor overactivity: A randomized, double-blind, placebo controlled study. J. Urol. 2006, 176, 641–645. [Google Scholar] [CrossRef]
- Kuo, H.-C. Multiple intravesical instillation of low-dose resiniferatoxin is effective in the treatment of detrusor overactivity refractory to anticholinergics. BJU Int. 2005, 95, 1023–1027. [Google Scholar] [CrossRef]
- Rios, L.A.S.; Panhoca, R.; Mattos, D., Jr.; Srugi, M.; Bruschini, H. Intravesical resiniferatoxin for the treatment of women with idiopathic detrusor overactivity and urgency incontinence: A single dose, 4 weeks, double-blind, randomized, placebo-controlled trial. Neurourol. Urodyn. 2007, 26, 773–778. [Google Scholar] [CrossRef]
- Dinis, P.; Silva, J.; Ribeiro, M.J.; Avelino, A.; Reis, M.; Cruz, F. Bladder C-fiber desensitization induces a long-lasting improvement of BPH-associated storage LUTS: A pilot study. Eur. Urol. 2004, 46, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Lazzeri, M.; Spinelli, M.; Beneforti, P.; Malaguti, S.; Giardiello, G.; Turini, D. Intravesical infusion of resiniferatoxin by a temporary in situ drug delivery system to treat interstitial cystitis: A pilot study. Eur. Urol. 2004, 45, 98–102. [Google Scholar] [CrossRef]
- Takahashi, S.; Yanase, M.; Inoue, R.; Masumori, N.; Tsukamoto, T.; Igawa, Y.; Nishizawa, O. Intravesical instillation of resiniferatoxin for the patients with interstitial cystitis. Hinyokika Kiyo 2006, 52, 911–913. [Google Scholar] [PubMed]
- Peng, C.-H.; Kuo, H.-C. Multiple intravesical instillations of low-dose resiniferatoxin in the treatment of refractory interstitial cystitis. Urol. Int. 2007, 78, 78–81. [Google Scholar] [CrossRef]
- Payne, C.R.; Mosbaugh, P.G.; Forrest, J.B.; Evans, R.J.; Whitmore, K.E.; Antoci, J.P.; Perez-Marrero, R.; Jacoby, K.; Diokno, A.C.; O’Reilly, K.J.; et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: A randomized, double-blind, placebo controlled trial. J. Urol. 2005, 173, 1590–1594. [Google Scholar] [CrossRef]
- Dawson, T.E.; Jamison, J. Intravesical treatments for painful bladder syndrome/interstitial cystitis. Cochrane Database Syst. Rev. 2007, 4, CD006113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, P.; Zhang, X.; Yang, Y. The efficacy of resiniferatoxin in prevention of catheter related bladder discomfort in patients after TURP—A pilot, randomized study. Transl. Androl. Urol. 2012, 1, 14–18. [Google Scholar]
- Li, M.; Sun, Y.S.; Simard, M.J.; Chai, T.C. Increased transient receptor potential vanilloid type 1 (TRPV1) signaling in idiopathic overactive bladder urothelial cells. Neurourol. Urodyn. 2011, 30, 606–611. [Google Scholar] [CrossRef]
- Xue, Q.; Jong, B.; Chen, T.; Schumacher, M.A. Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor. J. Neurochem. 2007, 101, 212–222. [Google Scholar] [CrossRef]
- Kim, J.C.; Park, E.Y.; Hong, S.H.; Seo, S.I.; Park, Y.H.; Hwang, T.-K. Changes of urinary nerve growth factor and prostaglandins in male patients with overactive bladder symptom. Int. J. Urol. 2005, 12, 875–880. [Google Scholar] [CrossRef] [PubMed]
- Kissin, I.; Bright, C.A.; Bradley, E.L., Jr. Selective and long-lasting neural blockade with resiniferatoxin prevents inflammatory pain hypersensitivity. Anesth. Analg. 2002, 94, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Raithel, S.J.; Sapio, M.R.; LaPaglia, D.M.; Iadarola, M.J.; Mannes, A.J. Transcriptional changes in dorsal spinal cord persists after surgical incision despite preemptive analgtesia with peripheral resiniferatoxin. Anesthesiology 2018, 128, 620–635. [Google Scholar] [CrossRef] [PubMed]
- Kissin, I. Vanilloid-induced conduction analgesia: Selective, dose-dependent, long-lasting, with low level of potential neurotoxicity. Anesth. Analg. 2008, 107, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Kissin, I.; Freitas, C.F.; Bradley, E.L., Jr. Memory of pain: The effect of perineural resiniferatoxin. Anesth. Analg. 2006, 103, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Neubert, J.K.; Mannes, A.J.; Karai, L.J.; Jenkins, A.C.; Zawatski, L.; Abu-Asab, M.; Iadarola, M.J. Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia. Mol. Pain 2008, 4, 3. [Google Scholar] [CrossRef]
- Kissin, I.; Freitas, C.F.; Mulhern, H.-L.; DeGirolami, U. Sciatic nerve block with resiniferatoxin: An electron microscopic study of unmyelinated fibers in the rat. Anesth. Analg. 2007, 105, 825–831. [Google Scholar] [CrossRef]
- Kissin, I.; Davison, N.; Bradley, E.L., Jr. Perineural resiniferatoxin prevents hyperalgesia in a rat model of postoperative pain. Anesth. Analg. 2005, 100, 774–780. [Google Scholar] [CrossRef]
- Salas, M.M.; Clifford, J.L.; Hayden, J.R.; Iadarola, M.J.; Averitt, D. Local resiniferatoxin induces long-lasting analgesia in a rat model of full thickness thermal injury. Pain Med. 2017, 18, 2453–2465. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E.-H.; Lee, K.S.; Lee, K.; Park, S.H.; Na, S.H.; Ko, C.; Kim, J.; Yoon, Y.W. The effects of intra-articular resiniferatoxin on monosodium iodoacetate-induced osteoarthritis. Korean J. Physiol. Pharmacol. 2016, 20, 129–136. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Sapio, M.R.; Raithel, S.J.; Mannes, A.J.; Cimino Brown, D. Long-term pain relief in canine osteoarthritis by a single intra-articular injection of resiniferatoxin, a potent TRPV1 agonist. Pain 2018, 159, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Neubert, J.K.; Mannes, A.J.; Keller, J.; Wexel, M.; Iadarola, M.J.; Caudle, R.M. Peripheral targeting of the trigeminal ganglion via the infraorbital foramen as a therapeutic strategy. Brain Res. Protoc. 2005, 15, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Tender, G.C.; Walbridge, S.; Oláh, Z.; Karai, L.; Iadarola, M.J.; Oldfield, E.H.; Lonser, R.R. Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation. J. Neurosurg. 2005, 102, 522–525. [Google Scholar] [CrossRef]
- Brown, J.D.; Saeed, M.; Do, L.; Braz, J.; Basbaum, A.I.; Iadarola, M.J. CT-guided injection of a TRPV1 agonist around dorsal root ganglia decreases pain transmission in swine. Sci. Transl. Med. 2015, 7, 305ra145. [Google Scholar] [CrossRef] [PubMed]
- Tender, G.C.; Li, Y.-Y.; Cui, J.-G. Brain-derived neurotrophic factor redistribution in the dorsal root ganglia correlates with neuropathic pain inhibition after resiniferatoxin treatment. Spine J. 2010, 10, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.D.; Pleticha, J.; Steinauer, J.; Kanwar, R.; Diehn, F.; LaVallee, K.T.; Banck, M.S.; Jones, B.; Yaksh, T.L.; Maus, T.P.; et al. Unilateral epidural targeting of resiniferatoxin induces bilateral neurolysis of spinal nociceptive afferents. Pain Med. 2019, 20, 897–906. [Google Scholar] [CrossRef]
- Szabó, T.; Oláh, Z.; Iadarola, M.J.; Blumberg, P.M. Epidural resiniferatoxin induced prolonged regional analgesia to pain. Brain Res. 1999, 840, 92–98. [Google Scholar] [CrossRef]
- Lee, M.G.; Huh, B.K.; Choi, S.S.; Lee, D.K.; Lim, B.G.; Lee, M. The effect of epidural resiniferatoxin in the neuropathic pain rat model. Pain Physician 2012, 15, 287–296. [Google Scholar] [CrossRef]
- Cruz, C.D.; Charrua, A.; Vieira, E.; Valente, J.; Avelino, A.; Cruz, F. Intrathecal delivery of resiniferatoxin (RTX) reduces detrusor overactivity and spinal expression of TRPV1 in spinal cord injured animals. Exp. Neurol. 2008, 214, 301–308. [Google Scholar] [CrossRef]
- Leo, M.; Schulte, M.; Schmitt, L.-I.; Schafers, M.; Kleinschnitz, C.; Hagenacker, T. Intrathecal resiniferatoxin modulates TRPV1 in DRG neurons and reduces TNF-induced pain-related behavior. Mediat. Inflamm. 2017, 2017, 2786427. [Google Scholar] [CrossRef]
- Yu, S.-Q.; Ma, S.; Wang, D.H. Selective ablation of TRPV1 by intrathecal injection of resiniferatoxin in rats increases renal sympathoexcitatory responses and salt sensitivity. Hypertens. Res. 2018, 41, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, L.; Juárez, L.; Garcia, E.; Garcia-Suárez, O.; Hidalgo, A.; Baamonde, A. Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice. Neurosci. Lett. 2006, 393, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, J.R.; Röhrich, H.; Lindsay, T.H.; Sevcik, M.A.; Schwei, M.J.; Kubota, K.; Halvorson, K.G.; Poblete, J.; Chaplan, S.R.; Dubin, A.E.; et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J. Neurosci. 2005, 25, 3126–3131. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Qiu, L. Transient receptor potential vanilloid 1 promotes EGFR ubiquination and modulates EGRF/MAPK signaling in pancreatic cancer cells. Cell Biochem. Funct. 2020, 38, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Song, B.; Zhou, Z.-S.; Lu, G.-S. Intrathecal administration of resiniferatoxin produces analgesia against prostatodynia in rats. Chin. Med. J. 2007, 120, 1616–1621. [Google Scholar] [CrossRef]
- Cimino Brown, D.; Iadarola, M.J.; Perkowski, S.Z.; Erin, H.; Shofer, F.; Karai, K.J.; Oláh, Z.; Mannes, A.J. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 2005, 103, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Sapio, M.R.; Neubert, J.K.; LaPaglia, D.M.; Maric, D.; Keller, J.M.; Raithel, S.J.; Rohrs, E.L.; Anderson, E.M.; Butman, J.A.; Caudle, R.M.; et al. Pain control through selective chemo-axotomy of centrally projecting TRPV1+ sensory neurons. J. Clin. Investig. 2018, 128, 1657–1670. [Google Scholar] [CrossRef]
- Brown, D.C.; Agnello, K.; Iadarola, M.J. Intrathecal resiniferatoxin in a dog model: Efficacy in bone cancer pain. Pain 2015, 156, 1018–1024. [Google Scholar] [CrossRef]
- Hori, T.; Shibata, M.; Kiyohara, T.; Nakashima, T.; Asami, A. responses of anterior hypothalamic-preoptic thermosensitive neurons to locally applied capsaicin. Neuropharmacology 1988, 27, 135–142. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Mannes, A.J. The vanilloid agonist resiniferatoxin for interventional-based pain control. Curr. Top. Med. Chem. 2011, 11, 2171–2179. [Google Scholar] [CrossRef]
- Iadarola, M.J.; Brown, D.C.; Nahama, A.; Sapio, M.R.; Mannes, A.J. Pain treatment in the companion canine model to validate rodent results and incentivize transition to human clinical trials. Front. Pharmacol. 2021, 12, 705743. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.C. Resiniferatoxin: The evolution of the “molecular scalpel” for chronic pain relief. Pharmaceuticals 2016, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Heiss, J.; Iadarola, M.J.; Cantor, F.; Oughourli, R.; Smith, R.; Mannes, A. A Phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. J. Pain 2014, 15, S67. [Google Scholar] [CrossRef]
- Mannes, A.J.; Iadarola, M.J.; Jones, B.; Royal, M.A.; Heiss, J.D. Intrathecal resiniferatoxin for treating intractable cancer-related severe chronic pain. In Proceedings of the 15th World Congress on Pain (International Association for the Study of Pain [IASP]), Buenos Aires, Argentina, 6–11 October 2014. [Google Scholar]
- Royal, M.A. Resiniferatoxin for permanent pain relief in cancer patients. In TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use, 2nd ed.; Szallasi, A., Ed.; Elsevier: Amsterdam, The Netherlands, in press.
- Nedeljkovic, S.S.; Narang, S.; Rickerson, E.; Levitt, R.C.; Horn, D.B.; Patin, D.L.; Albores-Ibarra, N.; Nahama, A.; Zhao, T.; Bharathi, P.; et al. A multicenter, open-label, phase 1b study to assess the safety and define the maximally tolerated dose of epidural resiniferatoxin (RTX) injection for treatment of intractable pain associated with cancer. In Proceedings of the 2020 Annual Meeting of the American Academy of Pain Medicine, National Harbor, MD, USA, 26 February–1 March 2020. [Google Scholar]
- Mathiessen, A.; Conaghan, P.G. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Res. Ther. 2017, 19, 18. [Google Scholar] [CrossRef]
- Goldring, M.B. Articular cartilage degeneration in osteoarthritis. HSS J. 2012, 8, 7–9. [Google Scholar] [CrossRef]
- Lopes, S.; Hu, S.; Cleary, J.; Analgesics Pipeline. IA Resiniferatoxin for Osteroarthritic Knee Pain. Practical Pain Management 2022. Available online: https://www.practicalpainmanagement.com/pain/myofascial/osteoarthritis/analgesics-future-ia-resiniferatoxin-osteoarthritic-knee-pain (accessed on 27 September 2023).
- Leiman, D.; Minkowitz, H.; Lewitt, R.C. Preliminary results from a phase ’b double-blind study to access the safety, tolerability, and efficacy of intra-articular administration of resiniferatoxin for the treatment of moderate to severe pain due to osteoarthritis of thze knee. Osteoarth. Cartil. 2020, 72, 149–162. [Google Scholar]
- Shi, B.; Li, X.; Chen, J.; Su, B.; Li, X.; Yang, S.; Guan, Z.; Wang, R. Resiniferatoxin for the treatment of lifelong premature ejaculation: A preliminary study. Int. J. Urol. 2014, 21, 923–926. [Google Scholar] [CrossRef]
- Sato, Y. Editorial comment from Dr Sato to resiniferatoxin for the treatment of lifelong premature ejaculation: A preliminary study. Int. J. Urol. 2014, 21, 926–927. [Google Scholar] [CrossRef]
- Mirone, V.; Palmieri, A.; Franco, M.; Verze, P. Editorial comment from Dr Mirone et al. to resiniferatoxin for the treatment of lifelong premature ejaculation: A preliminary study. Int. J. Urol. 2014, 21, 927–928. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.; Szolcsányi, J.; Mózsik, G. Effect of resiniferatoxin on stimulated gastric acid secretory responses in the rat. J. Physiol. 1994, 88, 353–358. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.; Szolcsányi, J.; Mózsik, G. The indomethacin-induced gastric mucosal damage in rats. Effects of gastric acid, acid inhibition, capsaicin-type agents and prostacyclin. J. Physiol. 1997, 91, 7–19. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.; Debreceni, A.; Mózsik, G.; Szolcsányi, J. Capsaicin-sensitive afferent sensory nerves in modulating gastric mucosal defense against noxious agents. J. Physiol. 1999, 93, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.O.; Bingana, R.D.; Sales, T.M.A.L.; Moreira, R.L.P.; Costa, D.V.S.; Sales, K.M.O.; Brito, G.A.C.; Santos, A.A.; Souza, M.A.N.; Soares, P.M.G.; et al. Role of TRPV1 receptor in inflammation and impairment of esophageal mucosal integrity in a murine model of nonerosive reflux disease. Neurogastroenterol. Motil. 2018, 23, e103340. [Google Scholar] [CrossRef] [PubMed]
- Vigna, S.R. Intraluminal administration of resiniferatoxin protects against Clostridium difficile toxin A-induced colitis. Gastroenterol. Res. Pract. 2017, 2017, 8438172. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Winston, J.H.; Fu, Y.; Guptarak, J.; Jensen, K.L.; Shi, X.-Z.; Green, T.A.; Sarna, S.K. Genesis of anxiety, depression, and ongoing abdominal discomfort in ulcerative colitis-like colon inflammation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R18–R27. [Google Scholar] [CrossRef] [PubMed]
- Breivik, T.; Gundersen, Y.; Gjermo, P.; Fristad, I.; Opstad, F.K. Systemic chemical desensitization of peptidergic sensory neurons with resiniferatoxin inhibits experimental periodontitis. Open Dent. J. 2011, 5, 1–6. [Google Scholar]
- Wang, S.; Nie, X.; Siddiqui, Y.; Wang, X.; Arora, V.; Fan, X.; Thumbigere-Math, V.; Chung, M.K. Nociceptor neurons magnify host responses to aggravate periodontitis. J. Dent. Res. 2022, 101, 812–820. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y.; Chen, Y.; Wang, A.; Lv, K.; Kong, X.; He, Y.; Hu, N. Focal selective chemo-ablation of spinal cardiac efferent nerve by resiniferatoxin protects the heart from pressure overload-induced hypertrophy. Biomed. Pharmacother. 2019, 109, 377–385. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, Z.; Wang, D.; Lv, K.; Hu, N. Resiniferatoxin reduces ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord in rats. Eur. J. Pharmacol. 2020, 867, 172836. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Y.; He, Y.; Xie, K.; Quan, D.; Tang, Y.; Huang, H.; Huang, C. Selective chemical ablation of transient receptor potential vanilloid 1 expressing neurons in the left stellate ganglion protects against ischemia-induced ventricular arrhythmias in dogs. Biomed. Pharmacother. 2019, 120, 109500. [Google Scholar] [CrossRef]
- Andrews, P.L.; Bhandari, P. Resiniferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacology 1993, 32, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Yamakumi, H.; Sawai-Nakayama, H.; Imazumi, K.; Maeda, Y.; Matsuo, M.; Manda, T.; Mutoh, S. Resiniferatoxin antagonizes cisplatin-induced emesis in dogs and ferrets. Eur. J. Pharmacol. 2002, 442, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Nahama, A.; Ramachandran, R.; Cisternas, A.F.; Ji, H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: A review. Med. Drug Discov. 2020, 5, 100033. [Google Scholar] [CrossRef] [PubMed]
- Chancellor, M.B.; de Groat, W.C. Intravesical capsaicin and resiniferatoxin therapy: Spicing up the ways to treat the overactive bladder. J. Urol. 1999, 162, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.; Silva, C. Refractory neurogenic detrusor overactivity. Int. J. Clin. Prac. Suppl. 2006, 151, 22–26. [Google Scholar] [CrossRef]
- Andersson, K.E. Agents in early development for treatment of bladder dysfunction—Promise of drugs acting at TRP channels? Expert Opin. Investig. Drugs 2019, 28, 749–755. [Google Scholar] [CrossRef]
- Fraser, M.O.; Lavelle, J.P.; Sacks, M.S.; Chancellor, M.B. the future of bladder control—Intravesical drug delivery, a pinch of pepper, and gene therapy. Rev. Urol. 2002, 4, 1–11. [Google Scholar]
- Available online: https://who.int/publications/i/item/9789240061484 (accessed on 27 September 2023).
- Eke, P.I.; Wei, L.; Borgnakke, W.E.; Thornton-Evans, G.; Zhang, X.; Lu, H.; McGuire, L.C.; Genco, R.J. Periodontitis prevalence in adults over 65 years of age in the USA. Periodontology 2000, 72, 76–95. [Google Scholar] [CrossRef]
- Botelho, J.; Machado, V.; Leira, Y.; Proenca, L.; Chambrone, L.; Mendes, J.J. Economic burden of periodontitis in the United States and Europe: An updated estimation. J. Periodontol. 2022, 93, 373–379. [Google Scholar] [CrossRef]
- Available online: https://patents.justia.com/patent/20210007998 (accessed on 27 September 2023).
- Baskaran, P.; Mohandass, A.; Gustafson, N.; Bennis, J.; Louis, S.; Alexander, B.; Nemenov, M.I.; Thyagarajan, B.; Premkumar, L.P. Evaluation of a polymer-coated nanoparticle cream formulation of resiniferatoxin for the treatment of painful diabetic peripheral neuropathy. Pain 2023, 164, 782–790. [Google Scholar] [CrossRef]
Hypothermia in rats | 7000 | [11] |
Provoking neurogenic inflammation in rats | 1000 | [11] |
Blocking neurogenic inflammation in rats | 20,000 | [11] |
Pungency in the eye-wiping assay | 10 | [11] |
Increase in tail-flick latency | 1000 | [16] |
Blocking acetic acid-induced writhing | 6000 | [16] |
Bradycardia in the cat | 60 | [17] |
Depressor reflex in rabbit ear | 3 | [18] |
Ca2+ uptake in culture DRG neurons | 100 | [19] |
Contraction in rat urinary bladder | 1 | [18] |
Desensitization of rat urinary bladder | 1000 | [18] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szallasi, A. Resiniferatoxin: Nature’s Precision Medicine to Silence TRPV1-Positive Afferents. Int. J. Mol. Sci. 2023, 24, 15042. https://doi.org/10.3390/ijms242015042
Szallasi A. Resiniferatoxin: Nature’s Precision Medicine to Silence TRPV1-Positive Afferents. International Journal of Molecular Sciences. 2023; 24(20):15042. https://doi.org/10.3390/ijms242015042
Chicago/Turabian StyleSzallasi, Arpad. 2023. "Resiniferatoxin: Nature’s Precision Medicine to Silence TRPV1-Positive Afferents" International Journal of Molecular Sciences 24, no. 20: 15042. https://doi.org/10.3390/ijms242015042
APA StyleSzallasi, A. (2023). Resiniferatoxin: Nature’s Precision Medicine to Silence TRPV1-Positive Afferents. International Journal of Molecular Sciences, 24(20), 15042. https://doi.org/10.3390/ijms242015042