Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body
Abstract
:1. Introduction
2. Structure and Origin of the A and B Antigens
3. Glycosylation of Proteins and Lipids in the Golgi Complex by Golgi Glycosylation Enzymes Synthesizing AgA and AgB
4. Antibodies against AgA and AgB
5. Hypothesis Explaining the Absence of the Target Paradox
6. “Natural” Antibodies
7. Bacterial Hypothesis
8. Viral Hypothesis
9. Golgi Glycosylation Mistakes
10. De-Sialylation of AgA and AgB in Endosomes
11. Blood Groups and Immune Tolerance: How Do Our Hypotheses Correlate with the Results of Studies on Immunological Tolerance?
12. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Landsteiner, K. Zur Kenntnis der antifermentativen, lytischen und agglutinierenden Wirkungen des Blutserums und der Lymphe. Cent. F. Bakteriol. Parasitenkd. U. Infekt. 1900, 27, 357–362. [Google Scholar]
- Yamamoto, F.; Clausen, H.; White, T.; Marken, J.; Hakomori, S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990, 345, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Daniels, G.L.; Fletcher, A.; Garratty, G.; Henry, S.; Jørgensen, J.; Judd, W.J.; Levene, C.; Lomas-Francis, C.; Moulds, J.J.; Moulds, J.M.; et al. Blood group terminology 2004. From the ISBT Committee on Terminology for Red Cell Surface Antigens. Vox Sang. 2004, 87, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Jajosky, R.P.; Wu, S.C.; Zheng, L.; Jajosky, A.N.; Jajosky, P.G.; Josephson, C.D.; Hollenhorst, M.A.; Sackstein, R.; Cummings, R.D.; Arthur, C.M. ABO blood group antigens and differential glycan expression: Perspective on the evolution of common human enzyme deficiencies. iScience 2022, 26, 105798. [Google Scholar] [CrossRef] [PubMed]
- Mandel, U.; White, T.; Karkov, J.; Hakomori, S.; Clausen, H.; Dabelsteen, E. Expression of the histo-blood group ABO gene defined glycosyltransferases in epithelial tissues. J. Oral Pathol. Med. 1990, 19, 251–256. [Google Scholar] [CrossRef] [PubMed]
- De Mattos, L.C. Structural diversity and biological importance of ABO, H, Lewis and secretor histo-blood group carbohydrates. Rev. Bras. Hematol. Hemoter. 2016, 38, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Kervella, D.; Le Bas-Bernardet, S.; Bruneau, S.; Blancho, G. Protection of transplants against antibody-mediated injuries: From xenotransplantation to allogeneic transplantation, mechanisms and therapeutic insights. Front. Immunol. 2022, 13, 932242. [Google Scholar] [CrossRef]
- Solovan, J.C.; Oh, H.I.; Alikhani, A.; Gautam, S.; Vlasova, K.; Korchagina, E.Y.; Bovin, N.V.; Federspiel, W.J. Synthetic blood group antigens for anti-A removal device and their interaction with monoclonal anti-A IgM. Transpl. Immunol. 2006, 16, 245–249. [Google Scholar] [CrossRef]
- Branch, D.R. Anti-A and anti-B: What are they and where do they come from? Transfusion 2015, 55, S74–S79. [Google Scholar] [CrossRef]
- Pober, J.S.; Sessa, W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 2007, 7, 803–815. [Google Scholar] [CrossRef]
- Piotti, G.; Palmisano, A.; Maggiore, U.; Buzio, C. Vascular endothelium as a target of immune response in renal transplant rejection. Front. Immunol. 2014, 5, 505. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, P.I. Humoral theory of transplantation. Am. J. Transplant. 2003, 3, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Holodick, N.E.; Rodriguez-Zhurbenko, N.; Hernandez, A.M. Defining natural antibodies. Front. Immunol. 2017, 8, 872. [Google Scholar] [CrossRef] [PubMed]
- Warner, P.R.; Nester, T.A. ABO-incompatible solid-organ transplantation. Am. J. Clin. Pathol. 2006, 125 (Suppl. 1), S87–S94. [Google Scholar] [CrossRef] [PubMed]
- Flint, S.M.; Walker, R.G.; Hogan, C.; Haeusler, M.N.; Robertson, A.; Francis, D.M.; Millar, R.; Finlay, M.; Landgren, A.; Cohney, S.J. Successful ABO-incompatible kidney transplantation with antibody removal and standard immunosuppression. Am. J. Transplant. 2011, 11, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Snanoudj, R.; Candon, S.; Legendre, C. Targeting B cells in sensitized kidney transplant patients: State of the art and future perspectives. Curr. Opin. Organ. Transplant. 2010, 15, 709–715. [Google Scholar] [CrossRef]
- Zhang, X.; Reed, E.F. Effect of antibodies on endothelium. Am. J. Transplant. 2009, 9, 2459–2465. [Google Scholar] [CrossRef]
- Rydberg, L. AB0-incompatibility in solid organ transplantation. Transfus. Med. 2001, 11, 325–342. [Google Scholar] [CrossRef]
- Starzl, T.E.; Marchioro, T.L.; Holmes, J.H.; Hermann, G.; Brittain, R.S.; Stonington, O.H.; Talmage, D.W.; Waddell, W.R. Renal homografts in patients with major donor-recipient blood group incompatibilities. Surgery 1964, 55, 195–200. [Google Scholar]
- Thorpe, S.J.; Abel, P. Detection of blood group A and H-related antigens in normal and neoplastic bladder epithelium: A comparative study using monoclonal antibodies with defined fine specificities. Int. J. Exp. Pathol. 1991, 72, 129–138. [Google Scholar]
- Crew, R.J.; Ratner, L.E. ABO-incompatible kidney transplantation: Current practice and the decade ahead. Curr. Opin. Organ. Transplant. 2010, 15, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, F.; Cid, E.; Yamamoto, M.; Saitou, N.; Bertranpetit, J.; Blancher, A. An integrative evolution theory of histo-blood group ABO and related genes. Sci. Rep. 2014, 4, 6601. [Google Scholar] [CrossRef] [PubMed]
- Bhende, Y.M.; Deshpande, C.K.; Bhatia, H.M.; Sanger, R.; Race, R.R.; Morgan, W.T.; Watkins, W.M. A “new” blood group character related to the ABO system. Lancet 1952, 1, 903–904. [Google Scholar]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.A.; Lonze, B.E.; King, K.E.; Kraus, E.S.; Kucirka, L.M.; Locke, J.E.; Warren, D.S.; Simpkins, C.E.; Dagher, N.N.; Singer, A.L.; et al. Desensitization in HLA-incompatible kidney recipients and survival. N. Engl. J. Med. 2011, 365, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Golovkina, L.L.; Kalandarov, R.S.; Stremoukhova, A.G.; Kalmykova, O.S.; Pushkina, T.D.; Surin, V.L.; Pshenichnikova, O.S.; Nikolaeva, T.L.; Olovnikova, N.I. Differentiation of the A1 and A2 subgroups of the AB0 system: Biological background and serological strategy. Russ. J. Hematol. Transfusiol. 2019, 64, 504–515. [Google Scholar] [CrossRef]
- Varki, A. Biological roles of glycans. Glycobiology 2017, 27, 3–49. [Google Scholar] [CrossRef] [PubMed]
- Giger, K.M.; Kalfa, T.A. Phylogenetic and Ontogenetic View of Erythroblastic Islands. Biomed. Res. Int. 2015, 2015, 873628. [Google Scholar] [CrossRef]
- Mantegazza, A.R.; Magalhaes, J.G.; Amigorena, S.; Marks, M.S. Presentation of phagocytosed antigens by MHC class I and II. Traffic 2013, 14, 135–152. [Google Scholar] [CrossRef]
- Blum, J.S.; Wearsch, P.A.; Cresswell, P. Pathways of antigen processing. Annu. Rev. Immunol. 2013, 31, 443–473. [Google Scholar] [CrossRef]
- Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein gly-cosylation: Diversity, synthesis and function. Nat. Rev. Mol. Cell Biol. 2012, 13, 448–462. [Google Scholar] [CrossRef]
- Furukawa, K.; Yamaguchi, H.; Oettgen, H.F.; Old, L.J.; Lloyd, K.O. Analysis of the expression of N-glycolylneuraminic acid-containing gangliosides in cells and tissues using two human monoclonal antibodies. J. Biol. Chem. 1988, 263, 18507–18512. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, H.; Sasabe, M.; Miyazaki, R.; Matsuda, H.; Fukai, F.; Hanada, K.; Hirano, H.; Takasaki, S. The analysis of N-glycolylneuraminic acid(NeuGc) of hepatoma tissue and K562 cell ferritins using HPLC and mass spectrometry. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2006, 82, 181–187. [Google Scholar] [CrossRef]
- Taylor, R.E.; Gregg, C.J.; Padler-Karavani, V.; Ghaderi, D.; Yu, H.; Huang, S.; Sorensen, R.U.; Chen, X.; Inostroza, J.; Nizet, V.; et al. Novel mechanism for the generation of human xeno-autoantibodies against the nonhuman sialic acid N-glycolylneuraminic acid. J. Exp. Med. 2010, 207, 1637–1646. [Google Scholar] [CrossRef] [PubMed]
- Freeze, H.H.; Hart, G.W.; Schnaar, R.L. Glycosylation Precursors. In Essentials of Glycobiology, 3rd ed.; Varki, A.C.R., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017; Chapter 5. [Google Scholar]
- Varki, A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Yearb. Phys. Anthropol. 2001, 33, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Kappler, K.; Hennet, T. Emergence and significance of carbohydrate-specific antibodies. Genes Immun. 2020, 21, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Saitou, N.; Yamamoto, F. Evolution of primate ABO blood group genes and their homologous genes. Mol. Biol. Evol. 1997, 14, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Mironov, A.A.; Sesorova, I.S.; Seliverstova, E.V.; Beznoussenko, G.V. Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017, 49, 186–201. [Google Scholar] [CrossRef]
- Mironov, A.A.; Beznoussenko, G.V. Models of Intracellular Transport: Pros and Cons. Front. Cell Dev. Biol. 2019, 7, 146. [Google Scholar] [CrossRef]
- Mironov, A.A.; Beznoussenko, G.V. Molecular mechanisms responsible for formation of Golgi ribbon. Histol. Histopathol. 2011, 26, 117–133. [Google Scholar] [CrossRef]
- Beznoussenko, G.V.; Bejan, A.I.; Parashuraman, S.; Luini, A.; Kweon, H.-S.; Mironov, A.A. The diffusion model of intra-Golgi transport has limited power. Int. J. Mol. Sci. 2023, 24, 1375. [Google Scholar] [CrossRef] [PubMed]
- Beznoussenko, G.V.; Kweon, H.S.; Sesorova, I.S.; Mironov, A.A. Comparison of the Cisterna Maturation-Progression Model with the Kiss-and-Run Model of Intra-Golgi Transport: Role of Cisternal Pores and Cargo Domains. Int. J. Mol. Sci. 2022, 23, 3590. [Google Scholar] [CrossRef] [PubMed]
- Mironov, A., Jr.; Luini, A.; Mironov, A. A synthetic model of intra-Golgi traffic. FASEB J. 1998, 12, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Mironov, A.A.; Beznoussenko, G.V. The kiss-and-run model of intra-Golgi transport. Int. J. Mol. Sci. 2012, 13, 6800–6819. [Google Scholar] [CrossRef] [PubMed]
- Milland, J.; Sandrin, M.S. ABO blood group and related antigens, natural antibodies and transplantation. Tissue Antigens 2006, 68, 459–466. [Google Scholar] [CrossRef]
- Roth, J.; Taatjes, D.J.; Weinstein, J.; Paulson, J.C.; Greenwell, P.; Watkins, W.M. Differential subcompartmentation of terminal glycosylation in the Golgi apparatus of intestinal absorptive and goblet cells. J. Biol. Chem. 1986, 261, 14307–14312. [Google Scholar] [CrossRef] [PubMed]
- Nikonova, M.A.; Sesorova, I.S.; Dimov, I.D.; Karelina, N.R.; Mironov, A.A. Effect of the First Feeding on Enterocytes of Newborn Rats. Int. J. Mol. Sci. 2022, 23, 14179. [Google Scholar] [CrossRef]
- Storry, J.R.; Olsson, M.L. The ABO blood group system revisited: A review and update. Immunohematology 2009, 25, 48–59. [Google Scholar] [CrossRef]
- Barr, K.; Korchagina, E.; Ryzhov, I.; Bovin, N.; Henry, S. Mapping the fine specificity of ABO monoclonal reagents with A and B type-specific function-spacer-lipid constructs in kodecytes and inkjet printed on paper. Transfusion 2014, 54, 2477–2484. [Google Scholar] [CrossRef]
- Grundbacher, F.J. The etiology of ABO hemolytic disease of the newborn. Transfusion 1980, 20, 563–568. [Google Scholar] [CrossRef]
- Yamamoto, M.; Lin, X.H.; Kominato, Y.; Hata, Y.; Noda, R.; Saitou, N.; Yamamoto, F. Murine equivalent of the human histo-blood group ABO gene is a cis-AB gene and encodes a glycosyltransferase with both A and B transferase activity. J. Biol. Chem. 2001, 276, 13701–13708. [Google Scholar] [CrossRef] [PubMed]
- Brorson, K.; Garcia-Ojeda, P.; Stein, K.E. Molecular aspects of anti-polysaccharide antibody response. In The Antibodies; Zanetti, M., Capra, D.J., Eds.; Taylor & Francis Inc.: New York, NY, USA, 2002; Volume 7. [Google Scholar]
- MacKenzie, C.R.; Hirama, T.; Deng, S.J.; Bundle, D.R.; Narang, S.A.; Young, N.M. Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J. Biol. Chem. 1996, 271, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Krause, R.M.; Coligan, J.E. Antibodies to streptococcal carbohydrate—Substitutes for the myeloma proteins. Rev. Infect. Dis. 1979, 1, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, N.S.; Dacek, D.A.; Cooper, L.J. Fc region-dependence of IgG3 anti-streptococcal group A carbohydrate antibody functional affinity. I. The effect of temperature. J. Immunol. 1988, 141, 4276–4282. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.J.N.; Schimenti, J.C.; Glass, D.D.; Greenspan, N.S. H-chain C-domains influence the strength of binding of IgG for streptococcal group-a carbohydrate. J. Immunol. 1991, 146, 2659–2663. [Google Scholar] [CrossRef] [PubMed]
- Haji-Ghassemi, O.; Blackler, R.J.; Martin Young, N.; Evans, S.V. Antibody recognition of carbohydrate epitopes. Glycobiology 2015, 25, 920–952. [Google Scholar] [CrossRef] [PubMed]
- Wuttke, N.J.; Macardle, P.J.; Zola, H. Blood group antibodies are made by CD51 and by CD5- B cells. Immunol. Cell Biol. 1997, 75, 478–483. [Google Scholar] [CrossRef]
- Bullock, T.; Win, N.; Jackson, B.; Sivarajan, S.; Penny, J.; Mir, N. Bombay phenotype (O(H)) and high-titer anti-H in pregnancy: Two case reports and a review of the literature. Transfusion 2018, 58, 2766–2772. [Google Scholar] [CrossRef]
- Obukhova, P.; Korchagina, E.; Henry, S.; Bovin, N. Natural anti-A and anti-B of the ABO system: Allo- and autoantibodies have different epitope specificity. Transfusion 2012, 52, 860–886. [Google Scholar] [CrossRef]
- Schiff, F.; Adelsberger, L. Ueber blutgruppen spezifiche Antikorper und Antigene. Centr. Bakt. Parasitol. 1924, 93, 172. [Google Scholar]
- Eisler, M.; Howard, A. Untersuchungenyon Blutantigenenmitte ls Heteroagglutininen. Z. Immunitigsforsch. 1933, 79, 293. [Google Scholar]
- Uyeyama, R. Ueber das normale typenspezifische Prgzipitin. Jpn. J. Med. Sci. Sect. VII 1940, 3, 13. [Google Scholar]
- Baer, H.; Bringaze, J.K.; McNamee, M. The immuno chemistry of blood group O. J. Immunol. 1954, 3, 67. [Google Scholar] [CrossRef]
- Baer, H. A study of somenaturally occurring precipitins and agglutinins of the chicken. J. Immunol. 1955, 74, 21. [Google Scholar]
- Iseki, S.; Onuki, E.; Kashiwagi, K. Relationship between somatic antigen and blood group substance, especially B substance of bacterium. Gunma J. Med. Sci. 1958, 7, 7. [Google Scholar]
- Arthur, C.M.; Stowell, S.R. The Development and Consequences of Red Blood Cell Alloimmunization. Annu. Rev. Pathol. 2023, 18, 537–564. [Google Scholar] [CrossRef]
- Hillyer, C.D.; Shaz, B.H.; Roshal, M.; Zimring, J.C.; Abshire, T.C. Transfusion Medicine and Hemostasis; Elsevier Science: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Bunker, J.J.; Erickson, S.A.; Flynn, T.M.; Henry, C.; Koval, J.C.; Meisel, M.; Jabri, B.; Antonopoulos, D.A.; Wilson, P.C.; Bendelac, A. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 2017, 358, eaan6619. [Google Scholar] [CrossRef]
- Puga, I.; Cerutti, A. Protection by natural IgG: A sweet partnership with soluble lectins does the trick! EMBO J. 2013, 32, 2897–2899. [Google Scholar] [CrossRef]
- Brescia, P.; Rescigno, M. The gut vascular barrier: A new player in the gut-liver-brain axis. Trends Mol. Med. 2021, 27, 844–855. [Google Scholar] [CrossRef]
- Toellner, K.; Jenkinson, W.E.; Taylor, D.R.; Khan, M.; Sze, D.M.; Sansom, D.M.; Vinuesa, C.G.; MacLennan, I.C.M. Low-level hypermutation in T cell–independent germinal centers compared with high mutation rates associated with T cell–dependent germinal centers. J. Exp. Med. 2002, 195, 383–389. [Google Scholar] [CrossRef]
- Merbl, Y.; Zucker-Toledano, M.; Quintana, F.J.; Cohen, I.R. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J. Clin. Investig. 2007, 117, 712–718. [Google Scholar] [CrossRef] [PubMed]
- Van Oss, C.J. “Natural” versus regular antibodies. Protein J. 2004, 23, 357; author reply 359–360. [Google Scholar] [CrossRef] [PubMed]
- Adelman, M.K.; Schluter, S.F.; Marchalonis, J.J. The natural antibody repertoire of sharks and humans recognizes the potential universe of antigens. Protein J. 2004, 23, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Springer, G.F.; Horton, R.E.; Forbes, M. Origin of anti-human blood group B agglutinins in white Leghorn chicks. J. Exp. Med. 1959, 110, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Malek, A.; Sager, R.; Schneider, H. Transport of proteins across the human placenta. Am. J. Reprod. Immunol. 1998, 40, 347–351. [Google Scholar] [CrossRef]
- Giger, U.; Buchrler, J.; Patterson, D. Frequencies and inheritance of A and B blood types in feline breeds of the United States. J. Hered. 1991, 82, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Andrews, G.A.; Chavey, P.S.; Smith, J.E.; Rich, L. N-glycolylneuraminic acid and N acetylneuraminic acid define feline blood group A and B antigens. Blood 1992, 79, 2485–2491. [Google Scholar] [CrossRef]
- Ryskina, E.A.; Gilmiyarova, F.N. Group antigens in various animals. RUDN J. Agron. Anim. Ind. 2015, pp. 25–34. Available online: https://agrojournal.rudn.ru/agronomy/article/view/1446 (accessed on 31 August 2023).
- Frye, A. 2015. Available online: https://urbananimalveterinary.com/event/hyperlipidemia-dogs-cats (accessed on 31 August 2023).
- Springer, G.F.; Williamson, P.; Brandes, W.C. Blood group activity of gram-negative bacteria. J. Exp. Med. 1961, 113, 1077–1093. [Google Scholar] [CrossRef]
- Springer, G.F.; Horton, R.E. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J. Clin. Investig. 1969, 48, 1280–1291. [Google Scholar] [CrossRef]
- Subramanian, V.; Ramachandran, S.; Klein, C.; Wellen, J.R.; Shenoy, S.; Chapman, W.C.; Mohanakumar, T. ABO-incompatible organ transplantation. Int. J. Immunogenet. 2012, 39, 282–290. [Google Scholar] [CrossRef]
- He, W.; Ladinsky, M.S.; Huey-Tubman, K.E.; Jensen, G.J.; McIntosh, J.R.; Björkman, P.J. FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 2008, 455, 542–546. [Google Scholar] [CrossRef]
- Spadoni, I.; Zagato, E.; Bertocchi, A.; Paolinelli, R.; Hot, E.; Di Sabatino, A.; Caprioli, F.; Bottiglieri, L.; Oldani, A.; Viale, G.; et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 2015, 350, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Bos, N.A.; Meeuwsen, C.G.; Van Wijngaarden, P.; Benner, R. B cell repertoire in adult antigen-free and conventional neonatal BALB/c mice. II. Analysis of antigen-binding capacities in relation to VH gene usage. Eur. J. Immunol. 1989, 19, 1817–1822. [Google Scholar] [CrossRef] [PubMed]
- Haury, M.; Sundblad, A.; Grandien, A.; Barreau, C.; Coutinho, A.; Nobrega, A. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur. J. Immunol. 1997, 27, 1557–1563. [Google Scholar] [CrossRef] [PubMed]
- Avci, F.Y.; Kasper, D.L. How bacterial carbohydrates influence the adaptive immune system. Annu. Rev. Immunol. 2010, 28, 107–130. [Google Scholar] [CrossRef] [PubMed]
- Bello-Gil, D.; Audebert, C.; Olivera-Ardid, S.; Pérez-Cruz, M.; Even, G.; Khasbiullina, N.; Gantois, N.; Shilova, N.; Merlin, S.; Costa, C.; et al. The Formation of Glycan-Specific Natural Antibodies Repertoire in GalT-KO Mice Is Determined by Gut Microbiota. Front. Immunol. 2019, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Hooijkaas, H.; Benner, R.; Pleasants, J.R.; Wostmann, B.S. Isotypes and specificities of immunoglobulins produced by germ-free mice fed chemically defined ultrafiltered “antigen- free” diet. Eur. J. Immunol. 1984, 14, 1127–1130. [Google Scholar] [CrossRef] [PubMed]
- Hooijkaas, H.; van der Linde-Preesman, A.A.; Bitter, W.M.; Benner, R.; Pleasants, J.R.; Wostmann, B.S. Frequency analysis of functional immunoglobulin C- and V-gene expression by mitogen-reactive B cells in germfree mice fed chemically defined ultra- filtered “antigen-free” diet. J. Immunol. 1985, 134, 2223–2227. [Google Scholar] [CrossRef]
- Denisova, G.N.; Dimov, I.D.; Zaitseva, A.V.; Artiux, L.J.; Mironov, A.A.; Karelina, N.R. Overloading of differentiated Caco-2 cells during lipid transcytosis induces glycosylation mistakes in the Golgi complex. Biocell 2021, 45, 773–783. [Google Scholar] [CrossRef]
- Mironov, A.A.; Savin, M.A.; Beznoussenko, G.V. COVID-19 Biogenesis and Intracellular Transport. Int. J. Mol. Sci. 2023, 24, 4523. [Google Scholar] [CrossRef]
- Robillard, P.Y.; Boumahni, B.; Gérardin, P.; Michault, A.; Fourmaintraux, A.; Schuffenecker, I.; Carbonnier, M.; Djémili, S.; Choker, G.; Roge-Wolter, M.; et al. Vertical maternal fetal transmission of the chikungunya virus. Ten cases among 84 pregnant women. Presse Med. 2006, 35 Pt 1, 785–788. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Diamond, M.S.; Mysorekar, I.U. Maternal-Fetal Transmission of Zika Virus: Routes and Signals for Infection. J. Interferon Cytokine Res. 2017, 37, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Rawlinson, W.D.; Boppana, S.B.; Fowler, K.B.; Kimberlin, D.W.; Lazzarotto, T.; Alain, S.; Daly, K.; Doutré, S.; Gibson, L.; Giles, M.L.; et al. Congenital cytomegalovirus infection in pregnancy and the neonate: Consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect. Dis. 2017, 17, e177–e188. [Google Scholar] [CrossRef] [PubMed]
- Zanluca, C.; de Noronha, L.; Duarte Dos Santos, C.N. Maternal-fetal transmission of the zika virus: An intriguing interplay. Tissue Barriers 2018, 6, e1402143. [Google Scholar] [CrossRef] [PubMed]
- Contopoulos-Ioannidis, D.; Newman-Lindsay, S.; Chow, C.; LaBeaud, A.D. Mother-to-child transmission of Chikungunya virus: A systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2018, 12, e0006510. [Google Scholar] [CrossRef] [PubMed]
- Pesch, M.H.; Saunders, N.A.; Abdelnabi, S. Cytomegalovirus Infection in Pregnancy: Prevention, Presentation, Management and Neonatal Outcomes. J. Midwifery Womens Health 2021, 66, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.R.; Mitzey, A.M.; Morgan, T.K.; Zeng, X.; Simmons, H.A.; Mejia, A.; Leyva Jaimes, F.; Keding, L.T.; Crooks, C.M.; Weiler, A.M.; et al. Infection of the maternal-fetal interface and vertical transmission following low-dose inoculation of pregnant rhesus macaques (Macaca mulatta) with an African-lineage Zika virus. PLoS ONE 2023, 18, e0284964. [Google Scholar] [CrossRef] [PubMed]
- Wernette-Hammond, M.E.; Lauer, S.J.; Corsini, A.; Walker, D.; Taylor, J.M.; Rall, S.C., Jr. Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194. J. Biol. Chem. 1989, 264, 9094–9101. [Google Scholar] [CrossRef]
- Sesorova, I.S.; Karelina, N.R.; Kazakova, T.E.; Parashuraman, S.; Zdorikova, M.A.; Dimov, I.D.; Seliverstova, E.V.; Beznoussenko, G.V.; Mironov, A.A. Structure of the enterocyte transcytosis compartments during lipid absorption. Histochem. Cell Biol. 2020, 153, 413–429. [Google Scholar] [CrossRef]
- Sesorova, I.S.; Dimov, I.D.; Kashin, A.D.; Sesorov, V.V.; Karelina, N.R.; Zdorikova, M.A.; Beznoussenko, G.V.; Mironov, A.A. Cellular and sub-cellular mechanisms of lipid transport from gut to lymph. Tissue Cell 2021, 72, 101529. [Google Scholar] [CrossRef]
- Mironov, A.A.; Sesorova, I.S.; Dimov, I.D.; Karelina, N.R.; Beznoussenko, G.V. Intracellular transports and atherogenesis. Front. Biosci. Landmark Ed. 2020, 25, 1230–1258. [Google Scholar] [CrossRef]
- Sesorova, I.S.; Sesorov, V.V.; Soloviev, P.B.; Lakunin, K.Y.; Dimov, I.D.; Mironov, A.A. Role of Endothelial Regeneration and Overloading of Enterocytes with Lipids in Capturing of Lipoproteins by Basement Membrane of Rat Aortic Endothelium. Biomedicines 2022, 10, 2858. [Google Scholar] [CrossRef] [PubMed]
- Groux-Degroote, S.; Rodríguez-Walker, M.; Dewald, J.H.; Daniotti, J.L.; Delannoy, P. Gangliosides in Cancer Cell Signaling. Prog. Mol. Biol. Transl. Sci. 2018, 156, 197–227. [Google Scholar] [CrossRef]
- Diswall, M.; Gustafsson, A.; Holgersson, J.; Sandrin, M.S.; Breimer, M.E. Antigen-binding specificity of anti-αGal reagents determined by solid-phase glycolipid-binding assays. A complete lack of αGal glycolipid reactivity in α1,3GalT-KO pig small intestine. Xenotransplantation 2011, 18, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Keusch, J.J.; Manzella, S.M.; Nyame, K.A.; Cummings, R.D.; Baenziger, J.U. Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. J. Biol. Chem. 2000, 275, 25308–25314. [Google Scholar] [CrossRef]
- Taylor, S.G.; McKenzie, I.F.; Sandrin, I.F. Characterization of the rat alpha(1,3)-galactosyltransferase: Evidence for two independent genes encoding glycosyltransferases that synthesize Galalpha(1,3)Gal by two separate glycosylation pathways. Glycobiology 2003, 13, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Marra, P.; Salvatore, L.; Mironov, A., Jr.; Di Campli, A.; Di Tullio, G.; Trucco, A.; Beznoussenko, G.; Mironov, A.; De Matteis, M.A. The biogenesis of the Golgi ribbon: The roles of membrane input from the ER and of GM130. Mol. Biol. Cell 2007, 18, 1595–1608. [Google Scholar] [CrossRef]
- Micaroni, M.; Perinetti, G.; Di Giandomenico, D.; Bianchi, K.; Spaar, A.; Mironov, A.A. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. Exp. Cell Res. 2010, 316, 2071–2086. [Google Scholar] [CrossRef]
- Hakomori, S. Antigen structure and genetic basis of histo-blood groups A, B and O: Their changes associated with human cancer. Biochim. Biophys. Acta 1999, 1473, 247–266. [Google Scholar] [CrossRef]
- Yung, G.P.; Schneider, M.K.; Seebach, J.D. Immune responses to alpha1,3 galactosyltransferase knockout pigs. Curr. Opin. Organ. Transplant. 2009, 14, 154–160. [Google Scholar] [CrossRef]
- Reid, M.E.; Olsson, M.L. The Blood Group Antigen Factsbook, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Seltsam, A.; Blasczyk, R. Missense mutations outside the catalytic domain of the ABO glycosyltransferase can cause weak blood group A and B phenotypes. Transfusion 2005, 45, 1663–1669. [Google Scholar] [CrossRef]
- Mironov, A.A.; Beznoussenko, G.V. Algorithm for Modern Electron. Microscopic Examination of the Golgi Complex. Methods Mol. Biol. 2023, 2557, 161–209. [Google Scholar] [CrossRef] [PubMed]
- Seltsam, A.; Grüger, D.; Just, B.; Figueiredo, C.; Gupta, C.D.; Deluca, D.S.; Blasczyk, R. Aberrant intracellular trafficking of a variant B glycosyltransferase. Transfusion 2008, 48, 1898–1905. [Google Scholar] [CrossRef]
- Mironov, A.A.; Mironov, A.; Sanavio, B.; Krol, S.; Beznoussenko, G.V. Intracellular Membrane Transport in Vascular Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 5791. [Google Scholar] [CrossRef] [PubMed]
- Mezentsev, A.; Bezsonov, E.; Kashirskikh, D.; Baig, M.S.; Eid, A.H.; Orekhov, A. Proatherogenic Sialidases and Desialylated Lipoproteins: 35 Years of Research and Current State from Bench to Bedside. Biomedicines 2021, 9, 600. [Google Scholar] [CrossRef] [PubMed]
- Avogaro, P.; Bon, G.B.; Cazzolato, G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 1988, 8, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, A.N.; Tertov, V.V.; Pokrovsky, S.N.; Adamova, I.Y.; Martsenyuk, O.N.; Lyakishev, A.A.; Smirnov, V.N. Blood serum atherogenicity associated with coronary atherosclerosis. Evidence for nonlipid factor providing atherogenicity of low-density lipoproteins and an approach to its elimination. Circ. Res. 1988, 62, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Tertov, V.V.; Kaplun, V.V.; Sobenin, I.A.; Orekhov, A.N. Low-density lipoprotein modification occurring in human plasma possible mechanism of in vivo lipoprotein desialylation as a primary step of atherogenic modification. Atherosclerosis 1998, 138, 183–195. [Google Scholar] [CrossRef]
- Chun, S.; Choi, S.; Yu, H.; Cho, D. Cis-AB, the Blood Group of Many Faces, Is a Conundrum to the Novice Eye. Ann. Lab. Med. 2019, 39, 115–120. [Google Scholar] [CrossRef]
- Polishchuk, R.S.; Luini, A.; Mironov, A.A. Golgi-to-PM transport. In The Golgi Apparatus. State of the Art 110 Years after Camillo Golgi’s Discovery; Mironov, A.A., Pavelka, M., Eds.; Springer: Vienna, Austria, 2008; Chapter 3.4; pp. 375–387. [Google Scholar]
- Weintraub, A. Immunology of bacterial polysaccharide antigens. Carbohydr. Res. 2003, 338, 2539–2547. [Google Scholar] [CrossRef]
- Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010, 125, S33–S40. [Google Scholar] [CrossRef] [PubMed]
- Kucuksezer, U.C.; Ozdemir, C.; Akdis, M.; Akdis, C.A. Influence of Innate Immunity on Immune Tolerance. Acta Med. Acad. 2020, 49, 164–180. [Google Scholar] [CrossRef] [PubMed]
- Tomita, H.; Fuchimoto, Y.; Mori, T.; Kato, J.; Uemura, T.; Handa, M.; Tazawa, H.; Ohdan, H.; Okamoto, S.; Kuroda, T. Production of anti-ABO blood group antibodies after minor ABO-incompatible bone marrow transplantation in NOD/SCID/gamma(c)(null) mice. Clin. Transplant. 2013, 27, E702–E708. [Google Scholar] [CrossRef] [PubMed]
- Jerne, N.K. The generative grammar of the immune system. Science 1985, 229, 1057–1059. [Google Scholar] [CrossRef] [PubMed]
- Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. 1974, 125C, 373–389. [Google Scholar]
- Leonard, A.; Hittson Boal, L.; Pary, P.; Mo, Y.D.; Jacquot, C.; Luban, N.L.; Darbari, D.S.; Webb, J. Identification of red blood cell antibodies in maternal breast milk implicated in prolonged hemolytic disease of the fetus and newborn. Transfusion 2019, 59, 1183–1189. [Google Scholar] [CrossRef]
- Eggenhuizen, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2020, 21, 7015. [Google Scholar] [CrossRef]
- Stolp, J.; Zaitsu, M.; Wood, K.J. Immune Tolerance and Rejection in Organ Transplantation. Methods Mol. Biol. 2019, 1899, 159–180. [Google Scholar] [CrossRef]
- Ruffolo, J.A.; Chu, L.-S.; Mahajan, S.P.; Gray, J.J. Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies. Nat. Commun. 2023, 14, 2389. [Google Scholar] [CrossRef]
- Thorne-Tjomsland, G.; Hosfield, T.; Jamieson, J.C.; Liu, B.; Nickerson, P.; Gough, J.C.; Rush, D.N.; Jeffery, J.R.; McKenna, R.M. Increased levels of GALbeta1-4GLCNACalpha2-6 sialyltransferase pretransplant predict delayed graft function in kidney transplant recipients. Transplantation 2000, 69, 806–808. [Google Scholar] [CrossRef]
- Comstock, L.E.; Kasper, D.L. Bacterial glycans: Key mediators of diverse host immune responses. Cell 2006, 126, 847–850. [Google Scholar] [CrossRef]
- Velez, C.D.; Lewis, C.J.; Kasper, D.L.; Cobb, B.A. Type I Strepto- coccus pneumoniae carbohydrate utilizes a nitric oxide and MHC II-dependent pathway for antigen presentation. Immunology 2009, 127, 73–82. [Google Scholar] [CrossRef]
- Kalka-Moll, W.M.; Tzianabos, A.O.; Bryant, P.W.; Niemeyer, M.; Ploegh, H.L.; Kasper, D.L. Zwitterionic polysaccharides stimulate T cells by MHC class II-dependent interactions. J. Immunol. 2002, 169, 6149–6153. [Google Scholar] [CrossRef]
- Tzianabos, A.O.; Finberg, R.W.; Wang, Y.; Chan, M.; Onderdonk, A.B.; Jennings, H.J.; Kasper, D.L. T cells activated by zwitterionic molecules prevent abscesses induced by pathogenic bacteria. J. Biol. Chem. 2000, 275, 6733–6740. [Google Scholar] [CrossRef]
- Tzianabos, A.O.; Wang, J.Y.; Lee, J.C. Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc. Natl. Acad. Sci. USA 2001, 98, 9365–9370. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironov, A.A.; Savin, M.A.; Zaitseva, A.V.; Dimov, I.D.; Sesorova, I.S. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int. J. Mol. Sci. 2023, 24, 15044. https://doi.org/10.3390/ijms242015044
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. International Journal of Molecular Sciences. 2023; 24(20):15044. https://doi.org/10.3390/ijms242015044
Chicago/Turabian StyleMironov, Alexander A., Maksim A. Savin, Anna V. Zaitseva, Ivan D. Dimov, and Irina S. Sesorova. 2023. "Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body" International Journal of Molecular Sciences 24, no. 20: 15044. https://doi.org/10.3390/ijms242015044
APA StyleMironov, A. A., Savin, M. A., Zaitseva, A. V., Dimov, I. D., & Sesorova, I. S. (2023). Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. International Journal of Molecular Sciences, 24(20), 15044. https://doi.org/10.3390/ijms242015044