The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Patient Samples
3.3. N-Glycan Release from Serum Proteins, Labelling and Clean-Up
3.4. UPLC-FLR-MS Analysis
3.5. SARS-CoV-2 IgG ELISA Immunoassay
3.6. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hiscott, J.; Alexandridi, M.; Muscolini, M.; Tassone, E.; Palermo, E.; Soultsioti, M.; Zevini, A. The global impact of the coronavirus pandemic. Cytokine Growth Factor Rev. 2020, 53, 1–9. [Google Scholar] [CrossRef]
- Bian, J.; Li, Z. Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharm. Sin. B 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; et al. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care 2020, 24, 422. [Google Scholar] [CrossRef] [PubMed]
- Smetanová, J.; Střížová, Z.; Bartůňková, J.; Milota, T. Principles and new perspectives in the vaccination against SARS-CoV-2 virus. Cas Lek Cesk 2020, 159, 298–302. [Google Scholar] [PubMed]
- Ying, B.; Whitener, B.; VanBlargan, L.A.; Hassan, A.O.; Shrihari, S.; Liang, C.-Y.; Karl, C.E.; Mackin, S.; Chen, R.E.; Kafai, N.M.; et al. Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Sci. Transl. Med. 2022, 14, eabm3302. [Google Scholar] [CrossRef]
- Mariño, K.; Bones, J.; Kattla, J.J.; Rudd, P.M. A systematic approach to protein glycosylation analysis: A path through the maze. Nat. Chem. Biol. 2010, 6, 713–723. [Google Scholar] [CrossRef]
- Raju, T.S. Terminal sugars of Fc glycans influence antibody effector functions of IgGs. Curr. Opin. Immunol. 2008, 20, 471–478. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Varki, A. Biological roles of glycans. Glycobiology 2016, 27, 3–49. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.N.; Saldova, R.; Galligan, M.C.; Murphy, T.B.; Mimura-Kimura, Y.; Telford, J.E.; Godwin, A.K.; Rudd, P.M. Novel glycan biomarkers for the detection of lung cancer. J. Proteome Res. 2011, 10, 1755–1764. [Google Scholar] [CrossRef]
- Molnarova, K.; Cokrtova, K.; Tomnikova, A.; Krizek, T.; Kozlik, P. Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis. Mon. Für Chem. Chem. Mon. 2022, 153, 659–686. [Google Scholar] [CrossRef]
- Pinho, S.S.; Reis, C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Groux-Degroote, S.; Cavdarli, S.; Uchimura, K.; Allain, F.; Delannoy, P. Glycosylation changes in inflammatory diseases. Adv. Protein Chem. Struct. Biol. 2020, 119, 111–156. [Google Scholar] [CrossRef]
- Irvine, E.B.; Alter, G. Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. Glycobiology 2020, 30, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Butler, M. Serum N-glycomic profiling may provide potential signatures for surveillance of COVID-19. Glycobiology 2022, 32, 871–885. [Google Scholar] [CrossRef]
- Beimdiek, J.; Janciauskiene, S.; Wrenger, S.; Volland, S.; Rozy, A.; Fuge, J.; Olejnicka, B.; Pink, I.; Illig, T.; Popov, A.; et al. Plasma markers of COVID-19 severity: A pilot study. Respir. Res. 2022, 23, 343. [Google Scholar] [CrossRef]
- Gudelj, I.; Baciarello, M.; Ugrina, I.; De Gregori, M.; Napolioni, V.; Ingelmo, P.M.; Bugada, D.; De Gregori, S.; Đerek, L.; Pučić-Baković, M.; et al. Changes in total plasma and serum N-glycome composition and patient-controlled analgesia after major abdominal surgery. Sci. Rep. 2016, 6, 31234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavić, T.; Dilber, D.; Kifer, D.; Selak, N.; Keser, T.; Ljubičić, Đ.; Vukić Dugac, A.; Lauc, G.; Rumora, L.; Gornik, O. N-glycosylation patterns of plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. J. Transl. Med. 2018, 16, 323. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-R.; Guan, W.-D.; Yau, L.-F.; Gao, W.-N.; Zhan, Y.-Q.; Liu, L.; Yang, Z.-F.; Jiang, Z.-H. Glycomic Signatures on Serum IgGs for Prediction of Postvaccination Response. Sci. Rep. 2015, 5, 7648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, I.; Nimmerjahn, F. Role of sialylation in the anti-inflammatory activity of intravenous immunoglobulin-F(ab’)2 versus Fc sialylation. Clin Exp Immunol 2014, 178 (Suppl. S1), 97–99. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, Y.; Nimmerjahn, F.; Ravetch, J.V. Anti-Inflammatory Activity of Immunoglobulin G Resulting from Fc Sialylation. Science 2006, 313, 670–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, E.S.; Galligan, M.C.; Saldova, R.; Adamczyk, B.; Abrahams, J.L.; Campbell, M.P.; Ng, C.T.; Veale, D.J.; Murphy, T.B.; Rudd, P.M.; et al. Glycosylation status of serum in inflammatory arthritis in response to anti-TNF treatment. Rheumatology 2013, 52, 1572–1582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, D.J.; Merry, A.H.; Royle, L.; Campbell, M.P.; Dwek, R.A.; Rudd, P.M. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 2009, 9, 3796–3801. [Google Scholar] [CrossRef] [PubMed]
Group Name | ELISA Mean Absorbance ± Std Deviation | Result (Cut-Off = 0.1) |
---|---|---|
COVID-Vaccine- | 0.06 ± 0.05 | non-reactive |
COVID-Vaccine+ | 0.69 ± 0.27 | reactive |
COVID+Vaccine- | 0.40 ± 0.28 | reactive |
COVID+Vaccine+ | 1.04 ± 0.39 | reactive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dojcsák, D.; Kardos, Z.; Szabó, M.; Oláh, C.; Körömi, Z.; Viskolcz, B.; Váradi, C. The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination. Int. J. Mol. Sci. 2023, 24, 6203. https://doi.org/10.3390/ijms24076203
Dojcsák D, Kardos Z, Szabó M, Oláh C, Körömi Z, Viskolcz B, Váradi C. The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination. International Journal of Molecular Sciences. 2023; 24(7):6203. https://doi.org/10.3390/ijms24076203
Chicago/Turabian StyleDojcsák, Dalma, Zsófia Kardos, Miklós Szabó, Csaba Oláh, Zsolt Körömi, Béla Viskolcz, and Csaba Váradi. 2023. "The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination" International Journal of Molecular Sciences 24, no. 7: 6203. https://doi.org/10.3390/ijms24076203
APA StyleDojcsák, D., Kardos, Z., Szabó, M., Oláh, C., Körömi, Z., Viskolcz, B., & Váradi, C. (2023). The Alterations of Serum N-glycome in Response to SARS-CoV-2 Vaccination. International Journal of Molecular Sciences, 24(7), 6203. https://doi.org/10.3390/ijms24076203