Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches
Abstract
:1. Introduction
2. Aim of the Study and Search Strategy
3. Results
4. Zinc
5. Magnesium
6. Selenium
7. Iron
8. Copper
9. Aluminium
10. Cadmium
11. Lead
12. Mercury
13. Arsenic
14. Calcium
15. Manganese
16. Chromium, Nickel, and Phosphorus
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurer, D.M.; Raymond, T.J.; Davis, B.N. Depression: Screening and Diagnosis. Am. Fam. Physician 2018, 98, 508–515. [Google Scholar]
- World Health Organization (WHO). Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 21 July 2023).
- 2023 ICD-10-CM Diagnosis Code F32.9: Major Depressive Disorder, Single Episode, Unspecified. The Web’s Free 2023 ICD-10-CM/PCS Medical Coding Reference. Available online: https://www.icd10data.com/ICD10CM/Codes/F01-F99/F30-F39/F32-/F32.9 (accessed on 21 July 2023).
- Depression Statistics. Depression and Bipolar Support Alliance. Available online: https://www.dbsalliance.org/education/depression/statistics/ (accessed on 12 July 2019).
- Zielińska, M.; Łuszczki, E.; Dereń, K. Dietary Nutrient Deficiencies and Risk of Depression (Review Article 2018–2023). Nutrients 2023, 15, 2433. [Google Scholar] [CrossRef] [PubMed]
- The Cost of Depression—MMHPI—Meadows Mental Health Policy Institute. MMHPI. Available online: https://mmhpi.org/topics/educational-resources/the-cost-of-depression/ (accessed on 21 January 2021).
- Rahim, T.; Rashid, R. Comparison of depression symptoms between primary depression and secondary-to-schizophrenia depression. Int. J. Psychiatry Clin. Pract. 2017, 21, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Mattar, L.; Huas, C.; Duclos, J.; Apfel, A.; Godart, N. Relationship between malnutrition and depression or anxiety in Anorexia Nervosa: A critical review of the literature. J. Affect. Disord. 2011, 132, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Milaneschi, Y.; Simmons, W.K.; van Rossum, E.F.C.; Penninx, B.W. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry 2018, 24, 18–33. [Google Scholar] [PubMed]
- Joseph, J.J.; Golden, S.H. Cortisol dysregulation: The bidirectional link between stress, depression, and type 2 diabetes mellitus. Ann. N. Y. Acad. Sci. 2017, 1391, 20–34. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, B.M.; Zhao, X.M.; Shan, Z.Y. Subclinical hypothyroidism and depression: A meta-analysis. Transl. Psychiatry 2018, 8, 239. [Google Scholar] [CrossRef]
- Sebestova, M.; Lackner, I.; Inayat, M.; Ademaj, A.; Mikutta, C. Post Stroke Depression. Ther. Umsch. 2021, 78, 299–304. [Google Scholar] [CrossRef]
- Roos, R.A. Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010, 5, 24–34. [Google Scholar] [CrossRef]
- Cysique, L.A.; Brew, B.J. Comorbid depression and apathy in HIV-associated neurocognitive disorders in the era of chronic HIV infection. Handb. Clin. Neurol. 2019, 165, 71–82. [Google Scholar]
- Yeoh, S.W.; Holmes, A.C.N.; Saling, M.M.; Everall, I.P.; Nicoll, A.J. Depression, fatigue and neurocognitive deficits in chronic hepatitis C. Hepatol. Int. 2018, 12, 294–304. [Google Scholar] [PubMed]
- Götze, H.; Friedrich, M.; Taubenheim, S.; Dietz, A.; Lordick, F.; Mehnert, A. Depression and anxiety in long-term survivors 5 and 10 years after cancer diagnosis. Support. Care Cancer 2019, 28, 211–220. [Google Scholar] [CrossRef]
- Fakra, E.; Marotte, H. Rheumatoid arthritis and depression. Jt. Bone Spine 2021, 88, 105200. [Google Scholar] [CrossRef]
- Ten Have, M.; Lamers, F.; Wardenaar, K.; Beekman, A.; de Jonge, P.; van Dorsselaer, S.; Tuithof, M.; Kleinjan, M.; de Graaf, R. The identification of symptom-based subtypes of depression: A nationally representative cohort study. J. Affect. Disord. 2016, 190, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Penner-Goeke, S.; Binder, E.B. Epigenetics and depression. Dialogues Clin. Neurosci. 2019, 21, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Riedel-Heller, S.G.; Pabst, A.; Luppa, M. Risk factors and protective factors of depression in older people 65+. A systematic review. PLoS ONE 2021, 16, e0251326. [Google Scholar] [CrossRef]
- Gutiérrez-Rojas, L.; Porras-Segovia, A.; Dunne, H.; Andrade-González, N.; Cervilla, J.A. Prevalence and correlates of major depressive disorder: A systematic review. Braz. J. Psychiatry 2020, 42, 657–672. [Google Scholar] [CrossRef]
- Łojko, D.; Stelmach-Mardas, M.; Suwalska, A. Is diet important in bipolar disorder? Psychiatr. Polska 2018, 52, 783–795. [Google Scholar] [CrossRef]
- Ekinci, G.N.; Sanlier, N. The relationship between nutrition and depression in the life process: A mini-review. Exp. Gerontol. 2023, 172, 112072. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Wang, Z.-Z.; Chen, N.-H. The receptor hypothesis and the pathogenesis of depression: Genetic bases and biological correlates. Pharmacol. Res. 2021, 167, 105542. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Al-Haddad, B.J.S.; Oler, E.; Armistead, B.; Elsayed, N.A.; Weinberger, D.R.; Bernier, R.; Burd, I.; Kapur, R.; Jacobsson, B.; Wang, C.; et al. The fetal origins of mental illness. Am. J. Obstet. Gynecol. 2019, 221, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Sitarz, E.; Karakuła, K.; Flieger, W.; Sitarz, M.; Grochowski, C.; Maciejewski, R.; Karakula-Juchnowicz, H. Beyond the Mind—Serum Trace Element Levels in Schizophrenic Patients: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 9566. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Kumar, P.; Khan, S.; Gordon, D.K.; Khan, S. Similarities Between Depression and Neurodegenerative Diseases: Pathophysiology, Challenges in Diagnosis and Treatment Options. Cureus 2020, 12, e11613. [Google Scholar] [CrossRef]
- Grochowski, C.; Blicharska, E.; Krukow, P.; Jonak, K.; Maciejewski, M.; Szczepanek, D.; Jonak, K.; Flieger, J.; Maiejewski, R. Analysis of Trace Elements in Human Brain: Its Aim, Methods, and Concentration Levels. Front. Chem. 2019, 7, 115. [Google Scholar] [CrossRef]
- Grochowski, C.; Szukała, M.; Litak, J.; Budny, A.; Proch, J.; Majerek, D.; Blicharska, E.; Niedzielski, P. Correlations Between Trace Elements in Selected Locations of the Human Brain in Individuals with Alcohol Use Disorder. Molecules 2020, 25, 359. [Google Scholar] [CrossRef]
- Grochowski, C.; Blicharska, E.; Bogucki, J.; Proch, J.; Mierzwińska, A.; Baj, J.; Litak, J.; Podkowiński, A.; Flieger, J.; Teresiński, G.; et al. Increased Aluminum Content in Certain Brain Structures is Correlated with Higher Silicon Concentration in Alcoholic Use Disorder. Molecules 2019, 24, 1721. [Google Scholar] [CrossRef]
- Grochowski, C.; Blicharska, E.; Baj, J.; Mierzwińska, A.; Brzozowska, K.; Forma, A.; Maciejewski, R. Serum iron, Magnesium, Copper, and Manganese Levels in Alcoholism: A Systematic Review. Molecules 2019, 24, 1361. [Google Scholar] [CrossRef]
- Qian, R.; Ma, Y.; You, L.; Zhao, Y.; Li, S.; Shen, J.; Jiang, L.; Yang, C.; Jiang, P.; Yuan, Z.; et al. The Blood Levels of Trace Elements Are Lower in Children with Tic Disorder: Results from a Retrospective Study. Front. Neurol. 2019, 10, 1324. [Google Scholar] [CrossRef]
- Martínez-Hernanz, Á.; González-Estecha, M.; Blanco, M.; Fuentes, M.; Ordóñez-Iriarte, J.M.; Palazón-Bru, I.; Calvo-Manuel, E.; Bodas-Pindeo, A. Blood lead in children and associations with trace elements and sociodemographic factors. J. Trace Elem. Med. Biol. 2020, 58, 126424. [Google Scholar] [CrossRef]
- Todorić Laidlaw, I.; Mimica, N.; Momčilović, B.; Jurasović, J.; Caratan, S.; Filipčić, I.; Vuk Pisk, S.; Bajić, Ž.; Drmić, S. Trace elements concentrations association with schizophrenia symptoms; A cross-sectional study in Croatia. Psychiatr. Danub. 2018, 30, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Wood, H. Brain iron correlates with cognitive change in Parkinson disease. Nat. Rev. Neurol. 2020, 16, 184. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhang, H.; Yang, J.; Man, Q.; Song, P.; Mao, D.; Lu, J.; Yang, L. Reference Ranges of Selenium in Plasma and Whole Blood for Child-Bearing-Aged Women in China. Int. J. Environ. Res. Public Health 2022, 19, 4908. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar]
- Zhang, D.-L.; Ghosh, M.C.; Rouault, T.A. The physiological functions of iron regulatory proteins in iron homeostasis—An update. Front. Pharmacol. 2014, 5, 124. [Google Scholar] [CrossRef]
- Murray-Kolb, L.E. Iron and brain functions. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 703–707. [Google Scholar] [CrossRef]
- Jáuregui-Lobera, I. Iron deficiency and cognitive functions. Neuropsychiatr. Dis. Treat. 2014, 10, 2087. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.; Babitt, J.L. Overview of iron metabolism in health and disease. Hemodial. Int. 2017, 21, S6–S20. [Google Scholar] [CrossRef]
- Scassellati, C.; Bonvicini, C.; Benussi, L.; Ghidoni, R.; Squitti, R. Neurodevelopmental disorders: Metallomics studies for the identification of potential biomarkers associated to diagnosis and treatment. J. Trace Elem. Med. Biol. 2020, 60, 126499. [Google Scholar] [CrossRef]
- Gower-Winter, S.D.; Levenson, C.W. Zinc in the central nervous system: From molecules to behavior. BioFactors 2012, 38, 186–193. [Google Scholar] [CrossRef]
- Blakemore, L.J.; Trombley, P.Q. Zinc as a Neuromodulator in the Central Nervous System with a Focus on the Olfactory Bulb. Front. Cell. Neurosci. 2017, 11, 297. [Google Scholar] [CrossRef]
- Frederickson, C.J.; Suh, S.W.; Silva, D.; Frederickson, C.J.; Thompson, R.B. Importance of Zinc in the Central Nervous System: The Zinc-Containing Neuron. J. Nutr. 2000, 130, 1471S–1483S. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc in Human Health: Effect of Zinc on Immune Cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Al Alawi, A.M.; Majoni, S.W.; Falhammar, H. Magnesium and Human Health: Perspectives and Research Directions. Int. J. Endocrinol. 2018, 2018, 9041694. [Google Scholar] [CrossRef]
- Schwalfenberg, G.K.; Genuis, S.J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Dinicolantonio, J.J.; O’Keefe, J.H.; Wilson, W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart 2018, 5, e000668. [Google Scholar] [CrossRef]
- Ahmed, F.; Mohammed, A. Magnesium: The Forgotten Electrolyte—A Review on Hypomagnesemia. Med. Sci. 2019, 7, 56. [Google Scholar] [CrossRef]
- Kirkland, A.; Sarlo, G.; Holton, K. The Role of Magnesium in Neurological Disorders. Nutrients 2018, 10, 730. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef]
- Kardos, J.; Héja, L.; Simon, Á.; Jablonkai, I.; Kovács, R.; Jemnitz, K. Copper signalling: Causes and consequences. Cell Commun. Signal. 2018, 16, 1–22. [Google Scholar]
- Gaier, E.; Eipper, B.; Mains, R. Copper signaling in the mammalian nervous system: Synaptic effects. J. Neurosci. Res. 2012, 91, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Opazo, C.M.; Greenough, M.A.; Bush, A.I. Copper: From neurotransmission to neuroproteostasis. Front. Aging Neurosci. 2014, 6, 143. [Google Scholar] [CrossRef]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef]
- Inan-Eroglu, E.; Ayaz, A. Is aluminium exposure a risk factor for neurological disorders? J. Res. Med. Sci. 2018, 23, 51. [Google Scholar] [PubMed]
- Akinrinade, I.D.; Memudu, A.E.; Ogundele, O.M. Fluoride and aluminium disturb neuronal morphology, transport functions, cholinesterase, lysosomal and cell cycle activities. Pathophysiology 2015, 22, 105–115. [Google Scholar] [CrossRef]
- Ivanovski, I.; Ivanovski, A.; Nikoli´c, D.; Ivanovski, P. Aluminium in brain tissue in autism. J. Trace Elem. Med. Biol. 2019, 51, 138–140. [Google Scholar] [CrossRef]
- Exley, C. The Chemistry of Human Exposure to Aluminium. In Neurotoxicity of Aluminum; Advances in Experimental Medicine and Biology; Niu, Q., Ed.; Springer: Singapore, 2018; Volume 1091, pp. 33–37. [Google Scholar]
- Klotz, K.; Weistenhofer, W.; Neff, F.; Hartwig, A.; van Thriel, C.; Drexler, H. The Health Effects of Aluminium Exposure. Dtsch Arztebl Int. 2017, 114, 653–659. [Google Scholar]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Rodríguez-Barranco, M.; Lacasaña, M.; Gil, F.; Lorca, A.; Alguacil, J.; Rohlman, D.S.; González-Alzaga, B.; Molina-Villalba, I.; Mendoza, R.; Aguilar-Garduño, C. Cadmium exposure and neuropsychological development in school children in southwestern Spain. Environ. Res. 2014, 134, 66–73. [Google Scholar] [CrossRef]
- Cormick, G.; Belizán, J.M. Calcium Intake and Health. Nutrients 2019, 11, 1606. [Google Scholar] [CrossRef]
- Vannucci, L.; Fossi, C.; Quattrini, S.; Guasti, L.; Pampaloni, B.; Gronchi, G.; Giusti, F.; Romagnoli, C.; Cianferotti, L.; Marcucci, G.; et al. Calcium Intake in Bone Health: A Focus on Calcium-Rich Mineral Waters. Nutrients 2018, 10, 1930. [Google Scholar] [CrossRef]
- Nedergaard, M.; Rodríguez, J.J.; Verkhratsky, A. Glial calcium and diseases of the nervous system. Cell Calcium 2010, 47, 140–149. [Google Scholar] [CrossRef]
- Ruat, M.; Traiffort, E. Roles of the calcium sensing receptor in the central nervous system. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 429–442. [Google Scholar] [CrossRef]
- Chen, P.; Bornhorst, J.; Aschner, M. Manganese metabolism in humans. Front. Biosci. 2018, 123, 1655–1679. [Google Scholar] [CrossRef] [PubMed]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef] [PubMed]
- Sidoryk-Wegrzynowicz, M.; Aschner, M. Manganese toxicity in the central nervous system: The glutamine/glutamate-γ-aminobutyric acid cycle. J. Intern. Med. 2013, 273, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chakraborty, S.; Mukhopadhyay, S.; Lee, E.; Paoliello, M.M.B.; Bowman, A.B.; Aschner, M. Manganese Homeostasis in the Nervous System. J. Neurochem. 2015, 134, 601–610. [Google Scholar] [CrossRef]
- Kumar, S.; Trivedi, A. A Review on Role of Nickel in the Biological System. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 719–727. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Blaszczyk, U. The Impact of Nickel on human health. J. Elementol. 2008, 13, 685–696. [Google Scholar]
- Zambelli, B.; Ciurli, S. Nickel and human health. Met. Ions Life Sci. 2013, 13, 321–357. [Google Scholar]
- Das, K.K.; Reddy, R.C.; Bagoji, I.B.; Das, S.; Bagali, S.; Mullur, L.; Khodnapur, J.P.; Biradar, M.S. Primary concept of nickel toxicity—An overview. J. Basic Clin. Physiol. Pharmacol. 2018, 30, 141–152. [Google Scholar] [CrossRef]
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef]
- Coughlan, M.P. The role of molybdenum in human biology. J. Inherit. Metab. Dis. 1983, 6, 70–77. [Google Scholar] [CrossRef]
- Mendel, R.R.; Kruse, T. Cell biology of molybdenum in plants and humans. Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 1568–1579. [Google Scholar] [CrossRef]
- Schwarz, G. Molybdenum cofactor and human disease. Curr. Opin. Chem. Biol. 2016, 31, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A.; Peterson, C.A. Molybdenum. Adv. Nutr. 2018, 9, 272–273. [Google Scholar] [CrossRef] [PubMed]
- Novotny, J.A. Molybdenum Nutriture in Humans. J. Evid. Based Complement. Altern. Med. 2011, 16, 164–168. [Google Scholar] [CrossRef]
- Bourke, C.A. Molybdenum Deficiency Produces Motor Nervous Effects That Are Consistent with Amyotrophic Lateral Sclerosis. Front. Neurol. 2016, 7, 28. [Google Scholar] [CrossRef]
- Calvo, M.S. Phosphorus. Adv. Nutr. 2015, 6, 860–862. [Google Scholar] [CrossRef]
- Moore, L.W.; Nolte, J.V.; Gaber, A.O.; Suki, W.N. Association of dietary phosphate and serum phosphorus concentration by levels of kidney function. Am. J. Clin Nutr. 2015, 102, 444–453. [Google Scholar] [CrossRef]
- Shaman, A.M.; Kowalski, S.R. Hyperphosphatemia Management in Patients with Chronic Kidney Disease. Saudi Pharm. J. 2016, 24, 494–505. [Google Scholar] [CrossRef]
- Yue, Y.C.; Li, M.H.; Wang, H.B.; Zhang, B.L.; He, W. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ. Health Prev. Med. 2018, 23, 18. [Google Scholar] [CrossRef]
- Hao, Y.; Li, R.; Leng, Y.; Ren, J.; Liu, J.; Ai, G.; Xu, H.; Su, Y.; Cheng, T. A study assessing the genotoxicity in rats after chronic oral exposure to a low dose of depleted uranium. J. Radiat. Res. 2009, 50, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Carmona, A.; Malard, V.; Avazeri, E.; Roudeau, S.; Porcaro, F.; Paredes, E.; Vidaud, C.; Bresson, C.; Ortega, R. Uranium exposure of human dopaminergic cells results in low cytotoxicity, accumulation within sub-cytoplasmic regions, and down regulation of MAO-B. Neurotoxicology 2018, 68, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Briner, W. The toxicity of depleted uranium. Int. J. Environ. Res. Public Health 2010, 7, 303–313. [Google Scholar] [CrossRef]
- Dublineau, I.; Grandcolas, L.; Grison, S.; Baudelin, C.; Paquet, F.; Voisin, P.; Aigueperse, J.; Gourmelon, P. Modifications of inflammatory pathways in rat intestine following chronic ingestion of depleted uranium. Toxicol. Sci. 2007, 98, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Jantzen, C.; Jørgensen, H.L.; Duus, B.R.; Sporring, S.L.; Lauritzen, J.B. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties. Acta Orthop. 2013, 84, 229–236. [Google Scholar] [CrossRef]
- Anderson, R.A. Nutritional role of chromium. Sci. Total Environ. 1981, 17, 13–29. [Google Scholar] [CrossRef]
- Snitynskyĭ, V.V.; Solohub, L.I.; Antoniak, H.L.; Kopachuk, D.M.; Herasymiv, M.H. Biological Role of Chromium in Humans and Animals. Ukr. Biokhimicheskii Zhurnal 1999, 71, 5–9. [Google Scholar]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Bernhoft, R.A. Mercury Toxicity and Treatment: A Review of the Literature. J. Environ. Public Health 2012, 2012, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saha, J.C.; Dikshit, A.K.; Bandyopadhyay, M.; Saha, K.C. A Review of Arsenic Poisoning and Its Effects on Human Health. Crit. Rev. Environ. Sci. Technol. 1999, 29, 281–313. [Google Scholar] [CrossRef]
- Nurchi, V.M.; Djordjevic, A.B.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020, 10, 235. [Google Scholar] [CrossRef]
- Cooper, R.G.; Harrison, A.P. The Exposure to and Health Effects of Antimony. Indian J. Occup. Environ. Med. 2009, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Ayton, S.; Lei, P.; Bush, A.I. Biometals and Their Therapeutic Implications in Alzheimer’s Disease. Neurotherapeutics 2014, 12, 109–120. [Google Scholar] [CrossRef]
- Bandmann, O.; Weiss, K.H.; Kaler, S.G. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015, 14, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Oh, S.-B.; Kim, J.; Kim, K.; Ryu, H.-S.; Kim, M.S.; Ayton, S.; Bush, A.I.; Lee, J.-Y.; Chung, S.J. Association of metals with the risk and clinical characteristics of Parkinsons disease. Park. Relat. Disord. 2018, 55, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.F.D.; Ng, A.C.L.; Poudel, G.; Stout, J.C.; Churchyard, A.; Chua, P.; Egan, G.F.; Georgiou-Karistianis, N. Iron accumulation in the basal ganglia in Huntingtons disease: Cross-sectional data from the IMAGE-HD study. J. Neurol. Neurosurg. Psychiatry 2015, 87, 545–549. [Google Scholar] [CrossRef]
- McCleery, J.; Abraham, R.P.; Denton, D.A.; Rutjes, A.W.; Chong, L.-Y.; Al-Assaf, A.S.; Griffith, D.J.; Rafeeq, S.; Yaman, H.; Malik, M.A.; et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst. Rev. 2018, 11, CD011905. [Google Scholar]
- Bartnicka, J.J.; Blower, P.J. Insights into Trace Metal Metabolism in Health and Disease From PET: “PET Metallomics”. J. Nucl. Med. 2018, 59, 1355–1359. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Flieger, M.; Forma, A.; Sitarz, E.; Skórzyńska-Dziduszko, K.; Grochowski, C.; Maciejewski, R.; Karakuła-Juchnowicz, H. Autism spectrum disorder: Trace elements imbalances and the pathogenesis and severity of autistic symptoms. Neurosci. Biobehav. Rev. 2021, 129, 117–132. [Google Scholar] [PubMed]
- Saghazadeh, A.; Ahangari, N.; Hendi, K.; Saleh, F.; Rezaei, N. Status of essential elements in autism spectrum disorder: Systematic review and meta-analysis. Rev. Neurosci. 2017, 28, 783–809. [Google Scholar] [CrossRef] [PubMed]
- Robberecht, H.; Verlaet, A.A.J.; Breynaert, A.; de Bruyne, T.; Hermans, N. Magnesium, Iron, Zinc, Copper and Selenium Status in Attention-Deficit/Hyperactivity Disorder (ADHD). Molecules 2020, 25, 4440. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.-T.; Cheng, Y.-S.; Yen, C.-F.; Chen, Y.-W.; Stubbs, B.; Whiteley, P.; Carvalho, A.F.; Li, D.-J.; Chen, T.-Y.; Yang, W.-C.; et al. Peripheral Iron Levels in Children with Attention-Deficit Hyperactivity Disorder: A Systematic Review and Meta-Analysis. Sci. Rep. 2018, 8, 788. [Google Scholar] [CrossRef]
- Elstrott, B.; Khan, L.; Olson, S.; Raghunathan, V.; DeLoughery, T.; Shatzel, J.J. The role of iron repletion in adult iron deficiency anemia and other diseases. Eur. J. Haematol. 2019, 104, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Andrews, N.C. Hungry irony. J. Clin. Investig. 2015, 125, 3422–3423. [Google Scholar] [CrossRef]
- Cao, Y.; Zhen, S.; Taylor, A.; Appleton, S.; Atlantis, E.; Shi, Z. Magnesium Intake and Sleep Disorder Symptoms: Findings from the Jiangsu Nutrition Study of Chinese Adults at Five-Year Follow-Up. Nutrients 2018, 10, 1354. [Google Scholar] [CrossRef]
- Li, J.-T.; Qu, Y.; Gao, H.-L.; Li, J.-Y.; Qin, Q.-X.; Wang, D.-L.; Zhao, J.-W.; Mao, Z.-J.; Min, Z.; Xiong, Y.-J.; et al. A nomogram based on iron metabolism can help identify apathy in patients with Parkinson’s disease. Front. Aging Neurosci. 2022, 14, 1062964. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, G.; Zhong, S.; Liao, X.; Lai, S.; Shan, Y.; Chen, J.; Zhang, L.; Lu, Q.; Shen, S.; et al. Alleviation of cognitive deficits and high copper levels by an NMDA receptor antagonist in a rat depression model. Compr. Psychiatry 2020, 102, 152200. [Google Scholar] [CrossRef]
- Wang, J.; Um, P.; Dickerman, B.A.; Liu, J. Zinc, Magnesium, Selenium and Depression: A Review of the Evidence, Potential Mechanisms and Implications. Nutrients 2018, 10, 584. [Google Scholar] [CrossRef] [PubMed]
- Styczen, K.; Sowa-Kucma, M.; Siwek, M.; Dudek, D.; Reczynski, W.; Szewczyk, B.; Misztak, P.; Topor-Madry, R.; Opoka, W.; Nowak, G. The serum zinc concentration as a potential biological marker in patients with major depressive disorder. Metab. Brain Dis. 2017, 32, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mlyniec, K. Zinc in the Glutamatergic Theory of Depression. Curr. Neuropharmacol. 2015, 13, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Swardfager, W.; Herrmann, N.; McIntyre, R.S.; Mazereeuw, G.; Goldberger, K.; Cha, D.S.; Schwartz, Y.; Lanctot, K.L. Potential roles of zinc in the pathophysiology and treatment of major depressive disorder. Neurosci. Biobehav. Rev. 2013, 37, 911–929. [Google Scholar]
- Takeda, A.; Tamano, H.; Nishio, R.; Murakami, T. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model. Int. J. Mol. Sci. 2016, 17, 1149. [Google Scholar] [CrossRef]
- Kopschina Feltes, P.; Doorduin, J.; Klein, H.C.; Juarez-Orozco, L.E.; Dierckx, R.A.; Moriguchi-Jeckel, C.M.; de Vries, E.F. Anti-inflammatory treatment for major depressive disorder: Implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J. Psychopharmacol. 2017, 31, 1149–1165. [Google Scholar] [CrossRef] [PubMed]
- Manzerra, P.; Behrens, M.M.; Canzoniero, L.M.; Wang, X.O.; Heidinger, V.; Ichinose, T.; Yu, S.P.; Choi, D.W. Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc. Natl. Acad. Sci. USA 2001, 98, 11055–11061. [Google Scholar] [CrossRef]
- Blakemore, L.J.; Trombley, P.Q. Diverse modulation of olfactory bulb AMPA receptors by zinc. NeuroReport 2004, 15, 919–923. [Google Scholar] [CrossRef]
- Trombley, P.Q.; Shepherd, G.M. Differential modulation by zinc and copper of amino acid receptors from rat olfactory bulb neurons. J. Neurophysiol. 1996, 76, 2536–2546. [Google Scholar] [CrossRef] [PubMed]
- Winegar, B.D.; Lansman, J.B. Voltage-dependent block by zinc of single calcium channels in mouse myotubes. J. Physiol. 1990, 425, 563–578. [Google Scholar] [CrossRef] [PubMed]
- Doboszewska, U.; Wlaź, P.; Nowak, G.; Radziwoń-Zaleska, M.; Cui, R.; Młyniec, K. Zinc in the Monoaminergic Theory of Depression: Its Relationship to Neural Plasticity. Neural Plast. 2017, 2017, 3682752. [Google Scholar] [CrossRef] [PubMed]
- Lepping, P.; Huber, M. Role of zinc in the pathogenesis of attention-deficit hyperactivity disorder: Implications for research and treatment. CNS Drugs 2010, 24, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctot, K.L. Zinc in depression: A meta-analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef]
- Siwek, M.; Dudek, D.; Schlegel-Zawadzka, M.; Morawska, A.; Piekoszewski, W.; Opoka, W.; Zieba, A.; Pilc, A.; Popik, P.; Nowak, G. Serum zinc level in depressed patients during zinc supplementation of imipramine treatment. J. Affect. Disord. 2010, 126, 447–452. [Google Scholar] [CrossRef]
- Maserejian, N.N.; Hall, S.A.; McKinlay, J.B. Low dietary or supplemental zinc is associated with depression symptoms among women, but not men, in a population-based epidemiological survey. J. Affect. Disord. 2012, 136, 781–788. [Google Scholar] [CrossRef]
- Hoepner, C.T.; McIntyre, R.S.; Papakostas, G.I. Impact of Supplementation and Nutritional Interventions on Pathogenic Processes of Mood Disorders: A Review of the Evidence. Nutrients 2021, 13, 767. [Google Scholar] [CrossRef]
- Doboszewska, U.; Szewczyk, B.; Sowa-Kućma, M.; Noworyta-Sokołowska, K.; Misztak, P.; Gołębiowska, J.; Młyniec, K.; Ostachowicz, B.; Krośniak, M.; Wojtanowska-Krośniak, A.; et al. Alterations of bio-elements, oxidative, and inflammatory status in the zinc deficiency model in rats. Neurotoxic. Res. 2016, 29, 143–154. [Google Scholar] [CrossRef]
- Correia, A.S.; Cardoso, A.; Vale, N. Oxidative Stress in Depression: The Link with the Stress Response, Neuroinflammation, Serotonin, Neurogenesis and Synaptic Plasticity. Antioxidants 2023, 12, 470. [Google Scholar] [CrossRef]
- Hongxia, L.; Yuxiao, T.; Zhilei, S.; Yan, S.; Yicui, Q.; Jiamin, S.; Xin, X.; Jianxin, Y.; Fengfeng, M.; Hui, S. Zinc inhibited LPS-induced inflammatory responses by upregulating A20 expression in microglia BV2 cells. J. Affect. Disord. 2019, 249, 136–142. [Google Scholar] [CrossRef]
- Lee, R.G.; Rains, T.M.; Tovar-Palacio, C.; Beverly, J.L.; Shay, N.F. Zinc deficiency increases hypothalamic neuropeptide Y and neuropeptide Y mRNA levels and does not block neuropeptide Y-induced feeding in rats. J. Nutr. 1998, 128, 1218–1223. [Google Scholar] [CrossRef]
- Levenson, C.W. Zinc regulation of food intake: New insights on the role of neuropeptide Y. Nutr. Rev. 2003, 61, 247–249. [Google Scholar]
- Shay, N.F.; Mangian, H.F. Neurobiology of Zinc-influenced eating behavior. J. Nutr. 2000, 130, 1493S–1499S. [Google Scholar] [CrossRef]
- Reichmann, F.; Holzer, P. Neuropeptide Y: A stressful review. Neuropeptides 2016, 55, 99–109. [Google Scholar] [CrossRef]
- Minami, A.; Takeda, A.; Yamaide, R.; Oku, N. Relationship between zinc and neurotransmitters released into the amygdalar extracellular space. Brain Res. 2002, 936, 91–94. [Google Scholar] [CrossRef]
- Hershfinkel, M. The zinc sensing receptor, ZnR/GPR39, in health and disease. Int. J. Mol. Sci. 2018, 19, 439. [Google Scholar] [CrossRef]
- Młyniec, K.; Singewald, N.; Holst, B.; Nowak, G. GPR39 Zn2+-sensing receptor: A new target in antidepressant development? J. Affect. Disord. 2015, 174, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Starowicz, G.; Jarosz, M.; Frąckiewicz, E.; Grzechnik, N.; Ostachowicz, B.; Nowak, G.; Mlyniec, K. Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008. J. Affect. Disord. 2019, 245, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 2014, 6, a018713. [Google Scholar] [CrossRef] [PubMed]
- Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 2010, 79, 213–231. [Google Scholar] [CrossRef]
- Aly, J.; Engmann, O. The Way to a Human’s Brain Goes Through Their Stomach: Dietary Factors in Major Depressive Disorder. Front. Neurosci. 2020, 14, 582853. [Google Scholar]
- Serefko, A.; Szopa, A.; Wlaź, P.; Nowak, G.; Radziwoń-Zaleska, M.; Skalski, M.; Poleszak, E. Magnesium in depression. Pharmacol. Rep. 2013, 65, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Botturi, A.; Ciappolino, V.; Delvecchio, G.; Boscutti, A.; Viscardi, B.; Brambilla, P. The Role and the Effect of Magnesium in Mental Disorders: A Systematic Review. Nutrients 2020, 12, 1661. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.J.; González, K.A.; Slatopolsky, E. Clinical consequences and management of hypomagnesemia. J. Am. Soc. Nephrol. 2009, 20, 2291–2295. [Google Scholar] [CrossRef]
- Nikseresht, S.; Sahabeh, E.; Hamid Reza, S.R.; Reza, Z.M.; Morteza, K.S.; Fatemeh, N.Z. The role of nitrergic system in antidepressant effects of acute administration of zinc, magnesium and thiamine on progesterone induced postpartum depression in mice. Tehran. Univ. Med. J. 2010, 68, 261–267. [Google Scholar]
- Rosanoff, A.; Weaver, C.M.; Rude, R.K. Suboptimal magnesium status in the United States: Are the health consequences underestimated? Nutr. Rev. 2012, 70, 153–164. [Google Scholar] [CrossRef]
- Nazarinasab, M.; Behrouzian, F.; Abdi, L.; Sadegh Moghaddam, A.; Sadeghi, S. Investigating the effect of magnesium supplement in patients with major depressive disorder under selective serotonin reuptake inhibitor treatment. J. Fam. Med. Prim. Care 2022, 11, 7800–7805. [Google Scholar] [CrossRef]
- Tarleton, E.K.; Littenberg, B. Magnesium intake and depression in adults. J. Am. Board Fam. Med. JABFM 2015, 28, 249–256. [Google Scholar] [CrossRef]
- Sun, C.; Wang, R.; Li, Z.; Zhang, D. Dietary magnesium intake and risk of depression. J. Affect. Disord. 2019, 246, 627–632. [Google Scholar] [CrossRef]
- Hightower, J.M.; Dalessandri, K.M.; Pope, K.; Hernandez, G.T. Low 25-Hydroxyvitamin D and Myofascial Pain: Association of Cancer, Colon Polyps, and Tendon Rupture. J. Am. Coll. Nutr. 2017, 36, 455–461. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.W.; Silverstein, F.S.; Johnston, M.V. Magnesium reduces N-methyl-D-aspartate (NMDA)-mediated brain injury in perinatal rats. Neurosci. Lett. 1990, 109, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Zarate, C.A., Jr.; Mathews, D.C.; Furey, M.L. Human biomarkers of rapid antidepressant effects. Biol. Psychiatry 2013, 73, 1142–1155. [Google Scholar] [CrossRef] [PubMed]
- Tarleton, E.K.; Littenberg, B.; MacLean, C.D.; Kennedy, A.G.; Daley, C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PLoS ONE 2017, 12, e0180067. [Google Scholar] [CrossRef]
- Eby, G.A.; Eby, K.L. Rapid recovery from major depression using magnesium treatment. Med. Hypotheses 2006, 67, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Poleszak, E.; Szewczyk, B.; Kedzierska, E.; Wlaz, P.; Pilc, A.; Nowak, G. Antidepressant- and anxiolytic-like activity of magnesium in mice. Pharmacol. Biochem. Behav. 2004, 78, 7–12. [Google Scholar] [CrossRef]
- Poleszak, E.; Wlaz, P.; Kedzierska, E.; Radziwon-Zaleska, M.; Pilc, A.; Fidecka, S.; Nowak, G. Effects of acute and chronic treatment with magnesium in the forced swim test in rats. Pharmacol. Rep. 2005, 57, 654–658. [Google Scholar]
- Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Met. Integr. Biometal Sci. 2015, 7, 1213–1228. [Google Scholar] [CrossRef]
- Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem. 2015, 153, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hare, D.; Ayton, S.; Bush, A.; Lei, P. A delicate balance: Iron metabolism and diseases of the brain. Front. Aging Neurosci. 2013, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.S.; Foshati, S.; Haddadian-Khouzani, S.; Rouhani, M.H. The role of selenium in depression: A systematic review and meta-analysis of human observational and interventional studies. Sci. Rep. 2022, 12, 1045. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Antonyak, H.; Klishch, I.; Shanaida, V.; Peana, M. Selenium: An Antioxidant with a Critical Role in Anti-Aging. Molecules 2022, 27, 6613. [Google Scholar] [CrossRef] [PubMed]
- Slawinska, K.; Bielecka, G.; Iwaniak, K.; Wosko, S.; Poleszak, E. Selenium and manganese in depression—Preclinical and clinical studies. Curr. Issues Pharm. Med. Sci. 2017, 30, 151–155. [Google Scholar] [CrossRef]
- Islam, M.R.; Islam, M.R.; Shalahuddin Qusar, M.M.A.; Islam, M.S.; Kabir, M.H.; Mustafizur Rahman, G.K.M.; Islam, M.S.; Hasnat, A. Alterations of serum macro-minerals and trace elements are associated with major depressive disorder: A case-control study. BMC Psychiatry 2018, 18, 94. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Coad, J.; Pond, R.; Kim, N.; Brough, L. Selenium intake and status of postpartum women and postnatal depression during the first year after childbirth in New Zealand—Mother and Infant Nutrition Investigation (MINI) study. J. Trace Elements Med. Biol. 2020, 61, 126503. [Google Scholar] [CrossRef]
- Benton, D. Selenium intake, mood and other aspects of psychological functioning. Nutr. Neurosci. 2002, 5, 363–374. [Google Scholar] [CrossRef]
- Castaño, A.; Ayala, A.; Rodríguez-Gómez, J.A.; Herrera, A.J.; Cano, J.; Machado, A. Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem. Int. 1997, 30, 549–555. [Google Scholar] [CrossRef]
- Bunevicius, R. Thyroid disorders in mental patients. Curr. Opin. Psychiatry 2009, 22, 391–395. [Google Scholar] [CrossRef]
- Shimizu, E.; Hashimoto, K.; Okamura, N.; Koike, K.; Komatsu, N.; Kumakiri, C.; Nakazato, M.; Watanabe, H.; Shinoda, N.; Okada, S.; et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol. Psychiatry 2003, 54, 70–75. [Google Scholar] [CrossRef]
- Conner, T.S.; Richardson, A.C.; Miller, J.C. Optimal serum selenium concentrations are associated with lower depressive symptoms and negative mood among young adults. J. Nutr. 2015, 145, 59–65. [Google Scholar] [CrossRef]
- Amini, S.; Jafarirad, S.; Amani, R.; Sayyah Bargard, M.; Cheraghian, B.; Hemmati, A.A. The relationship between dietary intakes during pregnancy and incidence of postpartum depression: A case–control study. Nutr. Food Sci. 2019, 50, 751–764. [Google Scholar] [CrossRef]
- Sánchez-Villegas, A.; Pérez-Cornago, A.; Zazpe, I.; Santiago, S.; Lahortiga, F.; Martínez-González, M.A. Micronutrient intake adequacy and depression risk in the SUN cohort study. Eur. J. Nutr. 2018, 57, 2409–2419. [Google Scholar] [CrossRef] [PubMed]
- Ekramzadeh, M.; Mazloom, Z.; Sagheb, M. Association of depression with selenium deficiency and nutritional markers in the patients with end-stage renal disease on hemodialysis. J. Ren. Nutr. 2015, 25, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Zabielska, P.; Jurczak, A.; Wieder-Huszla, S.; Kotwas, A.; Owsianowska, J.; Karakiewicz-Krawczyk, K.; Kowalczyk, R. The severity of depressive and anxiety symptoms in postmenopausal women depending on their magnesium, zinc, selenium and copper levels. J. Elem. 2020, 25, 1305–1317. [Google Scholar] [CrossRef]
- Mokhber, N.; Namjoo, M.; Tara, F.; Boskabadi, H.; Rayman, M.P.; Ghayour-Mobarhan, M.; Sahebkar, A.; Majdi, M.R.; Tavallaie, S.; Azimi-Nezhad, M.; et al. Effect of supplementation with selenium on postpartum depression: A randomized double-blind placebo-controlled trial. J. Matern. Fetal Neonatal. Med. 2011, 24, 104–108. [Google Scholar] [CrossRef]
- Gosney, M.A.; Hammond, M.F.; Shenkin, A.; Allsup, S. Effect of micronutrient supplementation on mood in nursing home residents. Gerontology 2008, 54, 292–299. [Google Scholar] [CrossRef]
- Shor-Posner, G.; Lecusay, R.; Miguez, M.-J.; Moreno-Black, G.; Zhang, G.; Rodriguez, N.; Burbano, X.; Baum, M.; Wilkie, F. Psychological burden in the era of HAART: Impact of selenium therapy. Int. J. Psychiatry Med. 2003, 33, 55–69. [Google Scholar] [CrossRef]
- Sabé, R.; Rubio, R.; García-Beltrán, L. Selenium determination in urine with atomic fluorescence detection. Anal. Chim. Acta 2001, 436, 215–221. [Google Scholar] [CrossRef]
- Kristal, A.R.; Darke, A.K.; Morris, J.S.; Tangen, C.M.; Goodman, P.J.; Thompson, I.M.; Meyskens, F.L., Jr.; Goodman, G.E.; Minasian, L.M.; Parnes, H.L.; et al. Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk. J. Natl. Cancer Inst. 2014, 106, djt456. [Google Scholar] [CrossRef]
- Chatterjee, A.; Tao, H.; Shibata, Y.; Morita, M. Determination of selenium compounds in urine by high-performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2003, 997, 249–257. [Google Scholar] [CrossRef]
- Pedro, J.; Andrade, F.; Magni, D.; Tudino, M.; Bonivardi, A. On-line submicellar enhanced fluorometric determination of Se(IV) with 2,3-diaminonaphthalene. Anal. Chim. Acta 2004, 516, 229–236. [Google Scholar] [CrossRef]
- Boss, C.B.; Fredeen, K.J. Concepts, Instrumentation and Techniques in Atomic Absorption Spectrophotometry; PerkinElmer: Waltham, MA, USA, 1997; pp. 2–12. [Google Scholar]
- Wilschefski, S.C.; Baxter, M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Ghayour-Mobarhan, M.; Taylor, A.; New, S.A.; Lamb, D.J.; Ferns, G.A.A. Determinants of serum copper, zinc and selenium in healthy subjects. Ann. Clin. Biochem. 2005, 42, 364–375. [Google Scholar] [CrossRef]
- Lopes, P.A.; Santos, M.C.; Vicente, L.; Rodrigues, M.O.; Pavão, M.L.; Nève, J.; Viegas-Crespo, A.M. Trace element status (Se, Cu, Zn) in healthy Portuguese subjects of Lisbon population: A reference study. Biol. Trace Elem. Res. 2004, 101, 1–17. [Google Scholar] [CrossRef]
- Kafai, M.R.; Ganji, V. Sex, age, geographical location, smoking, and alcohol consumption influence serum selenium concentrations in the USA: Third National Health and Nutrition Examination Survey, 1988–1994. J. Trace Elem. Med. Biol. 2003, 17, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Safaralizadeh, R.; Kardar, G.A.; Pourpak, Z.; Moin, M.; Zare, A.; Teimourian, S. Serum concentration of selenium in healthy individuals living in Tehran. Nutr. J. 2005, 4, 1–4. [Google Scholar] [CrossRef]
- Pavão, M.L.; Cordeiro, C.; Costa, A.; Raposo, J.A.; Santos, M.C.; Nève, J.; Viegas-Crespo, A.M. Comparison of whole-blood glutathione peroxidase activity, levels of serum selenium, and lipid peroxidation in subjects from the fishing and rural communities of “Rabo de Peixe” village, San Miguel Island, The Azores’ archipelago, Portugal. Biol. Trace Elem. Res. 2003, 92, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Wąsowicz, W.; Zachara, B.A. Selenium concentrations in the blood and urine of a healthy polish sub-population. Clin. Chem. Lab. Med. 1987, 25, 409–412. [Google Scholar] [CrossRef]
- Lee, O.; Moon, J.; Chung, Y. The relationship between serum selenium levels and lipid profiles in adult women. J. Nutr. Sci. Vitaminol. 2003, 49, 397–404. [Google Scholar] [CrossRef]
- Bedwal, R.S.; Bahuguna, A. Zinc, copper and selenium in reproduction. Experientia 1994, 50, 626–640. [Google Scholar] [CrossRef]
- Chen, M.H.; Su, T.P.; Chen, Y.S.; Hsu, J.W.; Huang, K.L.; Chang, W.H.; Chen, T.J.; Bai, Y.M. Association between psychiatric disorders and iron deficiency anemia among children and adolescents: A nationwide population-based study. BMC Psychiatry 2013, 13, 161. [Google Scholar] [CrossRef]
- Hidese, S.; Saito, K.; Asano, S.; Kunugi, H. Association between iron-deficiency anemia and depression: A web-based Japanese investigation. Psychiatry Clin. Neurosci. 2018, 72, 513–521. [Google Scholar] [CrossRef]
- Wassef, A.; Nguyen, Q.D.; St-André, M. Anaemia and depletion of iron stores as risk factors for postpartum depression: A literature review. J. Psychosom. Obstet. Gynaecol. 2019, 40, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Albacar, G.; Sans, T.; Martín-Santos, R.; García-Esteve, L.; Guillamat, R.; Sanjuan, J.; Cañellas, F.; Gratacòs, M.; Cavalle, P.; Arija, V.; et al. An association between plasma ferritin concentrations measured 48 h after delivery and postpartum depression. J. Affect. Disord. 2011, 131, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Oaks, B.M. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am. J. Clin. Nutr. 2017, 106 (Suppl. 6), 1694S–1702S. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, S.; Yıldız, S.; Korucu, T.; Gundogan, B.; Sunbul, Z.E.; Korkmaz, H.; Atmaca, M. Frequency of anemia in chronic psychiatry patients. Neuropsychiatr. Dis. Treat. 2015, 11, 2737–2741. [Google Scholar] [CrossRef] [PubMed]
- Lever-van Milligen, B.A.; Vogelzangs, N.; Smit, J.H.; Penninx, B.W. Hemoglobin levels in persons with depressive and/or anxiety disorders. J. Psychosom. Res. 2014, 76, 317–321. [Google Scholar] [CrossRef]
- Pamuk, G.E.; Uyanik, M.S.; Top, M.S.; Tapan, U.; Ak, R.; Uyanik, V. Gastrointestinal symptoms are closely associated with depression in iron deficiency anemia: A comparative study. Ann. Saudi Med. 2015, 35, 31–35. [Google Scholar] [CrossRef]
- Semiz, M.; Uslu, A.; Korkmaz, S.; Demir, S.; Parlak, I.; Sencan, M.; Aydin, B.; Uncu, T. Assessment of subjective sleep quality in iron deficiency anaemia. Afr. Health Sci. 2015, 15, 621–627. [Google Scholar] [CrossRef]
- Stewart, R.; Hirani, V. Relationship between depressive symptoms, anemia, and iron status in older residents from a national survey population. Psychosom. Med. 2012, 74, 208–213. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Wisner, K.L. Nutrition and depression: Implications for improving mental health among childbearing-aged women. Biol. Psychiatry 2005, 58, 679–685. [Google Scholar] [CrossRef]
- Etebary, S.; Nikseresht, S.; Sadeghipour, H.R.; Zarrindast, M.R. Postpartum depression and role of serum trace elements. Iran J. Psychiatry 2010, 5, 40–46. [Google Scholar] [PubMed]
- Milman, N. Postpartum anemia I: Definition, prevalence, causes, and consequences. Ann. Hematol. 2011, 90, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Milman, N. Postpartum anemia II: Prevention and treatment. Ann. Hematol. 2012, 91, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Yi, S.; Nanri, A.; Poudel-Tandukar, K.; Nonaka, D.; Matsushita, Y.; Hori, A.; Mizoue, T. Association between serum ferritin concentrations and depressive symptoms in Japanese municipal employees. Psychiatry Res. 2011, 189, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Bourre, J.M. Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: Micronutrients. J. Nutr. Health Aging 2006, 10, 377–385. [Google Scholar] [PubMed]
- Benton, D.; Donohoe, R.T. The effects of nutrients on mood. Public Health Nutr. 1999, 2, 403–409. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Song, X.; Zhang, D. Dietary zinc and iron intake and risk of depression: A meta-analysis. Psychiatry Res. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Beard, J.L.; Connor, J.R. Iron status and neural functioning. Annu. Rev. Nutr. 2003, 23, 41–58. [Google Scholar] [CrossRef]
- Kim, J.; Wessling-Resnick, M. Iron and mechanisms of emotional behavior. J. Nutr. Biochem. 2014, 25, 1101–1107. [Google Scholar] [CrossRef]
- Grubman, A.; White, A.R. Copper as a key regulator of cell signalling pathways. Expert Rev. Mol. Med. 2014, 22, e11. [Google Scholar] [CrossRef]
- Kawahara, M.; Tanaka, K.-I.; Kato-Negishi, M. Copper as a Collaborative Partner of Zinc-Induced Neurotoxicity in the Pathogenesis of Vascular Dementia. Int. J. Mol. Sci. 2021, 22, 7242. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.K.; Rahman, F.; Rahman, T.; Kato, T. Dopamine-β-hydroxylase (DBH), its cofactors and other biochemical parameters in the serum of neurological patients in Bangladesh. Int. J. Biomed. Sci. 2009, 5, 395–401. [Google Scholar] [CrossRef]
- Crayton, J.W.; Walsh, W.J. Elevated serum copper levels in women with a history of post-partum depression. J. Trace Elem. Med. Biol. 2007, 21, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.K.; Saini, M.; Prabhakar, P.; Kundu, S. Dopamine β hydroxylase as a potential drug target to combat hypertension. Expert Opin. Investig. Drugs 2020, 29, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Depression is an inflammatory disease, but cellmediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Prohaska, J.R.; Knutson, M.D. Metabolic crossroads of iron and copper. Nutr. Rev. 2010, 68, 133–147. [Google Scholar] [CrossRef]
- Młyniec, K.; Gaweł, M.; Doboszewska, U.; Starowicz, G.; Pytka, K.; Davies, C.L.; Budziszewska, B. Essential elements in depression and anxiety. Part II. Pharmacol. Rep. 2015, 67, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Cervantes, M.P.; Calderón-Salinas, J.V.; Albores, A.; Muñoz-Sánchez, J.L. Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biol. Trace Elem. Res. 2005, 103, 229–248. [Google Scholar] [CrossRef]
- Świądro, M.; Ordon, K.; Herman, M.; Dudek, D.; Wietecha-Posłuszny, R. Copper and Zinc as Potential Biomarkers of Mood Disorders and Pandemic Syndrome. Molecules 2022, 27, 91. [Google Scholar] [CrossRef]
- Hellman, N.E.; Kono, S.; Miyajima, H.; Gitlin, J.D. Biochemical analysis of a missense mutation in aceruloplasminemia. J. Biol. Chem. 2002, 277, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Kono, S. Aceruloplasminemia. Curr. Drug Targets 2012, 13, 1190–1199. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.C.; Bez, Y.; Selek, S.; Karababa, I.F.; Bulut, M.; Savaş, H.A.; Çelik, H.; Herken, H. No effect of antidepressant treatment on elevated serum ceruloplasmin level in patients with first-episode depression: A longitudinal study. Arch. Med. Res. 2012, 43, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Styczeń, K.; Sowa-Kućma, M.; Siwek, M.; Dudek, D.; Reczyński, W.; Misztak, P.; Szewczyk, B.; Topór-Mądry, R.; Opoka, W.; Nowak, G. Study of the Serum Copper Levels in Patients with Major Depressive Disorder. Biol. Trace Elem. Res. 2016, 174, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Muñoz, B.; Sepúlveda, F.J.; Urrutia, J.; Quiroz, M.; Luza, S.; De Ferrari, G.V.; Aguayo, L.G.; Opazo, C. Biphasic effects of copper on neurotransmission in rat hippocampal neurons. J. Neurochem. 2011, 119, 78–88. [Google Scholar] [CrossRef]
- Gerhard, D.M.; Wohleb, E.S.; Duman, R.S. Emerging treatment mechanisms for depression: Focus on glutamate and synaptic plasticity. Drug Discov. Today 2016, 21, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, W.; Zhang, W. The emerging role of copper in depression. Front. Neurosci. 2023, 17, 1230404. [Google Scholar] [CrossRef]
- Szewczyk, B. Zinc homeostasis and neurogenerative disorders. Front. Aging Neurosci. 2013, 5, 33. [Google Scholar] [CrossRef]
- Diamond, P.R.; Farmery, A.D.; Atkinson, S.; Haldar, J.; Williams, N.; Cowen, P.J.; Geddes, J.R.; McShane, R. Ketamine infusions for treatment resistant depression: A series of 28 patients treated weekly or twice weekly in an ECT clinic. J. Psychopharmacol. 2014, 28, 536–544. [Google Scholar] [CrossRef]
- McGirr, A.; Berlim, M.T.; Bond, D.J.; Fleck, M.P.; Yatham, L.N.; Lam, R.W. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol. Med. 2014, 45, 693–704. [Google Scholar] [CrossRef]
- Berman, R.M.; Cappiello, A.; Anand, A.; Oren, D.A.; Heninger, G.R.; Charney, D.S.; Krystal, J.H. Antidepressant effect of ketamine in depressed patients. Biol. Psychiatry 2000, 47, 351–354. [Google Scholar] [CrossRef]
- Maeng, S.; Zarate, C.A., Jr.; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of α-amino-3-hydroxy-5-methylidoxazole-4- propionic acid receptors. Biol. Psychiatry 2008, 63, 349–352. [Google Scholar] [CrossRef]
- Ni, M.; You, Y.; Chen, J.; Zhang, L. Copper in depressive disorder: A systematic review and meta-analysis of observational studies. Psychiatry Res. 2018, 267, 506–515. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Jiang, Y.; Gluhcheva, Y.G.; Tizabi, Y.; Lobinski, R.; Tinkov, A.A. Molecular mechanisms of aluminum neurotoxicity: Update on adverse effects and therapeutic strategies. Adv. Neurotoxicol. 2021, 5, 1–34. [Google Scholar] [CrossRef]
- Chen, J.; Wang, M.; Ruan, D.; She, J. Early Chronic Aluminium Exposure Impairs Long-Term Potentiation and Depression to the Rat Dentate Gyrus In Vivo. Neuroscience 2002, 112, 879–887. [Google Scholar] [CrossRef]
- Bryliński, Ł.; Kostelecka, K.; Woliński, F.; Duda, P.; Góra, J.; Granat, M.; Flieger, J.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; et al. Aluminium in the Human Brain: Routes of Penetration, Toxicity, and Resulting Complications. Int. J. Mol. Sci. 2023, 24, 7228. [Google Scholar] [CrossRef] [PubMed]
- Ben Moussa, F.; Moustafa, A.; Zyada, F.; Abd, D. Psychiatric Evaluation of a Group of Workers in the Aluminium Industry. Egypt. J. Psychiatry 2013, 34, 1–9. [Google Scholar]
- Al-Fartusie, F.S.; Al-Bairmani, H.K.; Al-Garawi, Z.S.; Yousif, A.H. Evaluation of Some Trace Elements and Vitamins in Major Depressive Disorder Patients: A Case–Control Study. Biol. Trace Element Res. 2018, 189, 412–419. [Google Scholar] [CrossRef]
- Briley, M.; Chantal, M. The Importance of Norepinephrine in Depression. Neuropsychiatr. Dis. Treat. 2011, 7, 9. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and Psychological Disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef]
- Tsaluchidu, S.; Cocchi, M.; Tonello, L.; Puri, B.K. Fatty Acids and Oxidative Stress in Psychiatric Disorders. BMC Psychiatry 2008, 8, S5. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, P.; Dhawan, D.K. Protective Role of Lithium in Ameliorating the Aluminium-Induced Oxidative Stress and Histological Changes in Rat Brain. Cell. Mol. Neurobiol. 2009, 29, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, A.; Sethi, P.; Sharma, D. Bacopa Monniera Prevents from Aluminium Neurotoxicity in the Cerebral Cortex of Rat Brain. J. Ethnopharmacol. 2007, 111, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Haridevamuthu, B.; Raj, D.; Kesavan, D.; Muthuraman, S.; Kumar, R.S.; Mahboob, S.; Al-Ghanim, K.A.; Almutairi, B.O.; Arokiyaraj, S.; Gopinath, P.; et al. Trihydroxy Piperlongumine Protects Aluminium Induced Neurotoxicity in Zebrafish: Behavioral and Biochemical Approach. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2023, 268, 109600. [Google Scholar] [CrossRef] [PubMed]
- Orisakwe, O. The Role of Lead and Cadmium in Psychiatry. N. Am. J. Med. Sci. 2014, 6, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Amzal, B.; Julin, B.; Vahter, M.; Wolk, A.; Johanson, G.; Åkesson, A. Population Toxicokinetic Modeling of Cadmium for Health Risk Assessment. Environ. Health Perspect. 2009, 117, 1293–1301. [Google Scholar] [CrossRef]
- Faroon, O.; Ashizawa, A.; Wright, S.; Tucker, P.; Jenkins, K.; Ingerman, L.; Rudisill, C. Toxicological Profile for Cadmium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012.
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Fowler, B.A. General Subcellular Effects of Lead, Mercury, Cadmium, and Arsenic. Environ. Health Perspect. 1978, 22, 37. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Du, Y. Cadmium and Its Neurotoxic Effects. Oxidative Med. Cell. Longev. 2013, 2013, 898034. [Google Scholar] [CrossRef]
- Chen, L.; Xu, B.; Liu, L.; Luo, Y.; Zhou, H.; Chen, W.; Shen, T.; Han, X.; Kontos, C.D.; Huang, S. Cadmium Induction of Reactive Oxygen Species Activates the MTOR Pathway, Leading to Neuronal Cell Death. Free Radic. Biol. Med. 2011, 50, 624–632. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Fiorenza, A.M.; Spanevello, R.M.; Mazzanti, C.M.; Bochi, G.V.; Antes, F.G.; Stefanello, N.; Rubin, M.A.; Dressler, V.L.; Morsch, V.M.; et al. N-Acetylcysteine Prevents Memory Deficits, the Decrease in Acetylcholinesterase Activity and Oxidative Stress in Rats Exposed to Cadmium. Chem. Biol. Interact. 2010, 186, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Minami, A.; Takeda, A.; Nishibaba, D.; Takefuta, S.; Oku, N. Cadmium toxicity in synaptic neurotransmission in the brain. Brain Res. 2001, 894, 336–339. [Google Scholar] [CrossRef] [PubMed]
- Reeves, P.G.; Chaney, R.L. Mineral Status of Female Rats Affects the Absorption and Organ Distribution of Dietary Cadmium Derived from Edible Sunflower Kernels (Helianthus annuus L.). Environ. Res. 2001, 85, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Miyamoto, K.; Ikeda, Y.; Machida, M.; Kayama, F. Comprehensive Study of the Effects of Age, Iron Deficiency, Diabetes Mellitus, and Cadmium Burden on Dietary Cadmium Absorption in Cadmium-Exposed Female Japanese Farmers. Toxicol. Appl. Pharmacol. 2004, 196, 114–123. [Google Scholar] [CrossRef]
- Blazka, M.E.; Shaikh, Z.A. Sex Differences in Hepatic and Renal Cadmium Accumulation and Metallothionein Induction. Biochem. Pharmacol. 1991, 41, 775–780. [Google Scholar] [CrossRef]
- Borisova, T.; Krisanova, N.; Sivko, R.; Kasatkina, L.A.; Borysov, A.; Griffin, S.; Wireman, M. Presynaptic Malfunction: The Neurotoxic Effects of Cadmium and Lead on the Proton Gradient of Synaptic Vesicles and Glutamate Transport. Neurochem. Int. 2011, 59, 272–279. [Google Scholar] [CrossRef]
- Scinicariello, F.; Buser, M.C. Blood Cadmium and Depressive Symptoms in Young Adults (Aged 20–39 Years). Psychol. Med. 2014, 45, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-N.; Lee, M.-R.; Choi, Y.-H.; Lee, B.-E.; Hong, Y.-C. Associations of Blood Cadmium Levels with Depression and Lower Handgrip Strength in a Community-Dwelling Elderly Population: A Repeated-Measures Panel Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1525–1530. [Google Scholar] [CrossRef]
- Angeli, J.K.; Pereira, C.A.C.; Faria, T.d.O.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Cadmium Exposure Induces Vascular Injury due to Endothelial Oxidative Stress: The Role of Local Angiotensin II and COX-2. Free Radic. Biol. Med. 2013, 65, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, S.; Marino, V.; Biondi, M.; Grimaldi, F.; Ippoliti, F.; Maes, M. Depression Induced by Treatment with Interferon-Alpha in Patients Affected by Hepatitis c Virus. J. Affect. Disord. 2002, 72, 237–241. [Google Scholar] [CrossRef]
- Förstl, H.; Almeida, O.P.; Owen, A.M.; Burns, A.; Howard, R. Psychiatric, Neurological and Medical Aspects of Misidentification Syndromes: A Review of 260 Cases. Psychol. Med. 1991, 21, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Food—Science and Techniques. Available online: http://aei.pitt.edu/40841/1/32nd_food.pdf (accessed on 21 August 2023).
- Berk, M.; Williams, L.J.; Andreazza, A.C.; Pasco, J.A.; Dodd, S.; Jacka, F.N.; Moylan, S.; Reiner, E.J.; Magalhaes, P.V.S. Pop, Heavy Metal and the Blues: Secondary Analysis of Persistent Organic Pollutants (POP), Heavy Metals and Depressive Symptoms in the NHANES National Epidemiological Survey. BMJ Open 2014, 4, e005142. [Google Scholar] [CrossRef]
- Richter, P.; Faroon, O.; Pappas, R.S. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities. Int. J. Environ. Res. Public Health 2017, 14, 1154. [Google Scholar] [CrossRef] [PubMed]
- Pappas, R.S. Toxic Elements in Tobacco and in Cigarette Smoke: Inflammation and Sensitization. Metallomics 2011, 3, 1181. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; De Gheselle, O.; Smeets, K.; Van Kerkhove, E.; Cuypers, A. Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? Int. J. Mol. Sci. 2013, 14, 6116–6143. [Google Scholar] [CrossRef]
- Cybulska, A.M.; Grochans, S.; Kamińska, M.S.; Bosiacki, M.; Skonieczna-Żydecka, K.; Grochans, E. Are Cadmium and Lead Levels Linked to the Development of Anxiety and Depression?—A Systematic Review of Observational Studies. Ecotoxicol. Environ. Saf. 2021, 216, 112211. [Google Scholar] [CrossRef]
- Duman, R.S.; Aghajanian, G.K. Synaptic Dysfunction in Depression: Potential Therapeutic Targets. Science 2012, 338, 68–72. [Google Scholar] [CrossRef]
- Cho, K.; Kim, H.; Rodriguez-Iturbe, B.; Vaziri, N.D. Niacin Ameliorates Oxidative Stress, Inflammation, Proteinuria, and Hypertension in Rats with Chronic Renal Failure. Am. J. Physiol. Ren. Physiol. 2009, 297, F106–F113. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Oh, H.; Hoang, N.H.M.; Jo, W.H.; Kim, M.-S. Environmental Science and Pollution Research Role of Heavy Metal Concentrations and Vitamin Intake from Food in Depression: A National Cross-Sectional Study (2009–2017). Environ. Sci. Pollut. Res. 2021, 29, 4574–4586. [Google Scholar] [CrossRef]
- Smesny, S.; Baur, K.; Rudolph, N.; Nenadic, I.; Sauer, H. Alterations of Niacin Skin Sensitivity in Recurrent Unipolar Depressive Disorder. J. Affect. Disord. 2010, 124, 335–340. [Google Scholar] [CrossRef]
- Ryan, K.M.; Allers, K.A.; Harkin, A.; McLoughlin, D.M. Blood Plasma B Vitamins in Depression and the Therapeutic Response to Electroconvulsive Therapy. Brain Behav. Immun. Health 2020, 4, 100063. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Liu, R.; Chen, W.; Peng, C.; Markert, B. Effects of Urbanization on Heavy Metal Accumulation in Surface Soils, Beijing. J. Environ. Sci. 2018, 64, 328–334. [Google Scholar] [CrossRef]
- Ren, H.M.; Wang, J.D.; Zhang, X.L. Assessment of Soil Lead Exposure in Children in Shenyang, China. Environ. Pollut. 2006, 144, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Obeng-Gyasi, E. Sources of Lead Exposure in Various Countries. Rev. Environ. Health 2019, 34, 25–34. [Google Scholar] [CrossRef]
- Mitra, P.; Sharma, S.; Purohit, P.; Sharma, P. Clinical and Molecular Aspects of Lead Toxicity: An Update. Crit. Rev. Clin. Lab. Sci. 2017, 54, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Berk, M.; Kapczinski, F.; Andreazza, A.C.; Dean, O.M.; Giorlando, F.; Maes, M.; Yücel, M.; Gama, C.S.; Dodd, S.; Dean, B.; et al. Pathways Underlying Neuroprogression in Bipolar Disorder: Focus on Inflammation, Oxidative Stress and Neurotrophic Factors. Neurosci. Biobehav. Rev. 2011, 35, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Moylan, S.; Maes, M.; Wray, N.R.; Berk, M. The Neuroprogressive Nature of Major Depressive Disorder: Pathways to Disease Evolution and Resistance and Therapeutic Implications. Mol. Psychiatry 2012, 18, 595–606. [Google Scholar] [CrossRef]
- Kursula, P.; Majava, V. A Structural Insight into Lead Neurotoxicity and Calmodulin Activation by Heavy Metals. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2007, 63, 653–656. [Google Scholar] [CrossRef]
- Reddy, G.R.; Devi, B.C.; Chetty, C.S. Developmental Lead Neurotoxicity: Alterations in Brain Cholinergic System. NeuroToxicology 2007, 28, 402–407. [Google Scholar] [CrossRef]
- Bouchard, M.F.; Bellinger, D.C.; Weuve, J.; Matthews-Bellinger, J.; Gilman, S.E.; Wright, R.O.; Schwartz, J.; Weisskopf, M.G. Blood lead levels and major depressive disorder, panic disorder, and generalized anxiety disorder in US young adults. Arch. Gen. Psychiatry 2009, 66, 1313–1319. [Google Scholar] [CrossRef]
- Baker, E.L.; Feldman, R.G.; White, R.F.; Harley, J.P. The Role of Occupational Lead Exposure in the Genesis of Psychiatric and Behavioral Disturbances. Acta Psychiatr. Scand. 1983, 67, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.L.; White, R.F.; Pothier, L.J.; Berkey, C.S.; Dinse, G.E.; Travers, P.H.; Harley, J.P.; Feldman, R.G. Occupational Lead Neurotoxicity: Improvement in Behavioural Effects after Reduction of Exposure. Occup. Environ. Med. 1985, 42, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Buser, M.C.; Scinicariello, F. Cadmium, Lead, and Depressive Symptoms. J. Clin. Psychiatry 2017, 78, e515–e521. [Google Scholar] [CrossRef]
- Eum, K.-D.; Korrick, S.A.; Weuve, J.; Okereke, O.; Kubzansky, L.D.; Hu, H.; Weisskopf, M.G. Relation of Cumulative Low-Level Lead Exposure to Depressive and Phobic Anxiety Symptom Scores in Middle-Age and Elderly Women. Environ. Health Perspect. 2012, 120, 817–823. [Google Scholar] [CrossRef]
- Fenga, C.; Gangemi, S.; Alibrandi, A.; Costa, C.; Micali, E. Relationship between Lead Exposure and Mild Cognitive Impairment. J. Prev. Med. Hyg. 2016, 57, E205–E210. [Google Scholar] [PubMed]
- Lindgren, K.N.; Masten, V.L.; Tiburzi, M.J.; Ford, D.P.; Bleecker, M.L. The Factor Structure of the Profile of Mood States (POMS) and Its Relationship to Occupational Lead Exposure. J. Occup. Environ. Med. 1999, 41, 3–10. [Google Scholar] [CrossRef]
- Malekirad, A.A.; Kalantari-Dehaghi, R.; Abdollahi, M. Clinical, Haematological, and Neurocognitive Findings in Lead-Exposed Workers of a Battery Plant in Iran. Arch. Ind. Hyg. Toxicol. 2013, 64, 497–503. [Google Scholar] [CrossRef]
- Rhodes, D.; Spiro, A.; Aro, A.; Hu, H. Relationship of Bone and Blood Lead Levels to Psychiatric Symptoms: The Normative Aging Study. J. Occup. Environ. Med. 2003, 45, 1144–1151. [Google Scholar] [CrossRef]
- Sm, L.; Greenland, R.D.; Minnema, D.J.; Michaelson, I.A. Influence of Chronic Inorganic Lead Exposure on Regional Dopamine and 5-Hydroxytryptamine Turnover in Rat Brain. Neurochem. Res. 1984, 9, 1675–1688. [Google Scholar]
- Minnema, D.J.; Greenland, R.D.; Michaelson, I. Effect of in Vitro Inorganic Lead on Dopamine Release from Superfused Rat Striatal Synaptosomes. Toxicol. Appl. Pharmacol. 1986, 84, 400–411. [Google Scholar] [CrossRef]
- Levin-Schwartz, Y.; Cowell, W.; Hsu, H.H.L.; Enlow, M.B.; Amarasiriwardena, C.; Andra, S.S.; Wright, R.J.; Wright, R.O. Metal Mixtures Are Associated with Increased Anxiety during Pregnancy. Environ. Res. 2022, 204, 112276. [Google Scholar] [CrossRef] [PubMed]
- Kala, S.V.; Jadhav, A.L. Region-Specific Alterations in Dopamine and Serotonin Metabolism in Brains of Rats Exposed to Low Levels of Lead. Neurotoxicology 1995, 16, 297–308. [Google Scholar] [PubMed]
- Rajan, M.T.; Rao, K.S.; Mamatha, B.M.; Rao, R.V.; Shanmugavelu, P.; Menon, R.; Pavithran, M.V. Quantification of Trace Elements in Normal Human Brain by Inductively Coupled Plasma Atomic Emission Spectrometry. J. Neurol. Sci. 1997, 146, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.Y.; Pullakhandam, R.; Dinesh Kumar, B. Thiamine Reduces Tissue Lead Levels in Rats: Mechanism of Interaction. Biometals Int. J. Role Met. Ions Biol. Biochem. Med. 2010, 23, 247–253. [Google Scholar] [CrossRef]
- Çamur, D.; Güler, Ç.; Vaizoğlu, S.A.; Ozdilek, B. Determining Mercury Levels in Anchovy and in Individuals with Different Fish Consumption Habits, Together with Their Neurological Effects. Toxicol. Ind. Health 2014, 32, 1215–1223. [Google Scholar] [CrossRef]
- Garí, M.; Grimalt, J.O.; Torrent, M.; Sunyer, J. Influence of Socio-Demographic and Diet Determinants on the Levels of Mercury in Preschool Children from a Mediterranean Island. Environ. Pollut. 2013, 182, 291–298. [Google Scholar] [CrossRef]
- Wolkin, A.; Hunt, D.; Martin, C.; Caldwell, K.L.; McGeehin, M.A. Blood Mercury Levels among Fish Consumers Residing in Areas with High Environmental Burden. Chemosphere 2012, 86, 967–971. [Google Scholar] [CrossRef]
- Moneim, A.E. Mercury-induced neurotoxicity and neuroprotective effects of berberine. Neural Regen. Res. 2015, 10, 881–882. [Google Scholar] [CrossRef]
- Turyk, M.E.; Bhavsar, S.P.; Bowerman, W.; Boysen, E.; Clark, M.; Diamond, M.; Mergler, D.; Pantazopoulos, P.; Schantz, S.; Carpenter, D.O. Risks and Benefits of Consumption of Great Lakes Fish. Environ. Health Perspect. 2012, 120, 11–18. [Google Scholar] [CrossRef]
- Jacka, F.N.; Kremer, P.J.; Berk, M.; de Silva-Sanigorski, A.M.; Moodie, M.; Leslie, E.R.; Pasco, J.A.; Swinburn, B.A. A Prospective Study of Diet Quality and Mental Health in Adolescents. PLoS ONE 2011, 6, e24805. [Google Scholar] [CrossRef]
- Timonen, M. Fish Consumption and Depression: The Northern Finland 1966 Birth Cohort Study. J. Affect. Disord. 2004, 82, 447–452. [Google Scholar] [CrossRef]
- Kim, K.W.; Sreeja, S.R.; Kwon, M.; Yu, Y.L.; Kim, M.K. Association of Blood Mercury Level with the Risk of Depression according to Fish Intake Level in the General Korean Population: Findings from the Korean National Health and Nutrition Examination Survey (KNHANES) 2008–2013. Nutrients 2020, 12, 189. [Google Scholar] [CrossRef]
- Ng, T.H.H.; Mossey, J.M.; Lee, B.K. Total Blood Mercury Levels and Depression among Adults in the United States: National Health and Nutrition Examination Survey 2005–2008. PLoS ONE 2013, 8, e79339. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-G.; Kim, S.; Choi, S.-H.; Seo, J.-S.; Lim, K.Y. Total Blood Mercury Levels and Depression among Adults in Korea: Korea National Health and Nutrition Examination Survey 2010–2013. Korean J. Fam. Pract. 2016, 6, 70–78. [Google Scholar] [CrossRef]
- Castro-González, M.I.; Méndez-Armenta, M. Heavy Metals: Implications Associated to Fish Consumption. Environ. Toxicol. Pharmacol. 2008, 26, 263–271. [Google Scholar] [CrossRef]
- Maximino, C.; Araujo, J.M.; Leão, L.L.; Barroso, A.; Renata, K.; Lima-Maximino, M.; Oliveira, J.; Crespo-Lopez, M.E.; Gouveia, A.; Herculano, A.M. Possible Role of Serotoninergic System in the Neurobehavioral Impairment Induced by Acute Methylmercury Exposure in Zebrafish (Danio rerio). Neurotoxicol. Teratol. 2011, 33, 727–734. [Google Scholar] [CrossRef]
- Smidt, L.J.; Cremin, F.M.; Grivetti, L.E.; Clifford, A.J. Influence of Thiamin Supplementation on the Health and General Well-Being of an Elderly Irish Population with Marginal Thiamin Deficiency. J. Gerontol. 1991, 46, M16–M22. [Google Scholar] [CrossRef] [PubMed]
- Vahidnia, A.; van der Voet, G.B.; de Wolff, F.A. Arsenic Neurotoxicity—A Review. Hum. Exp. Toxicol. 2007, 26, 823–832. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. Exp. Suppl. 2014, 101, 133–164. [Google Scholar]
- Ali, H.; Khan, E. Bioaccumulation of Non-Essential Hazardous Heavy Metals and Metalloids in Freshwater Fish. Risk to Human Health. Environ. Chem. Lett. 2018, 16, 903–917. [Google Scholar] [CrossRef]
- Thakur, M.; Rachamalla, M.; Niyogi, S.; Datusalia, A.K.; Flora, S.J.S. Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. Int. J. Mol. Sci. 2021, 22, 10077. [Google Scholar] [CrossRef] [PubMed]
- Brinkel, J.; Khan, M.; Kraemer, A. A Systematic Review of Arsenic Exposure and Its Social and Mental Health Effects with Special Reference to Bangladesh. Int. J. Environ. Res. Public Health 2009, 6, 1609–1619. [Google Scholar] [CrossRef]
- Sen, D.; Sarathi Biswas, P. Arsenicosis: Is it a Protective or Predisposing Factor for Mental Illness? Iran. J. Psychiatry 2012, 7, 180–183. [Google Scholar]
- Agnihotri, S.K.; Kesari, K.K. Mechanistic Effect of Heavy Metals in Neurological Disorder and Brain Cancer. Environ. Sci. Eng. 2019, 25–47. [Google Scholar] [CrossRef]
- Mukherjee, B.; Bindhani, B.; Saha, H.; Sinha, D.; Ray, M.R. Platelet Hyperactivity, Neurobehavioral Symptoms and Depression among Indian Women Chronically Exposed to Low Level of Arsenic. NeuroToxicology 2014, 45, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Drzewiecka, K.; Gąsecka, M.; Rutkowski, P.; Magdziak, Z.; Goliński, P.; Mleczek, M. Arsenic Forms and Their Combinations Induce Differences in Phenolic Accumulation in Ulmus Laevis Pall. J. Plant Physiol. 2018, 220, 34–42. [Google Scholar] [PubMed]
- Fujino, Y.; Guo, X.-H.; Jun, L.; You, L.; Miyatake, M.; Yoshimura, T. Mental Health Burden amongst Inhabitants of an Arsenic-Affected Area in Inner Mongolia, China. Soc. Sci. Med. 2004, 59, 1969–1973. [Google Scholar] [CrossRef]
- Zierold, K.M.; Knobeloch, L.; Anderson, H. Prevalence of Chronic Diseases in Adults Exposed to Arsenic-Contaminated Drinking Water. Am. J. Public Health 2004, 94, 1936–1937. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Kim, M.-S. Interactions between Cadmium, Lead, Mercury, and Arsenic and Depression: A Molecular Mechanism Involved. J. Affect. Disord. 2023, 327, 315–329. [Google Scholar] [CrossRef]
- Samad, N.; Rao, T.; Rehman, M.H.U.; Bhatti, S.A.; Imran, I. Inhibitory Effects of Selenium on Arsenic-Induced Anxiety-/Depression-like Behavior and Memory Impairment. Biol. Trace Elem. Res. 2021, 200, 689–698. [Google Scholar]
- Tyler, C.R.; Solomon, B.R.; Ulibarri, A.L.; Allan, A.M. Fluoxetine Treatment Ameliorates Depression Induced by Perinatal Arsenic Exposure via a Neurogenic Mechanism. NeuroToxicology 2014, 44, 98–109. [Google Scholar] [CrossRef]
- Dubovsky, S.L.; Christiano, J.; Daniell, L.C.; Franks, R.D.; Murphy, J.; Adler, L.; Baker, N.; Harris, R.A. Increased Platelet Intracellular Calcium Concentration in Patients with Bipolar Affective Disorders. Arch. Gen. Psychiatry 1989, 46, 632–638. [Google Scholar] [CrossRef]
- Alkon, D.L.; Kubota, M.; Neary, J.T.; Naito, S.; Coulter, D.A.; Rasmussen, H. C-Kinase Activation Prolongs Ca2+-Dependent Inactivation of K+ Currents. Biochem. Biophys. Res. Commun. 1986, 134, 1245–1253. [Google Scholar] [CrossRef]
- Berridge, M.J. Calcium signalling and psychiatric disease: Bipolar disorder and schizophrenia. Cell Tissue Res. 2014, 357, 477–492. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Robb, J.C.; Levitt, A.J.; Cooke, R.G.; Joffe, R.T. Serum Mg2+ and Ca2+/Mg2+ Ratio in Major Depressive Disorder. Neuropsychobiology 1996, 34, 26–28. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.; Stein, D.; Rapoport, A.; Kurtzman, L. High Serum and Cerebrospinal Fluid Ca/Mg Ratio in Recently Hospitalized Acutely Depressed Patients. Neuropsychobiology 1999, 39, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Linder, J.; Brismar, K.; Beck-Friis, J.; Saaf, J.; Wetterberg, L. Calcium and Magnesium Concentrations in Affective Disorder: Difference between Plasma and Serum in Relation to Symptoms. Acta Psychiatr. Scand. 1989, 80, 527–537. [Google Scholar] [CrossRef]
- Galeotti, N.; Bartolini, A.; Ghelardini, C. Blockade of Intracellular Calcium Release Induces an Antidepressant-like Effect in the Mouse Forced Swimming Test. Neuropharmacology 2006, 50, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Paul, I.A. Antidepressant Activity and Calcium Signaling Cascades. Hum. Psychopharmacol. Clin. Exp. 2001, 16, 71–80. [Google Scholar] [CrossRef]
- Lyu, C.; Tsinovoi, C.L.; Xun, P.; Song, Y.; Pu, Y.; Rosanoff, A.; Iribarren, C.; Schreiner, P.J.; Shikany, J.M.; Jacobs, D.R.; et al. Magnesium Intake Was Inversely Associated with Hostility among American Young Adults. Nutr. Res. 2021, 89, 35–44. [Google Scholar] [CrossRef]
- Thi Thu Nguyen, T.; Miyagi, S.; Tsujiguchi, H.; Kambayashi, Y.; Hara, A.; Nakamura, H.; Suzuki, K.; Yamada, Y.; Shimizu, Y.; Nakamura, H. Association between Lower Intake of Minerals and Depressive Symptoms among Elderly Japanese Women but Not Men: Findings from Shika Study. Nutrients 2019, 11, 389. [Google Scholar] [CrossRef]
- Kaner, G.; Soylu, M.; Yüksel, N.; Inanç, N.; Ongan, D.; Başmısırlı, E. Evaluation of Nutritional Status of Patients with Depression. BioMed Res. Int. 2015, 2015, 521481. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Miura, A.; Nagahata, T.; Shibata, Y.; Okada, E.; Ojima, T. Low Zinc, Copper, and Manganese Intake Is Associated with Depression and Anxiety Symptoms in the Japanese Working Population: Findings from the Eating Habit and Well-Being Study. Nutrients 2019, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Bornhorst, J.; Wehe, C.A.; Hüwel, S.; Karst, U.; Galla, H.J.; Schwerdtle, T. Impact of manganese on and transfer across blood-brain and blood-cerebrospinal fluid barrier in vitro. J. Biol. Chem. 2012, 287, 17140–17151. [Google Scholar] [CrossRef] [PubMed]
- Soares, A.T.G.; Silva, A.C.; Tinkov, A.A.; Khan, H.; Santamaría, A.; Skalnaya, M.G.; Skalny, A.V.; Tsatsakis, A.; Bowman, A.B.; Aschner, M.; et al. The impact of manganese on neurotransmitter systems. J. Trace Elem. Med. Biol. 2020, 61, 126554. [Google Scholar] [CrossRef] [PubMed]
- Bowler, R.M.; Roels, H.A.; Nakagawa, S.; Drezgic, M.; Diamond, E.; Park, R.; Koller, W.; Bowler, R.P.; Mergler, D.; Bouchard, M.; et al. Dose-Effect Relationships between Manganese Exposure and Neurological, Neuropsychological and Pulmonary Function in Confined Space Bridge Welders. Occup. Environ. Med. 2007, 64, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Roels, H.; Bowler, R.M.; Kim, Y.; Henn, B.M.; Mergler, D.; Hoet, P.; Gocheva, V.V.; Bellinger, D.C.; Scott Wright, R.; Harris, M.P.; et al. Manganese Exposure and Cognitive Deficits: A Growing Concern for Manganese Neurotoxicity. Neurotoxicology 2012, 33, 872–880. [Google Scholar] [CrossRef]
- Farina, M.; Avila, D.S.; da Rocha, J.B.T.; Aschner, M. Metals, Oxidative Stress and Neurodegeneration: A Focus on Iron, Manganese and Mercury. Neurochem. Int. 2013, 62, 575–594. [Google Scholar]
- Bouchard, M.; Mergler, D.; Baldwin, M.; Panisset, M.; Roels, H.A. Neuropsychiatric Symptoms and Past Manganese Exposure in a Ferro-Alloy Plant. NeuroToxicology 2007, 28, 290–297. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Manganese; ATSDR: Atlanta, GA, USA, 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp151-c2.pdf (accessed on 15 July 2023).
- Martinez-Finley, E.J.; Gavin, C.E.; Aschner, M.; Gunter, T.E. Manganese Neurotoxicity and the Role of Reactive Oxygen Species. Free Radic. Biol. Med. 2013, 62, 65–75. [Google Scholar] [CrossRef]
- Li, S.-J.; Jiang, L.; Fu, X.; Huang, S.; Huang, Y.-N.; Li, X.-R.; Chen, J.-W.; Li, Y.; Luo, H.-L.; Wang, F.; et al. Pallidal Index as Biomarker of Manganese Brain Accumulation and Associated with Manganese Levels in Blood: A Meta-Analysis. PLoS ONE 2014, 9, e93900. [Google Scholar] [CrossRef]
- Rubio-López, N.; Morales-Suárez-Varela, M.; Pico, Y.; Livianos-Aldana, L.; Llopis-González, A. Nutrient Intake and Depression Symptoms in Spanish Children: The ANIVA Study. Int. J. Environ. Res. Public Health 2016, 13, 352. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Furukawa, S.; Arakawa, M. Manganese Intake Is Inversely Associated with Depressive Symptoms during Pregnancy in Japan: Baseline Data from the Kyushu Okinawa Maternal and Child Health Study. J. Affect. Disord. 2017, 211, 124–129. [Google Scholar] [CrossRef]
- Black, C.N.; Bot, M.; Scheffer, P.G.; Cuijpers, P.; Penninx, B.W.J.H. Is Depression Associated with Increased Oxidative Stress? A Systematic Review and Meta-Analysis. Psychoneuroendocrinology 2015, 51, 164–175. [Google Scholar] [CrossRef]
- McRae, N.; Bello, G.; Svensson, K.; Solano-González, M.; Wright, R.J.; Niedzwiecki, M.M.; Calapiz, M.T.; Amarasiriwardena, C.; Schnaas, L.; Tamayo-Ortiz, M.; et al. Blood Manganese Levels during Pregnancy and Postpartum Depression: A Cohort Study among Women in Mexico. NeuroToxicology 2020, 76, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Gałecki, P.; Szemraj, J.; Bieńkiewicz, M.; Florkowski, A.; Gałecka, E. Lipid Peroxidation and Antioxidant Protection in Patients during Acute Depressive Episodes and in Remission after Fluoxetine Treatment. Pharmacol. Rep. 2009, 61, 436–447. [Google Scholar] [CrossRef]
- Michel, T.M.; Frangou, S.; Thiemeyer, D.; Camara, S.; Jecel, J.; Nara, K.; Brunklaus, A.; Zoechling, R.; Riederer, P. Evidence for Oxidative Stress in the Frontal Cortex in Patients with Recurrent Depressive Disorder—A Postmortem Study. Psychiatry Res. 2007, 151, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Martínez, M.I.; Muñoz-Fambuena, I.; Cauli, O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 985–991. [Google Scholar] [CrossRef]
- Brownley, K.A.; Boettiger, C.A.; Young, L.; Cefalu, W.T. Dietary chromium supplementation for targeted treatment of diabetes patients with comorbid depression and binge eating. Med. Hypotheses 2015, 85, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, H.; Bagherzadeh, K.; Nazeri, Z.; Hassanijirdehi, M. Vitamin D, parathyroid hormone, serum calcium and phosphorus in patients with schizophrenia and major depression. Int. J. Psychiatry Clin. Pract. 2012, 17, 30–34. [Google Scholar] [CrossRef]
Element | Healthy Ranges: Female | Healthy Ranges: Male | Biological Functions | References |
---|---|---|---|---|
Selenium (Se) | 81.06–164.75 (121.05) μg/L |
Selenium (Se) is an essential trace element that plays a crucial role in various biological processes. Maintaining adequate selenium levels is important for overall health and well-being. Low selenium status has been associated with several health issues, including an increased risk of mortality, compromised immune function, and cognitive decline.
Selenium is a key component of selenoproteins, which are essential for various physiological functions, including antioxidant defense, immune response, thyroid hormone metabolism, and DNA synthesis. Adequate selenium levels are important for supporting the body’s immune system, protecting cells from oxidative damage, and promoting healthy cognitive function. However, selenium is a “dual-surface” element, meaning that both deficiency and excess can be harmful. Excessive selenium intake can lead to a condition called selenosis, which is characterized by symptoms such as gastrointestinal disturbances, hair and nail brittleness, skin rashes, and even neurological issues. | [37] | |
Iron (Fe) | 11–29 µmol/L (serum) | 14–32 µmol/L (serum) | Iron (Fe) is an essential trace element for all living organisms due to its critical role in various physiological processes. It is a crucial component of hemoglobin, the protein responsible for storing and delivering oxygen in red blood cells. Fe is also required for the synthesis of myoglobin (a protein found in muscles), catalase, peroxidase, and cytochromes, which play important roles in various cellular functions. Fe is a vital component of numerous proteins involved in DNA synthesis and cell proliferation, contributing to growth and development in the body. Proper Fe homeostasis is essential for mitochondrial functioning, cellular respiration, and the subsequent production of ATP (the energy currency of cells). It is also a part of several proteins involved in the electron transport chain, which is critical for generating energy in the form of ATP during cellular respiration. Within the central nervous system (CNS), Fe is the most abundant trace element and is involved in a wide range of processes. It plays a role in the synthesis of neurotransmitters like dopamine and serotonin, which are crucial for brain function. Fe also influences synaptic plasticity (the ability of synapses to change strength) and myelination (the formation of myelin sheaths around nerve fibers for better nerve impulse conduction). Proper Fe concentrations in the brain are regulated by ferritin, a protein that stores excess iron. Balanced Fe homeostasis and concentrations are vital for maintaining proper cognitive functions and supporting neurodevelopmental processes. In aging individuals, Fe accumulation within the brain might occur and could be associated with cognitive and motor dysfunctions. Imbalances in Fe levels, either due to deficiency or overload, can result in impaired monoamine neurotransmission (communication between nerve cells that use neurotransmitters like dopamine, serotonin, etc.) or cellular toxicity with potential neuronal damage, respectively. | [38,39,40,41,42] |
Zinc (Zn) | 70–125 µg/dL (serum) | Zinc (Zn) is the second most abundant trace element in the human body. It plays crucial roles in various physiological processes, including the maintenance of protein structure, regulation of gene expression, and RNA and DNA synthesis. As a result, Zn is essential for proper cell development, replication, and metabolism. Zinc serves as a cofactor for numerous enzymes, including dopamine β-hydroxylase, monoamine oxidase, tyrosinase, alkaline phosphatase, carbonic anhydrase, superoxide dismutase, DNA and RNA polymerases, alcohol dehydrogenase, and matrix metalloproteinases. In the CNS, zinc is most abundant in the hippocampus and the olfactory bulb, mainly found in the synaptic vesicles of glutaminergic neurons. Zn-containing neurons are highly concentrated in the forebrain. Zinc can inhibit the release of glutamate (Glu) and affect γ-aminobutyric acid type A (GABAA) receptors, which play a role in neurotransmission. Proper levels of zinc are crucial for adult neurogenesis and proper hippocampal functioning. Altered zinc levels within the CNS can lead to various neurological disorders, including cognitive impairments, mood disorders, anxiety, depression, epilepsy, Alzheimer’s disease, and dementia. Zinc is also implicated in neuronal damage. Symptoms of zinc deficiency include growth retardation, mental lethargy, alterations in hormone metabolism, impaired immunity, and cognitive dysfunctions. Additionally, zinc deficiency can contribute to the promotion of inflammation in the body. | [43,44,45,46,47,48] | |
Magnesium (Mg) | 0.65–1.05 mmol/L (total Mg in serum) 0.55–0.75 mmol/L (ionized Mg in serum) | Approximately 99% of the total body magnesium (Mg) is found in bones and muscles. Magnesium serves as a cofactor for more than 300 enzymes, which are involved in a wide range of functions within the body. These functions include neuromuscular conduction, muscle contraction, myocardial contraction (heart muscle function), and regulation of blood pressure. Mg is required for glycolysis (the breakdown of glucose), energy production, and oxidative phosphorylation (a process in cellular respiration). It also plays a role in controlling N-methyl-D-aspartate (NMDA) receptors in the brain, helping to prevent neuronal overstimulation. As a crucial mineral for bone health, magnesium is essential for proper bone mineralization. It is also necessary for maintaining the structures of proteins, nucleic acids (DNA and RNA), and mitochondria (the energy-producing organelles in cells). Additionally, magnesium is involved in the proper transmembrane transport of ions across cell membranes. Magnesium plays a role in several immunological functions, such as macrophage activation and lymphocyte proliferation, contributing to a well-functioning immune system. A magnesium deficiency can affect multiple systems in the body, leading to various symptoms. Neurologically, magnesium deficiency is associated with a higher risk of migraines, strokes, and seizures. Gastrointestinal symptoms may include insulin resistance, increased levels of triglycerides, and total cholesterol. Cardiovascular symptoms may include an increased risk of hypertension (high blood pressure) and atherosclerosis (hardening and narrowing of arteries), and patients with magnesium deficiency also present a higher risk of osteoporosis. On the other hand, excessive levels of magnesium (hypermagnesemia) can lead to symptoms such as hypotension (low blood pressure), nausea, vomiting, and cutaneous flushing. More severe cases of hypermagnesemia may cause neuromuscular dysfunctions, bradycardia (slow heart rate), atrial fibrillation (irregular heart rhythm), respiratory depression, or even coma. | [49,50,51,52,53] | |
Copper (Cu) | 70–140 mcg/dL (blood) | Copper (Cu) is the third most common transition element in the human body, and its highest concentrations are found primarily in the liver and brain. Copper plays diverse and essential roles in various physiological processes. One of the significant functions of copper is its involvement in proper iron (Fe) homeostasis, ensuring the balance of iron levels in the body. Copper is also crucial for myelination, the process by which nerve fibers are coated with a protective sheath, supporting efficient nerve signal transmission. Additionally, copper is essential for neurotransmitter synthesis, including the production of dopamine and norepinephrine, which are important for brain function and mood regulation. Copper is a vital component of several enzymes, such as tyrosine hydroxylase and dopamine hydroxylase, which are involved in the production of neurotransmitters. Other enzymes include superoxide dismutase, an antioxidant enzyme, and cytochrome c oxidase, which plays a role in cellular respiration. Approximately 80–95% of copper in the plasma is bound to ceruloplasmin, a copper-binding protein that helps transport copper in the blood. Copper is also stored in metallothionein, an important protein that aids in copper storage. However, excessive copper can be toxic, mainly due to oxidative damage caused by free radicals. Copper can bind to GABAA, NMDA receptors, and voltage-gated Ca2+ channels, impairing synaptic transmission. Copper concentrations and metabolic imbalances have been implicated in various neurodegenerative diseases, such as Alzheimer’s disease, Menkes disease (a genetic disorder affecting copper metabolism), Wilson’s disease (a genetic disorder causing copper accumulation), and spongiform encephalopathy (a group of neurological disorders involving abnormal protein folding). | [43,54,55,56,57,58,59] | |
Aluminium (Al) | <10 µg/L (serum) | Patients exposed to elevated levels of aluminum (Al) experience an accumulation of this metal in both their blood plasma and brain. The entry of Al into the CNS is facilitated through transferrin, concentrating mainly in regions rich in transferrin receptors. When plasma Al levels exceed 13 µg/L, early symptoms of neurotoxicity may become evident. Additionally, excessive Al exposure can trigger inflammatory responses by upregulating the expression of NF-κB and TNF-α. Accumulation of Al in the brain has been associated with several cognitive dysfunctions and, in more advanced stages, even dementia. Furthermore, this metal can disrupt hippocampal calcium (Ca) signaling pathways. The neurotoxic effects of Al are closely related to oxidative stress and the impaired synthesis of acetylcholine, particularly affecting cholinergic neurons, which are susceptible to Al toxicity. Moreover, elevated Al levels can also negatively impact acetylcholinesterase (AChE) activity and impair the functions of glial cells. Long-term exposure to Al can lead to conditions such as aluminosis, encephalopathy, breast cancer, and Alzheimer’s disease. As time passes, the physiological content of Al tends to increase within the brain due to these harmful processes. It is crucial to monitor and regulate Al exposure to mitigate its potential detrimental effects on neurological health. | [60,61,62,63,64] | |
Cadmium (Cd) | 0.5–2.0 ng/mL (blood) | Cadmium (Cd) is a toxic heavy metal with no significant biological function in the human body. It has been classified as a human carcinogen due to its ability to disrupt DNA repair, leading to uncontrolled cellular proliferation. Additionally, Cd facilitates the overexpression of various proto-oncogenes like c-myc or c-jun, further contributing to cancer risk. The metal also induces oxidative stress. Currently, Cd contamination is widespread in many food products, and its accumulation in the human body tends to increase with age. Cd is commonly found to accumulate in the liver, lungs, and eye tissues. Chronic exposure to Cd has been linked to diseases such as Itai-itai disease, tubular impairments associated with bone demineralization, and osteoporosis. Furthermore, there is evidence suggesting an association between Cd levels and the risk of diabetes, diabetic nephropathy, hypertension, and periodontal diseases. As a carcinogen, chronic exposure to Cd may lead to tumorigenesis in various organs, including the lungs, pancreas, prostate, stomach, and bladder. Moreover, prolonged exposure to Cd may result in neuropsychological dysfunctions, including cognitive delay. | [65,66] | |
Calcium (Ca) | 8.6–10.2 mg/dL (blood) | Calcium (Ca) is the most abundant mineral in the human body, with approximately 99% found in bones and only 1% in the serum. Ca metabolism is closely linked to several essential nutrients, among which phosphorus (P) and vitamin D play a major role. This mineral plays a crucial role in various physiological processes, including proper nerve transmission, vasoconstriction with vasodilation, muscle contraction, and intercellular signaling. Maintaining the appropriate Ca2+ homeostasis is achieved through two types of Ca2+ transport ATPases: the plasma membrane Ca2+-ATPase (PMCA) and the intracellular sarco/endoplasmic reticulum Ca2+-ATPase. Neuronal and glial cells express Ca-sensing receptors that are activated by extracellular Ca. These receptors play a role in neurotransmission and synaptic plasticity. Furthermore, Ca ions are involved in initiating and regulating responses to injuries within the CNS. Astrocytic Ca signals can modulate synaptic transmission, and proper glial cell function is also influenced by Ca signaling. Ca overload can lead to Glu excitotoxicity, stroke, and various neurodegenerative diseases. Conversely, Ca deficiency may result in calcification of the cerebellum, cerebral cortex, and basal ganglia, leading to subsequent extrapyramidal signs. Other effects of Ca deficiency include irritability, increased intracranial pressure, and spasms. On the other hand, hypercalcemia, which is an excessive level of Ca in the blood, primarily affects endocrine function due to increased parathormone production. | [67,68,69,70] | |
Manganese (Mn) | 0.4–0.85 µg/L (serum) | Manganese (Mn) is an essential element crucially involved in regulating glucose and lipid metabolism, as well as the synthesis and activation of various enzymes. These enzymes include arginase, isocitrate dehydrogenase, phosphoenolpyruvate carboxykinase, manganese superoxide dismutase (MnSOD), glutamine synthetase, glycosyl transferases, and pyruvate carboxylase. As a result, Mn plays a significant role in proper development, antioxidant defense, energy production, immune responses, and neuronal activity. The CNS has the highest concentrations of manganese, predominantly found in regions like the putamen, caudate nucleus, and globus pallidus. However, molecular mechanisms associated with Mn toxicity are numerous and include oxidative stress, mitochondrial dysfunction, autophagy dysregulation, and apoptosis, among others. Manganese toxicity disrupts the glutamine (Gln)/Glu-gamma-aminobutyric acid (GABA) cycle between astrocytes and neurons, impairing neurotransmission and Gln metabolism. Such imbalances in Mn levels are linked to neurodegenerative diseases. Excessive Mn levels, a condition known as manganism, can present symptoms similar to Parkinson’s disease, including cognitive, motor, and emotional impairments, and may even induce encephalopathy. Excessive amounts of Mn in the body are neurotoxic, and this mechanism is further enhanced by Mn-related overactivation of glial cells, leading to neuroinflammatory responses. Proper regulation of Mn levels is crucial for maintaining healthy neurological function and preventing neurotoxicity and associated disorders. | [43,71,72,73,74] | |
Nickel (Ni) | 0.2 µg/L (serum) | Nickel (Ni) is highly abundant in nucleic acids, particularly in RNA. It serves as a crucial component of several enzymes, including glyoxalase I, acireductone dioxygenase, nickel superoxide dismutase, ureases, Ni-Fe hydrogenase, methyl-CoM reductase, and CO dehydrogenase. These enzymes play essential roles in various metabolic processes. Ni is involved in important physiological functions, such as iron absorption and erythrocyte synthesis, as well as the metabolism of adrenaline, glucose, hormones, lipids, and cell membranes. However, excessive exposure to nickel can lead to various side effects and health issues. Commonly reported adverse effects of excessive Ni exposure include lung fibrosis, skin allergies, and an increased risk of developing nasal, laryngeal, and lung cancers. The Ni toxicity syndrome’ is characterized by a wide range of symptoms, including hypoglycemia, shortness of breath, nausea, a lowered pulse rate, headaches, diarrhea, and vomiting. Severe nickel intoxication can significantly impact the respiratory tract and gastrointestinal system. The most common causes of death resulting from Ni intoxication are pneumonitis (inflammation of the lungs) and cerebral edema (fluid accumulation in the brain). | [75,76,77,78,79] | |
Molybdenum (Mo) | 0.28–1.17 ng/mL (serum) | Molybdenum (Mo) serves as a vital cofactor for three main enzymes in the body: Sulphite oxidase: This enzyme is involved in the metabolism of sulfur-containing amino acids. Xanthine oxidase/dehydrogenase: It catalyzes the oxidative hydroxylation of purines and pyridines. Aldehyde oxidase: This enzyme is responsible for oxidizing purines, pyrimidines, and pteridines. A deficiency of sulphite oxidase can lead to neurological symptoms. A low dietary intake of molybdenum results in decreased concentrations of serum and urinary uric acid, as well as excessive excretion of xanthine. Since molybdenum is required in small amounts, its deficiency is relatively rare. However, in cases of “acquired Mo deficiency,” characterized by high blood methionine levels, low blood uric acid levels, and reduced urinary sulfate and uric acid levels, motor dysfunctions might be associated. | [80,81,82,83,84,85] | |
Phosphorus (P) | 2.5 to 4.5 mg/dL (blood) | Phosphorus (P) is an essential element involved in numerous vital processes in the body. It plays a fundamental role in DNA and ATP synthesis, membrane formation, and protein phosphorylation. P is a critical component of DNA and RNA, which are essential for genetic information and cellular functions. Inorganic phosphate is particularly important for proper skeletal mineralization, with approximately 85% of phosphorus distributed within bones and teeth, while the remaining quantities are found in blood and other tissues. Phosphorus plays a key role, either directly or indirectly, in various biological processes such as gene transcription regulation, cell signaling through phosphorylation reactions, maintaining acid-base homeostasis to ensure the physiological pH of bodily fluids, activating numerous enzymes, and proper energy storage. It is also a component of 2,3-diphosphoglycerate, which plays a role in oxygen transport in red blood cells. Phosphorus deficiency can lead to numerous bone-related symptoms, such as increased bone pain, fragility, and joint stiffness. Muscle dysfunctions, primarily affecting major muscles, are also common, with severe cases potentially leading to respiratory depression and low cardiac output. Chronic phosphorus deficiency can result in proximal myopathy, rhabdomyolysis (an increased risk of hemolytic anemia), and impaired erythrocyte synthesis. Hypophosphatemia, characterized by low levels of phosphorus in the blood, can also lead to neurological or cognitive symptoms, including fatigue, weakness, irritability, apathy, intention tremors, delirium, or even coma. On the other hand, hyperphosphatemia, characterized by elevated levels of phosphorus in the blood, can manifest as enhanced vascular or soft tissue calcification, an increased risk of secondary hyperparathyroidism, and renal osteodystrophy. | [86,87,88] | |
Uranium (U) | Uranium (U) is a heavy metal that can be absorbed into the human body through various routes, including inhalation, ingestion of U-contaminated food and water, and dermal contact (e.g., through damaged tissues). U toxicity can manifest as either acute or chronic, and it primarily affects the kidneys, with other organs such as bones, liver, lungs, and reproductive organs also susceptible to chronic toxicity. Uranium can pass through the blood-brain barrier, leading to concerns about its potential neurotoxic effects. So far, U has shown toxic properties, particularly toward dopaminergic cells in the brain. Chronic exposure to uranium can also impact the immune system, resulting in a wide spectrum of effects ranging from infectious diseases to autoimmune disorders. Additionally, there are concerns about uranium’s potential to induce carcinogenesis or the development of cancer. | [89,90,91,92,93] | ||
Chromium (Cr) | 0.5 and 2.5 μg/L (blood) 0.8 and 5.1 μg/L (serum) | Chromium (Cr) is a vital trace element necessary for normal carbohydrate metabolism. Its biological function is closely linked to insulin, and many reactions stimulated by chromium are also dependent on insulin. A deficiency of chromium (III) can lead to disturbances in metabolic processes. One of the primary responses of the body to chromium (III) deficiency is a decreased glucose tolerance, resulting from changes in insulin’s affinity to its receptors on cells. Additionally, significant amounts of chromium (III) are found in nucleic acids, which influences their metabolism, replication, and transcription processes. Furthermore, chromium ions can reduce the levels of corticosteroids in the plasma and enhance the functional activity of the immune system in the body. In summary, chromium is essential for proper carbohydrate metabolism and is closely associated with insulin function. A chromium deficiency (III) can lead to metabolic disruptions, altered glucose tolerance, and impacts on nucleic acid metabolism and immune system activity. | [94,95,96] | |
Lead (Pb) | Lead (Pb) exposure can have severe and harmful effects on different systems in the body, including the hematopoietic (blood-forming), renal (kidney), reproductive, and central nervous systems. The primary mechanism of these deleterious effects is the increase in oxidative stress, which leads to cellular damage and dysfunction. It is essential to note that there is no known level of lead that is necessary or beneficial for the body. Even at low levels, lead exposure can be harmful. Consequently, no “safe” level of exposure to lead has been identified. Any level of lead exposure can potentially lead to adverse health effects, especially over prolonged periods. | [97] | ||
Mercury (Hg) | Human toxicity caused by mercury (Hg) can vary based on the specific form of mercury, the dose, and the rate of exposure. Different forms of mercury have distinct effects on the body. When mercury vapor is inhaled, the primary target organ is the brain. Mercurous and mercuric salts, on the other hand, tend to damage the gut lining and the kidneys. Methyl mercury, a form of organic mercury, is distributed widely throughout the body. The severity of toxicity depends on the dosage. Large acute exposures to elemental mercury vapor can lead to severe pneumonitis, a condition characterized by inflammation of the lungs, which, in extreme cases, can be fatal. | [98] | ||
Arsenic (As) | Arsenic (As) acts as a potent poison that disrupts cellular functions by targeting sulfhydryl groups within cells. It interferes with crucial cell processes such as enzymatic activity, cell respiration, and cell division (mitosis). Two significant forms of arsenic, inorganic arsenite (III) and organic arsenicals with the general formula R-As2+ form strong bonds with thiol groups, particularly with vicinal dithiols like dihydrolipoic acid (DHLA). These thiol groups, along with certain seleno-enzymes, become vulnerable targets for the toxic effects of arsenic. Furthermore, R-As2+-compounds exhibit an even higher affinity for selenol groups, found in proteins like thioredoxin reductase, which also contain a thiol group adjacent to the selenol. The inhibition of these reactive oxygen species (ROS)-scavenging seleno-enzymes is responsible for the oxidative stress associated with arsenic poisoning. Overall, arsenic’s ability to disrupt cellular functions by targeting sulfhydryl and selenol groups in critical enzymes and proteins leads to oxidative stress, contributing to the harmful effects of arsenic poisoning on the body. | [99,100] | ||
Antimony (Sb) | Exposure to high concentrations of antimony in the air, specifically at levels of 9 mg/m3, can lead to irritation of the eyes, skin, and lungs. Prolonged exposure to antimony in smelting plants, in particular, may result in the development of antimoniosis, a specific type of pneumoconiosis that affects the lungs. Chronic exposure to antimony is associated with an increased risk of lung, heart, and gastrointestinal diseases. The health effects of exposure to antimony can include vomiting and irritation of the eyes and mucous membranes. However, antimony compounds are generally not considered to pose significant mutagenic, carcinogenic, or teratogenic risks in pregnant women. This means that, in general, antimony exposure is not believed to cause genetic mutations, cancer, or birth defects in pregnant women or their unborn children. | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baj, J.; Bargieł, J.; Cabaj, J.; Skierkowski, B.; Hunek, G.; Portincasa, P.; Flieger, J.; Smoleń, A. Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 15071. https://doi.org/10.3390/ijms242015071
Baj J, Bargieł J, Cabaj J, Skierkowski B, Hunek G, Portincasa P, Flieger J, Smoleń A. Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches. International Journal of Molecular Sciences. 2023; 24(20):15071. https://doi.org/10.3390/ijms242015071
Chicago/Turabian StyleBaj, Jacek, Julia Bargieł, Justyna Cabaj, Bartosz Skierkowski, Gabriela Hunek, Piero Portincasa, Jolanta Flieger, and Agata Smoleń. 2023. "Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches" International Journal of Molecular Sciences 24, no. 20: 15071. https://doi.org/10.3390/ijms242015071
APA StyleBaj, J., Bargieł, J., Cabaj, J., Skierkowski, B., Hunek, G., Portincasa, P., Flieger, J., & Smoleń, A. (2023). Trace Elements Levels in Major Depressive Disorder—Evaluation of Potential Threats and Possible Therapeutic Approaches. International Journal of Molecular Sciences, 24(20), 15071. https://doi.org/10.3390/ijms242015071