Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200
Abstract
:1. Introduction
2. CD24
2.1. CD24 Expression in Tumor Cells and Its Effects on Tumor Progression
2.2. CD24 as “Don’t Eat Me” Signal and Interaction with Siglec-10
2.3. Immune-Therapeutics Targeting CD24 (CD24-Based Immunotherapy)
Format of Therapy | Name | Tumor | Indications | Effects | Reference |
---|---|---|---|---|---|
Monoclonal antibody | SWA11 | Lung adenocarcinoma, ovarian carcinoma | SCID mouse xenograft model of A549 lung or SKOV3ip ovarian cancer cells | Retardation of the growth of lung and ovarian carcinoma xenografts | [69] |
Pancreatic cancer | SCID mouse xenograft model of BxPC3 pancreatic cancer cells | Prevention of tumor growth | [70] | ||
Colorectal cancer | Nude mouse xenograft model of HT29 colorectal cancer cells | Reduction in tumor growth rate | [71] | ||
Multiple myeloma | NOD-Rag1 mouse xenograft model of ARP1 MM cells | Inhibition of multiple myeloma progression | [72] | ||
ALB9 | Bladder cancer | Nude mouse xenograft model of metastatic Lul-1 cells | Reduction in lung metastasis and increase in survival rate | [73] | |
Breast cancer | SCID mouse xenograft model of MDA-MB-231 cells | Reduction in lung metastasis and increase in survival rate | [74] | ||
B-lymphoproliferative disorder (BLPD) | Patients presenting with post-transplant BLPD | Complete remission in 16 of the 26 patients | [85,86] | ||
Clone SN3 | Breast cancer | NSG mouse xenograft model of MCF-7 cells | Reduction in tumor growth | [56] | |
Mantle cell lymphoma | Co-culture of Mino cells and macrophages | Increase in phagocytosis of Mino cells by macrophages | |||
G7mAb | Lung, liver, and colorectal cancer | Nude mouse xenograft model of A549, Huh-7, and HT-29 cells | Inhibition of tumor growth | [75] | |
Recombinant bispecific antibody | cG7-MICA | Liver cancer | Nude mouse xenograft model of Huh-7 cells | Reduction in tumor volume and improving survival rate | [76] |
CAR-T cell therapy | Anti-CD24-CAR | Pancreatic cancer | SCID mouse xenograft model of human patient’s pancreatic adenocarcinoma (PAC) | Slow tumor growth and prolong survival | [78] |
Ovarian cancer | Patient-derived ovarian cancer cells | Specific killing of patient-derived ovarian cancer cells | [79] | ||
ADC (antibody–drug conjugate) | SWA11-dgA | Burkitt’s lymphoma | SCID mouse xenograft model of BL-38 cells | Improvement of survival | [80] |
SWA11-ZZ-PE38 | Colon cancer | Athymic nude mouse xenograft model of colorectal cancer cells | Reduction in tumor volume | [81] | |
HN-01 G7mAb-doxorubicin | Liver cancer | Balb/c nude mouse xenograft model of Huh7 or BEL-7402 cells | Inhibition of tumor growth | [82,83] | |
hG7mAb-vcMMAE | Liver cancer | Balb/c nude mouse xenograft model of Huh7 cells | Inhibition of tumor growth | [84] |
3. CD200
3.1. CD200 Expression in Tumor Cells and Its Effects on Tumor Progression
3.2. Interaction between CD200 and Its Receptor, CD200R, in the Tumor Microenvironment
3.3. CD200–CD200R Pathway as an Immune-Therapeutic Target in Cancers
Format of Therapy | Name | Tumors | Indications | Effects | Reference |
---|---|---|---|---|---|
Antibody | CD200Fc | Leukemic tumor | CD80-transfected EL4 or C1498 leukemia tumor cell allograft mice | Inhibition of tumor growth protection | [136] |
Anti-CD200 Ab | B-cell chronic lymphocytic leukemia | Mice bearing CD200-expressing Namalwa tumor cells | Inhibition of tumor growth | [128] | |
Samalizumab (recombinant humanized monoclonal antibody that targets CD200) | Chronic lymphocytic leukemia (CLL) and multiple myeloma (MM) | 23 patients with advanced CLL and 3 patients with MM (Phase I study: NCT00648739) | Decrease in tumor burden in 14 CLL patients | [139] | |
Rat anti-mouse CD200 Ab | Breast tumor | EMT6 tumor cells injected into CD200tg, CD200KO, and CD200R1KO mice | Inhibition of tumor growth and metastasis in tumor-bearing mice by anti-CD200 Ab; inhibition of tumor metastasis in CD200KO and CD200R1KO mice | [141,142,143] | |
Rabbit Fab anti-CD200R1 Ab | Breast tumor | Mice that underwent surgical resection of the tumors were immunized with EMT6 tumor cells | No EMT6 tumor metastasis in mice immunized with EMT6 tumor cells | [144] | |
Anti-CD200R1 mAb | Liver cancer | Murine hepatoma cell line, Hepa1–6 cells, inoculated mice | Inhibition of tumor growth in Hepa1–6-inoculated mice by anti-CD200R1 mAb | [145] | |
Adenovirus-expressing sCD200R1-Ig (fusion of the soluble extracellular domain of CD200R1 and Fc domain of mouse IgG2a) (Ad5sCD200R1) | Head and neck cancer | Mice injected with CD200-overexpressing HNSCC cells | Inhibition of tumor growth in mice injected with CD200-overexpressing HNSCC cells by Ad5sCD200R1 | [146] | |
CD200R antagonist peptide | A26059 | Glioma tumor | GL261 glioma tumor-implanted mice | Inhibition of tumor growth and increased survival in tumor-bearing mice | [117] |
Truncated CD200 that lacks the part for CD200R binding | Glioma tumor | Truncated CD200 (lack of CD200R binding part) or full-length CD200-expressing C6 glioma cell-transplanted Wistar rats | Inhibition of lung metastasis in rats transplanted with C6 cells expressing truncated CD200 | [140] | |
Immunomodulatory fusion protein | CD200R–CD28 IFP | Murine leukemia | FBL mouse model of disseminated leukemia | Enhancement of survival of murine leukemia mouse model injected with CD200+ FBL cells | [138] |
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Gun, S.Y.; Lee, S.W.L.; Sieow, J.L.; Wong, S.C. Targeting immune cells for cancer therapy. Redox Biol. 2019, 25, 101174. [Google Scholar] [CrossRef]
- Darvin, P.; Toor, S.M.; Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Exp. Mol. Med. 2018, 50, 1–11. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef]
- Haanen, J.B.; Robert, C. Immune checkpoint inhibitors. Prog. Tumor Res. 2015, 42, 55–66. [Google Scholar]
- Liu, X.; Hogg, G.D.; DeNardo, D.G. Rethinking immune checkpoint blockade: ‘Beyond the t cell’. J. Immunother. Cancer 2021, 9, e001460. [Google Scholar] [CrossRef]
- Marin-Acevedo, J.A.; Kimbrough, E.O.; Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol. 2021, 14, 45. [Google Scholar] [CrossRef]
- Lentz, R.W.; Colton, M.D.; Mitra, S.S.; Messersmith, W.A. Innate immune checkpoint inhibitors: The next breakthrough in medical oncology? Mol. Cancer Ther. 2021, 20, 961–974. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef]
- Feng, M.; Jiang, W.; Kim, B.Y.S.; Zhang, C.C.; Fu, Y.X.; Weissman, I.L. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 568–586. [Google Scholar] [CrossRef]
- Liu, X.; Kwon, H.; Li, Z.; Fu, Y.X. Is CD47 an innate immune checkpoint for tumor evasion? J. Hematol. Oncol. 2017, 10, 12. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Q.; Xiao, W.; Zhao, Y.; Pi, J.; Xu, H.; Zhao, H.; Xu, J.; Evans, C.E.; Jin, H. Advances in anti-tumor treatments targeting the CD47/sirpalpha axis. Front. Immunol. 2020, 11, 18. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Gao, J.; Fu, Y.; Hua, P.; Jing, Y.; Cai, M.; Wang, H.; Tong, T. The role of CD47-sirpalpha immune checkpoint in tumor immune evasion and innate immunotherapy. Life Sci. 2021, 273, 119150. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C.; Liu, Y.; Wang, C.; Jiang, H.; Hu, Y.; Wu, J. Recent advances of tumor therapy based on the CD47-sirpalpha axis. Mol. Pharm. 2022, 19, 1273–1293. [Google Scholar] [CrossRef]
- Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 2021, 16, 223–249. [Google Scholar] [CrossRef]
- Velcheti, V.; Schalper, K. Basic overview of current immunotherapy approaches in cancer. Am. Soc. Clin. Oncol. Educ. Book 2016, 35, 298–308. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, P.; Tang, J.; Liu, Y. Cd24: From a to z. Cell. Mol. Immunol. 2010, 7, 100–103. [Google Scholar] [CrossRef]
- Eyvazi, S.; Kazemi, B.; Dastmalchi, S.; Bandehpour, M. Involvement of CD24 in multiple cancer related pathways makes it an interesting new target for cancer therapy. Curr. Cancer Drug Targets 2018, 18, 328–336. [Google Scholar] [CrossRef]
- Hardy, R.R.; Hayakawa, K.; Parks, D.R.; Herzenberg, L.A.; Herzenberg, L.A. Murine b cell differentiation lineages. J. Exp. Med. 1984, 159, 1169–1188. [Google Scholar] [CrossRef]
- Ayre, D.C.; Pallegar, N.K.; Fairbridge, N.A.; Canuti, M.; Lang, A.S.; Christian, S.L. Analysis of the structure, evolution, and expression of CD24, an important regulator of cell fate. Gene 2016, 590, 324–337. [Google Scholar] [CrossRef]
- Li, O.; Zheng, P.; Liu, Y. Cd24 expression on t cells is required for optimal t cell proliferation in lymphopenic host. J. Exp. Med. 2004, 200, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.J.; Lorenz, B.; Muller, A.M.; Wenger, R.H.; Brombacher, F.; Simon, M.; von der Weid, T.; Langhorne, W.J.; Mossmann, H.; Kohler, G. Altered erythrocytes and a leaky block in b-cell development in CD24/hsa-deficient mice. Blood 1997, 89, 1058–1067. [Google Scholar] [CrossRef]
- Baumann, P.; Cremers, N.; Kroese, F.; Orend, G.; Chiquet-Ehrismann, R.; Uede, T.; Yagita, H.; Sleeman, J.P. Cd24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res. 2005, 65, 10783–10793. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.H.; Lee, E.S.; Kim, Y.S. Cd24 overexpression in cancer development and progression: A meta-analysis. Oncol. Rep. 2009, 22, 1149–1156. [Google Scholar]
- Bradley, C.A. Cd24—A novel ‘don’t eat me’ signal. Nat Rev. Cancer 2019, 19, 541. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.H.; Zhao, X.; Wang, W. Cd24, a review of its role in tumor diagnosis, progression and therapy. Curr. Gene Ther. 2020, 20, 109–126. [Google Scholar] [CrossRef] [PubMed]
- Panagiotou, E.; Syrigos, N.K.; Charpidou, A.; Kotteas, E.; Vathiotis, I.A. Cd24: A novel target for cancer immunotherapy. J. Pers. Med. 2022, 12, 1235. [Google Scholar] [CrossRef]
- Fogel, M.; Friederichs, J.; Zeller, Y.; Husar, M.; Smirnov, A.; Roitman, L.; Altevogt, P.; Sthoeger, Z.M. Cd24 is a marker for human breast carcinoma. Cancer Lett. 1999, 143, 87–94. [Google Scholar] [CrossRef]
- Athanassiadou, P.; Grapsa, D.; Gonidi, M.; Athanassiadou, A.M.; Tsipis, A.; Patsouris, E. Cd24 expression has a prognostic impact in breast carcinoma. Pathol. Res. Pract. 2009, 205, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, G.; Winzer, K.J.; Mayordomo, E.; Bellach, J.; Schluns, K.; Denkert, C.; Dahl, E.; Pilarsky, C.; Altevogt, P.; Guski, H.; et al. Cd24 expression is a new prognostic marker in breast cancer. Clin. Cancer Res. 2003, 9, 4906–4913. [Google Scholar] [PubMed]
- Hosonaga, M.; Arima, Y.; Sugihara, E.; Kohno, N.; Saya, H. Expression of CD24 is associated with her2 expression and supports her2-akt signaling in her2-positive breast cancer cells. Cancer Sci. 2014, 105, 779–787. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, M.J.; Ahn, S.H.; Son, B.H.; Kim, S.B.; Ahn, J.H.; Noh, W.C.; Gong, G. Different prognostic significance of CD24 and CD44 expression in breast cancer according to hormone receptor status. Breast 2011, 20, 78–85. [Google Scholar] [CrossRef]
- Surowiak, P.; Materna, V.; Paluchowski, P.; Matkowski, R.; Wojnar, A.; Maciejczyk, A.; Pudelko, M.; Kornafel, J.; Dietel, M.; Kristiansen, G.; et al. Cd24 expression is specific for tamoxifen-resistant ductal breast cancer cases. Anticancer Res. 2006, 26, 629–634. [Google Scholar] [PubMed]
- Kristiansen, G.; Denkert, C.; Schluns, K.; Dahl, E.; Pilarsky, C.; Hauptmann, S. Cd24 is expressed in ovarian cancer and is a new independent prognostic marker of patient survival. Am. J. Pathol. 2002, 161, 1215–1221. [Google Scholar] [CrossRef]
- Nakamura, K.; Terai, Y.; Tanabe, A.; Ono, Y.J.; Hayashi, M.; Maeda, K.; Fujiwara, S.; Ashihara, K.; Nakamura, M.; Tanaka, Y.; et al. Cd24 expression is a marker for predicting clinical outcome and regulates the epithelial-mesenchymal transition in ovarian cancer via both the akt and erk pathways. Oncol. Rep. 2017, 37, 3189–3200. [Google Scholar] [CrossRef]
- Ono, Y.J.; Tanabe, A.; Tanaka, T.; Tanaka, Y.; Hayashi, M.; Terai, Y.; Ohmichi, M. Met signaling cascade is amplified by the recruitment of phosphorylated met to lipid rafts via CD24 and leads to drug resistance in endometrial cancer cell lines. Mol. Cancer Ther. 2015, 14, 2353–2363. [Google Scholar] [CrossRef]
- Kwon, G.Y.; Ha, H.; Ahn, G.; Park, S.Y.; Huh, S.J.; Park, W. Role of CD24 protein in predicting metastatic potential of uterine cervical squamous cell carcinoma in patients treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1150–1156. [Google Scholar] [CrossRef]
- Sano, A.; Kato, H.; Sakurai, S.; Sakai, M.; Tanaka, N.; Inose, T.; Saito, K.; Sohda, M.; Nakajima, M.; Nakajima, T.; et al. Cd24 expression is a novel prognostic factor in esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2009, 16, 506–514. [Google Scholar] [CrossRef]
- Fujikuni, N.; Yamamoto, H.; Tanabe, K.; Naito, Y.; Sakamoto, N.; Tanaka, Y.; Yanagihara, K.; Oue, N.; Yasui, W.; Ohdan, H. Hypoxia-mediated CD24 expression is correlated with gastric cancer aggressiveness by promoting cell migration and invasion. Cancer Sci. 2014, 105, 1411–1420. [Google Scholar] [CrossRef]
- Bektas, S.; Bahadir, B.; Ucan, B.H.; Ozdamar, S.O. Cd24 and galectin-1 expressions in gastric adenocarcinoma and clinicopathologic significance. Pathol. Oncol. Res. 2010, 16, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Darwish, N.S.; Kim, M.A.; Chang, M.S.; Lee, H.S.; Lee, B.L.; Kim, Y.I.; Kim, W.H. Prognostic significance of CD24 expression in gastric carcinoma. Cancer Res. Treat. 2004, 36, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Lee, H.W.; Hur, K.Y.; Kim, J.J.; Park, G.S.; Jang, S.H.; Song, Y.S.; Jang, K.S.; Paik, S.S. Cancer stem cell markers CD133 and CD24 correlate with invasiveness and differentiation in colorectal adenocarcinoma. World J. Gastroenterol. 2009, 15, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Majores, M.; Schindler, A.; Fuchs, A.; Stein, J.; Heukamp, L.; Altevogt, P.; Kristiansen, G. Membranous CD24 expression as detected by the monoclonal antibody swa11 is a prognostic marker in non-small cell lung cancer patients. BMC Clin. Pathol. 2015, 15, 19. [Google Scholar] [CrossRef]
- Yang, X.R.; Xu, Y.; Yu, B.; Zhou, J.; Li, J.C.; Qiu, S.J.; Shi, Y.H.; Wang, X.Y.; Dai, Z.; Shi, G.M.; et al. Cd24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin. Cancer Res. 2009, 15, 5518–5527. [Google Scholar] [CrossRef]
- Ikenaga, N.; Ohuchida, K.; Mizumoto, K.; Yu, J.; Kayashima, T.; Hayashi, A.; Nakata, K.; Tanaka, M. Characterization of CD24 expression in intraductal papillary mucinous neoplasms and ductal carcinoma of the pancreas. Hum. Pathol. 2010, 41, 1466–1474. [Google Scholar] [CrossRef]
- Jacob, J.; Bellach, J.; Grutzmann, R.; Alldinger, I.; Pilarsky, C.; Dietel, M.; Kristiansen, G. Expression of CD24 in adenocarcinomas of the pancreas correlates with higher tumor grades. Pancreatology 2004, 4, 454–460. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Al-Attar, A.; Kim, J.; Watson, N.F.; Scholefield, J.H.; Durrant, L.G.; Ilyas, M. Cd24 shows early upregulation and nuclear expression but is not a prognostic marker in colorectal cancer. J. Clin. Pathol. 2009, 62, 1117–1122. [Google Scholar] [CrossRef]
- Sagiv, E.; Memeo, L.; Karin, A.; Kazanov, D.; Jacob-Hirsch, J.; Mansukhani, M.; Rechavi, G.; Hibshoosh, H.; Arber, N. Cd24 is a new oncogene, early at the multistep process of colorectal cancer carcinogenesis. Gastroenterology 2006, 131, 630–639. [Google Scholar] [CrossRef]
- Pieper, K.; Grimbacher, B.; Eibel, H. B-cell biology and development. J. Allergy Clin. Immunol. 2013, 131, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.; Nachmias, B.; Pick, M.; Gross Even-Zohar, N.; Gatt, M.E. Understanding the bioactivity and prognostic implication of commonly used surface antigens in multiple myeloma. J. Clin. Med. 2022, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Higashi, M.; Momose, S.; Takayanagi, N.; Tanaka, Y.; Anan, T.; Yamashita, T.; Kikuchi, J.; Tokuhira, M.; Kizaki, M.; Tamaru, J.I. Cd24 is a surrogate for ‘immune-cold’ phenotype in aggressive large b-cell lymphoma. J. Pathol. Clin. Res. 2022, 8, 340–354. [Google Scholar] [CrossRef]
- Huang, P.Y.; Best, O.G.; Almazi, J.G.; Belov, L.; Davis, Z.A.; Majid, A.; Dyer, M.J.; Pascovici, D.; Mulligan, S.P.; Christopherson, R.I. Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia. Leuk. Lymphoma 2014, 55, 2085–2092. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Barkal, A.A.; Brewer, R.E.; Markovic, M.; Kowarsky, M.; Barkal, S.A.; Zaro, B.W.; Krishnan, V.; Hatakeyama, J.; Dorigo, O.; Barkal, L.J.; et al. Cd24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature 2019, 572, 392–396. [Google Scholar] [CrossRef]
- Macauley, M.S.; Crocker, P.R.; Paulson, J.C. Siglec-mediated regulation of immune cell function in disease. Nat. Rev. Immunol. 2014, 14, 653–666. [Google Scholar] [CrossRef]
- Daeron, M.; Jaeger, S.; Du Pasquier, L.; Vivier, E. Immunoreceptor tyrosine-based inhibition motifs: A quest in the past and future. Immunol. Rev. 2008, 224, 11–43. [Google Scholar] [CrossRef] [PubMed]
- Neel, B.G.; Gu, H.; Pao, L. The ‘shp’ing news: Sh2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 2003, 28, 284–293. [Google Scholar] [CrossRef]
- Pillai, S.; Netravali, I.A.; Cariappa, A.; Mattoo, H. Siglecs and immune regulation. Annu. Rev. Immunol. 2012, 30, 357–392. [Google Scholar] [CrossRef]
- Li, N.; Zhang, W.; Wan, T.; Zhang, J.; Chen, T.; Yu, Y.; Wang, J.; Cao, X. Cloning and characterization of Siglec-10, a novel sialic acid binding member of the ig superfamily, from human dendritic cells. J. Biol. Chem. 2001, 276, 28106–28112. [Google Scholar] [CrossRef]
- Duan, S.; Paulson, J.C. Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol. 2020, 38, 365–395. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Brown, N.K.; Zheng, P.; Liu, Y. Siglec-g/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology 2014, 24, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Freile, J.A.; Ustyanovska Avtenyuk, N.; Corrales, M.G.; Lourens, H.J.; Huls, G.; van Meerten, T.; Cendrowicz, E.; Bremer, E. Cd24 is a potential immunotherapeutic target for mantle cell lymphoma. Biomedicines 2022, 10, 1175. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.L.; Lan, Z.; Cui, H.; Zhao, Y.Y.; Wang, W.M.; Yu, G.T. Cd24 blockade promotes anti-tumor immunity in oral squamous cell carcinoma. Oral Dis. 2022. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Guo, R.; Bian, Z.; Song, Y. Targeting macrophages in hematological malignancies: Recent advances and future directions. J. Hematol. Oncol. 2022, 15, 110. [Google Scholar] [CrossRef] [PubMed]
- Xiao, N.; Zhu, X.; Li, K.; Chen, Y.; Liu, X.; Xu, B.; Lei, M.; Xu, J.; Sun, H.C. Blocking siglec-10hi tumor-associated macrophages improves anti-tumor immunity and enhances immunotherapy for hepatocellular carcinoma. Exp. Hematol. Oncol. 2021, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Zahavi, D.; Weiner, L. Monoclonal antibodies in cancer therapy. Antibodies 2020, 9, 34. [Google Scholar] [CrossRef]
- Salnikov, A.V.; Bretz, N.P.; Perne, C.; Hazin, J.; Keller, S.; Fogel, M.; Herr, I.; Schlange, T.; Moldenhauer, G.; Altevogt, P. Antibody targeting of CD24 efficiently retards growth and influences cytokine milieu in experimental carcinomas. Br. J. Cancer 2013, 108, 1449–1459. [Google Scholar] [CrossRef]
- Bretz, N.P.; Salnikov, A.V.; Perne, C.; Keller, S.; Wang, X.; Mierke, C.T.; Fogel, M.; Erbe-Hofmann, N.; Schlange, T.; Moldenhauer, G.; et al. Cd24 controls src/stat3 activity in human tumors. Cell. Mol. Life Sci. 2012, 69, 3863–3879. [Google Scholar] [CrossRef]
- Sagiv, E.; Starr, A.; Rozovski, U.; Khosravi, R.; Altevogt, P.; Wang, T.; Arber, N. Targeting CD24 for treatment of colorectal and pancreatic cancer by monoclonal antibodies or small interfering rna. Cancer Res. 2008, 68, 2803–2812. [Google Scholar] [CrossRef]
- Gao, M.; Bai, H.; Jethava, Y.; Wu, Y.; Zhu, Y.; Yang, Y.; Xia, J.; Cao, H.; Franqui-Machin, R.; Nadiminti, K.; et al. Identification and characterization of tumor-initiating cells in multiple myeloma. J. Natl. Cancer Inst. 2020, 112, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Overdevest, J.B.; Thomas, S.; Kristiansen, G.; Hansel, D.E.; Smith, S.C.; Theodorescu, D. Cd24 offers a therapeutic target for control of bladder cancer metastasis based on a requirement for lung colonization. Cancer Res. 2011, 71, 3802–3811. [Google Scholar] [CrossRef]
- Chan, S.H.; Tsai, K.W.; Chiu, S.Y.; Kuo, W.H.; Chen, H.Y.; Jiang, S.S.; Chang, K.J.; Hung, W.C.; Wang, L.H. Identification of the novel role of CD24 as an oncogenesis regulator and therapeutic target for triple-negative breast cancer. Mol. Cancer Ther. 2019, 18, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, T.; Tu, X.; Xie, W.; He, H.; Wang, M.; Zhang, J. Antibody-based targeting of CD24 enhances antitumor effect of cetuximab via attenuating phosphorylation of src/stat3. Biomed. Pharmacother. 2017, 90, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, F.; Zhang, X.; Wang, T.; Jiang, J.; Cai, J.; Gao, Q.; Hezam, K.; Liu, Y.; Xie, J.; et al. Cd24 targeting bi-specific antibody that simultaneously stimulates nkg2d enhances the efficacy of cancer immunotherapy. J. Cancer Res. Clin. Oncol. 2019, 145, 1179–1190. [Google Scholar] [CrossRef]
- Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. Car t cell therapy for solid tumors. Annu. Rev. Med. 2017, 68, 139–152. [Google Scholar] [CrossRef]
- Maliar, A.; Servais, C.; Waks, T.; Chmielewski, M.; Lavy, R.; Altevogt, P.; Abken, H.; Eshhar, Z. Redirected t cells that target pancreatic adenocarcinoma antigens eliminate tumors and metastases in mice. Gastroenterology 2012, 143, 1375–1384.e1375. [Google Scholar] [CrossRef]
- Klapdor, R.; Wang, S.; Morgan, M.; Dork, T.; Hacker, U.; Hillemanns, P.; Buning, H.; Schambach, A. Characterization of a novel third-generation anti-CD24-car against ovarian cancer. Int. J. Mol. Sci. 2019, 20, 660. [Google Scholar] [CrossRef]
- Schnell, R.; Katouzi, A.A.; Linnartz, C.; Schoen, G.; Drillich, S.; Hansmann, M.L.; Schiefer, D.; Barth, S.; Zangemeister-Wittke, U.; Stahel, R.A.; et al. Potent anti-tumor effects of an anti-CD24 ricin a-chain immunotoxin in vitro and in a disseminated human burkitt’s lymphoma model in scid mice. Int. J. Cancer 1996, 66, 526–531. [Google Scholar] [CrossRef]
- Shapira, S.; Shapira, A.; Starr, A.; Kazanov, D.; Kraus, S.; Benhar, I.; Arber, N. An immunoconjugate of anti-CD24 and pseudomonas exotoxin selectively kills human colorectal tumors in mice. Gastroenterology 2011, 140, 935–946. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Luo, X.; Ma, Z.; Xu, Y.; Zhang, X.; Lv, T.; Zhang, Y.; Wang, M.; Huang, Z.; et al. Anti-CD24 antibody-nitric oxide conjugate selectively and potently suppresses hepatic carcinoma. Cancer Res. 2019, 79, 3395–3405. [Google Scholar] [CrossRef]
- Ma, Z.; He, H.; Sun, F.; Xu, Y.; Huang, X.; Ma, Y.; Zhao, H.; Wang, Y.; Wang, M.; Zhang, J. Selective targeted delivery of doxorubicin via conjugating to anti-CD24 antibody results in enhanced antitumor potency for hepatocellular carcinoma both in vitro and in vivo. J. Cancer Res. Clin. Oncol. 2017, 143, 1929–1940. [Google Scholar] [CrossRef]
- Sun, F.; Wang, T.; Jiang, J.; Wang, Y.; Ma, Z.; Li, Z.; Han, Y.; Pan, M.; Cai, J.; Wang, M.; et al. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget 2017, 8, 51238–51252. [Google Scholar] [CrossRef]
- Fischer, A.; Blanche, S.; Le Bidois, J.; Bordigoni, P.; Garnier, J.L.; Niaudet, P.; Morinet, F.; Le Deist, F.; Fischer, A.M.; Griscelli, C.; et al. Anti-b-cell monoclonal antibodies in the treatment of severe b-cell lymphoproliferative syndrome following bone marrow and organ transplantation. N. Engl. J. Med. 1991, 324, 1451–1456. [Google Scholar] [CrossRef]
- Benkerrou, M.; Jais, J.P.; Leblond, V.; Durandy, A.; Sutton, L.; Bordigoni, P.; Garnier, J.L.; Le Bidois, J.; Le Deist, F.; Blanche, S.; et al. Anti-b-cell monoclonal antibody treatment of severe posttransplant b-lymphoproliferative disorder: Prognostic factors and long-term outcome. Blood 1998, 92, 3137–3147. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, N.; Li, H.F.; Gu, J.; Zhang, C.J.; Liao, D.F.; Qin, L. The lipid rafts in cancer stem cell: A target to eradicate cancer. Stem Cell Res. Ther. 2022, 13, 432. [Google Scholar] [CrossRef]
- Barclay, A.N.; Ward, H.A. Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognised by monoclonal antibody mrc ox 2. Eur. J. Biochem. 1982, 129, 447–458. [Google Scholar] [CrossRef]
- McCaughan, G.W.; Clark, M.J.; Hurst, J.; Grosveld, F.; Barclay, A.N. The gene for mrc ox-2 membrane glycoprotein is localized on human chromosome 3. Immunogenetics 1987, 25, 133–135. [Google Scholar] [CrossRef]
- Buck, C.A. Immunoglobulin superfamily: Structure, function and relationship to other receptor molecules. Semin. Cell Biol. 1992, 3, 179–188. [Google Scholar] [CrossRef]
- Hatherley, D.; Lea, S.M.; Johnson, S.; Barclay, A.N. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure 2013, 21, 820–832. [Google Scholar] [CrossRef]
- Barclay, A.N.; Wright, G.J.; Brooke, G.; Brown, M.H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 2002, 23, 285–290. [Google Scholar] [CrossRef]
- Wright, G.J.; Puklavec, M.J.; Willis, A.C.; Hoek, R.M.; Sedgwick, J.D.; Brown, M.H.; Barclay, A.N. Lymphoid/neuronal cell surface ox2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity 2000, 13, 233–242. [Google Scholar] [CrossRef]
- Barclay, A.N. Different reticular elements in rat lymphoid tissue identified by localization of ia, thy-1 and mrc ox 2 antigens. Immunology 1981, 44, 727–736. [Google Scholar]
- Rijkers, E.S.; de Ruiter, T.; Baridi, A.; Veninga, H.; Hoek, R.M.; Meyaard, L. The inhibitory CD200R is differentially expressed on human and mouse t and b lymphocytes. Mol. Immunol. 2008, 45, 1126–1135. [Google Scholar] [CrossRef]
- Jenmalm, M.C.; Cherwinski, H.; Bowman, E.P.; Phillips, J.H.; Sedgwick, J.D. Regulation of myeloid cell function through the CD200 receptor. J. Immunol. 2006, 176, 191–199. [Google Scholar] [CrossRef]
- Hoek, R.M.; Ruuls, S.R.; Murphy, C.A.; Wright, G.J.; Goddard, R.; Zurawski, S.M.; Blom, B.; Homola, M.E.; Streit, W.J.; Brown, M.H.; et al. Down-regulation of the macrophage lineage through interaction with ox2 (CD200). Science 2000, 290, 1768–1771. [Google Scholar] [CrossRef]
- Shao, A.; Owens, D.M. The immunoregulatory protein CD200 as a potentially lucrative yet elusive target for cancer therapy. Oncotarget 2023, 14, 96–103. [Google Scholar] [CrossRef]
- Sorigue, M.; Magnano, L.; Miljkovic, M.D.; Nieto-Moragas, J.; Santos-Gomez, M.; Villamor, N.; Junca, J.; Morales-Indiano, C. Positive predictive value of CD200 positivity in the differential diagnosis of chronic lymphocytic leukemia. Cytom. B Clin. Cytom. 2020, 98, 441–448. [Google Scholar] [CrossRef]
- Moreaux, J.; Veyrune, J.L.; Reme, T.; De Vos, J.; Klein, B. CD200: A putative therapeutic target in cancer. Biochem. Biophys. Res. Commun. 2008, 366, 117–122. [Google Scholar] [CrossRef]
- Staub, R.B.; Marcondes, N.A.; Rotta, L.N. CD200 expression in hematopoietic neoplasms: Beyond a marker for diagnosis of b-cell neoplasms. Crit. Rev. Oncol. Hematol. 2021, 167, 103509. [Google Scholar] [CrossRef] [PubMed]
- Tonks, A.; Hills, R.; White, P.; Rosie, B.; Mills, K.I.; Burnett, A.K.; Darley, R.L. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 2007, 21, 566–568. [Google Scholar] [CrossRef]
- Memarian, A.; Nourizadeh, M.; Masoumi, F.; Tabrizi, M.; Emami, A.H.; Alimoghaddam, K.; Hadjati, J.; Mirahmadian, M.; Jeddi-Tehrani, M. Upregulation of CD200 is associated with foxp3+ regulatory t cell expansion and disease progression in acute myeloid leukemia. Tumour Biol. 2013, 34, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.; Khatri, I.; Shaha, S.; Spaner, D.E.; Gorczynski, R.M. The role of CD200 in immunity to b cell lymphoma. J. Leukoc. Biol. 2010, 88, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Douds, J.J.; Long, D.J.; Kim, A.S.; Li, S. Diagnostic and prognostic significance of CD200 expression and its stability in plasma cell myeloma. J. Clin. Pathol. 2014, 67, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Alapat, D.; Coviello-Malle, J.; Owens, R.; Qu, P.; Barlogie, B.; Shaughnessy, J.D.; Lorsbach, R.B. Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am. J. Clin. Pathol. 2012, 137, 93–100. [Google Scholar] [CrossRef]
- Conticello, C.; Giuffrida, R.; Parrinello, N.; Buccheri, S.; Adamo, L.; Sciuto, M.R.; Colarossi, C.; Aiello, E.; Chiarenza, A.; Romano, A.; et al. CD200 expression in patients with multiple myeloma: Another piece of the puzzle. Leuk. Res. 2013, 37, 1616–1621. [Google Scholar] [CrossRef]
- Dorfman, D.M.; Shahsafaei, A. CD200 (ox-2 membrane glycoprotein) is expressed by follicular t helper cells and in angioimmunoblastic t-cell lymphoma. Am. J. Surg. Pathol. 2011, 35, 76–83. [Google Scholar] [CrossRef]
- Pangault, C.; Ame-Thomas, P.; Rossille, D.; Dulong, J.; Caron, G.; Nonn, C.; Chatonnet, F.; Desmots, F.; Launay, V.; Lamy, T.; et al. Integrative analysis of cell crosstalk within follicular lymphoma cell niche: Towards a definition of the fl supportive synapse. Cancers 2020, 12, 2865. [Google Scholar] [CrossRef]
- Zhang, Y.; He, W.; Zhang, S. Seeking for correlative genes and signaling pathways with bone metastasis from breast cancer by integrated analysis. Front. Oncol. 2019, 9, 138. [Google Scholar] [CrossRef]
- Vathiotis, I.A.; MacNeil, T.; Zugazagoitia, J.; Syrigos, K.N.; Aung, T.N.; Gruver, A.M.; Vaillancourt, P.; Hughes, I.; Hinton, S.; Driscoll, K.; et al. Quantitative assessment of CD200 and CD200R expression in lung cancer. Cancers 2021, 13, 1024. [Google Scholar] [CrossRef]
- Tondell, A.; Subbannayya, Y.; Wahl, S.G.F.; Flatberg, A.; Sorhaug, S.; Borset, M.; Haug, M. Analysis of intra-tumoral macrophages and t cells in non-small cell lung cancer (nsclc) indicates a role for immune checkpoint and CD200-CD200R interactions. Cancers 2021, 13, 1788. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, J.; Huang, M.; Huang, Q.; Sun, R.; Xiao, W.; Sun, C. CD200R, a co-inhibitory receptor on immune cells, predicts the prognosis of human hepatocellular carcinoma. Immunol. Lett. 2016, 178, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.Z.; Del Guzzo, C.A.; Shao, A.; Cho, J.; Du, R.; Cohen, A.O.; Owens, D.M. The CD200-CD200R axis promotes squamous cell carcinoma metastasis via regulation of cathepsin k. Cancer Res. 2021, 81, 5021–5032. [Google Scholar] [CrossRef]
- Stumpfova, M.; Ratner, D.; Desciak, E.B.; Eliezri, Y.D.; Owens, D.M. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res. 2010, 70, 2962–2972. [Google Scholar] [CrossRef] [PubMed]
- Gaiser, M.R.; Weis, C.A.; Gaiser, T.; Jiang, H.; Buder-Bakhaya, K.; Herpel, E.; Warth, A.; Xiao, Y.; Miao, L.; Brownell, I. Merkel cell carcinoma expresses the immunoregulatory ligand CD200 and induces immunosuppressive macrophages and regulatory t cells. Oncoimmunology 2018, 7, e1426517. [Google Scholar] [CrossRef] [PubMed]
- Moertel, C.L.; Xia, J.; LaRue, R.; Waldron, N.N.; Andersen, B.M.; Prins, R.M.; Okada, H.; Donson, A.M.; Foreman, N.K.; Hunt, M.A.; et al. CD200 in cns tumor-induced immunosuppression: The role for CD200 pathway blockade in targeted immunotherapy. J. Immunother. Cancer 2014, 2, 46. [Google Scholar] [CrossRef]
- Xin, C.; Zhu, J.; Gu, S.; Yin, M.; Ma, J.; Pan, C.; Tang, J.; Zhang, P.; Liu, Y.; Bai, X.F.; et al. CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment. Cancer Immunol. Immunother. 2020, 69, 2333–2343. [Google Scholar] [CrossRef]
- Klatka, J.; Grywalska, E.; Klatka, M.; Wasiak, M.; Andrzejczak, A.; Rolinski, J. Expression of selected regulatory molecules on the CD83+ monocyte-derived dendritic cells generated from patients with laryngeal cancer and their clinical significance. Eur. Arch. Otorhinolaryngol. 2013, 270, 2683–2693. [Google Scholar] [CrossRef]
- Choueiry, F.; Torok, M.; Shakya, R.; Agrawal, K.; Deems, A.; Benner, B.; Hinton, A.; Shaffer, J.; Blaser, B.W.; Noonan, A.M.; et al. CD200 promotes immunosuppression in the pancreatic tumor microenvironment. J. Immunother. Cancer 2020, 8, e000189. [Google Scholar] [CrossRef]
- Tronik-Le Roux, D.; Sautreuil, M.; Bentriou, M.; Verine, J.; Palma, M.B.; Daouya, M.; Bouhidel, F.; Lemler, S.; LeMaoult, J.; Desgrandchamps, F.; et al. Comprehensive landscape of immune-checkpoints uncovered in clear cell renal cell carcinoma reveals new and emerging therapeutic targets. Cancer Immunol. Immunother. 2020, 69, 1237–1252. [Google Scholar] [CrossRef]
- Zhang, S.; Cherwinski, H.; Sedgwick, J.D.; Phillips, J.H. Molecular mechanisms of CD200 inhibition of mast cell activation. J. Immunol. 2004, 173, 6786–6793. [Google Scholar] [CrossRef]
- Mihrshahi, R.; Brown, M.H. Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J. Immunol. 2010, 185, 7216–7222. [Google Scholar] [CrossRef]
- Lin, C.H.; Talebian, F.; Li, Y.; Zhu, J.; Liu, J.Q.; Zhao, B.; Basu, S.; Pan, X.; Chen, X.; Yan, P.; et al. CD200R signaling contributes to unfavorable tumor microenvironment through regulating production of chemokines by tumor-associated myeloid cells. iScience 2023, 26, 106904. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.D.; Sadofsky, L.R.; Kaye, P.M.; Hart, S.P. Reduced expression of monocyte CD200R is associated with enhanced proinflammatory cytokine production in sarcoidosis. Sci. Rep. 2016, 6, 38689. [Google Scholar] [CrossRef]
- Mihrshahi, R.; Barclay, A.N.; Brown, M.H. Essential roles for dok2 and rasgap in CD200 receptor-mediated regulation of human myeloid cells. J. Immunol. 2009, 183, 4879–4886. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.J.; Cherwinski, H.; Foster-Cuevas, M.; Brooke, G.; Puklavec, M.J.; Bigler, M.; Song, Y.; Jenmalm, M.; Gorman, D.; McClanahan, T.; et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 2003, 171, 3034–3046. [Google Scholar] [CrossRef]
- Kretz-Rommel, A.; Qin, F.; Dakappagari, N.; Ravey, E.P.; McWhirter, J.; Oltean, D.; Frederickson, S.; Maruyama, T.; Wild, M.A.; Nolan, M.J.; et al. CD200 expression on tumor cells suppresses antitumor immunity: New approaches to cancer immunotherapy. J. Immunol. 2007, 178, 5595–5605. [Google Scholar] [CrossRef]
- Wein, F.; Weniger, M.A.; Hoing, B.; Arnolds, J.; Huttmann, A.; Hansmann, M.L.; Hartmann, S.; Kuppers, R. Complex immune evasion strategies in classical hodgkin lymphoma. Cancer Immunol. Res. 2017, 5, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Yamazaki, S.; Morisue, R.; Suzuki, J.; Yoshikawa, T.; Nakatsura, T.; Tsuboi, M.; Ochiai, A.; Ishii, G. Tumor-infiltrating t cells concurrently overexpress CD200R with immune checkpoints pd-1, ctla-4, and tim-3 in non-small-cell lung cancer. Pathobiology 2021, 88, 218–227. [Google Scholar] [CrossRef]
- Erin, N.; Podnos, A.; Tanriover, G.; Duymus, O.; Cote, E.; Khatri, I.; Gorczynski, R.M. Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 2015, 34, 3860–3870. [Google Scholar] [CrossRef]
- Liao, K.L.; Bai, X.F.; Friedman, A. The role of CD200-CD200R in tumor immune evasion. J. Theor. Biol. 2013, 328, 65–76. [Google Scholar] [CrossRef]
- Klatka, J.; Grywalska, E.; Klatka, M.; Rahnama, M.; Polak, A.; Rolinski, J. Expression of CD200 and CD200R regulatory molecules on the CD83+ monocyte-derived dendritic cells generated from patients with laryngeal cancer. Folia Histochem. Cytobiol. 2013, 51, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Zgodzinski, W.; Grywalska, E.; Surdacka, A.; Zinkiewicz, K.; Majewski, M.; Szczepanek, D.; Wallner, G.; Rolinski, J. Surface CD200 and CD200R antigens on lymphocytes in advanced gastric cancer: A new potential target for immunotherapy. Arch. Med. Sci. 2018, 14, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Matlung, H.L.; Szilagyi, K.; Barclay, N.A.; van den Berg, T.K. The CD47-sirpalpha signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 2017, 276, 145–164. [Google Scholar] [CrossRef]
- Gorczynski, R.M.; Chen, Z.; Hu, J.; Kai, Y.; Lei, J. Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in c57bl/6 mice. Clin. Exp. Immunol. 2001, 126, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Blazar, B.R.; Taylor, P.A.; Boyer, M.W.; Panoskaltsis-Mortari, A.; Allison, J.P.; Vallera, D.A. CD28/B7 interactions are required for sustaining the graft-versus-leukemia effect of delayed post-bone marrow transplantation splenocyte infusion in murine recipients of myeloid or lymphoid leukemia cells. J. Immunol. 1997, 159, 3460–3473. [Google Scholar] [CrossRef]
- Oda, S.K.; Daman, A.W.; Garcia, N.M.; Wagener, F.; Schmitt, T.M.; Tan, X.; Chapuis, A.G.; Greenberg, P.D. A CD200R-CD28 fusion protein appropriates an inhibitory signal to enhance t-cell function and therapy of murine leukemia. Blood 2017, 130, 2410–2419. [Google Scholar] [CrossRef]
- Mahadevan, D.; Lanasa, M.C.; Farber, C.; Pandey, M.; Whelden, M.; Faas, S.J.; Ulery, T.; Kukreja, A.; Li, L.; Bedrosian, C.L.; et al. Phase i study of samalizumab in chronic lymphocytic leukemia and multiple myeloma: Blockade of the immune checkpoint CD200. J. Immunother. Cancer 2019, 7, 227. [Google Scholar] [CrossRef]
- Kuwabara, J.; Umakoshi, A.; Abe, N.; Sumida, Y.; Ohsumi, S.; Usa, E.; Taguchi, K.; Choudhury, M.E.; Yano, H.; Matsumoto, S.; et al. Truncated CD200 stimulates tumor immunity leading to fewer lung metastases in a novel wistar rat metastasis model. Biochem. Biophys. Res. Commun. 2018, 496, 542–548. [Google Scholar] [CrossRef]
- Gorczynski, R.M.; Chen, Z.; Diao, J.; Khatri, I.; Wong, K.; Yu, K.; Behnke, J. Breast cancer cell CD200 expression regulates immune response to emt6 tumor cells in mice. Breast Cancer Res. Treat. 2010, 123, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Gorczynski, R.M.; Clark, D.A.; Erin, N.; Khatri, I. Role of CD200 expression in regulation of metastasis of emt6 tumor cells in mice. Breast Cancer Res. Treat. 2011, 130, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Gorczynski, R.M.; Chen, Z.; Khatri, I.; Podnos, A.; Yu, K. Cure of metastatic growth of emt6 tumor cells in mice following manipulation of CD200:CD200R signaling. Breast Cancer Res. Treat. 2013, 142, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Gorczynski, R.M.; Chen, Z.; Erin, N.; Khatri, I.; Podnos, A. Comparison of immunity in mice cured of primary/metastatic growth of emt6 or 4thm breast cancer by chemotherapy or immunotherapy. PLoS ONE 2014, 9, e113597. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Pan, Y.; Zhang, Q.; Sun, W. Role of CD200/CD200R signaling pathway in regulation of CD4+t cell subsets during thermal ablation of hepatocellular carcinoma. Med. Sci. Monit. 2019, 25, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.P.; Goh, A.R.; Ju, J.M.; Kang, H.G.; Kim, S.J.; Kim, J.K.; Park, E.J.; Bae, Y.S.; Choi, K.; Jung, Y.S.; et al. Local adenoviral delivery of soluble CD200R-ig enhances antitumor immunity by inhibiting CD200-beta-catenin-driven m2 macrophage. Mol. Ther. Oncolytics 2021, 23, 138–150. [Google Scholar] [CrossRef]
- Zelin, E.; Maronese, C.A.; Dri, A.; Toffoli, L.; Di Meo, N.; Nazzaro, G.; Zalaudek, I. Identifying candidates for immunotherapy among patients with non-melanoma skin cancer: A review of the potential predictors of response. J. Clin. Med. 2022, 11, 3364. [Google Scholar] [CrossRef]
- Bai, R.; Lv, Z.; Xu, D.; Cui, J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark. Res. 2020, 8, 34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moon, S.Y.; Han, M.; Ryu, G.; Shin, S.-A.; Lee, J.H.; Lee, C.S. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. Int. J. Mol. Sci. 2023, 24, 15072. https://doi.org/10.3390/ijms242015072
Moon SY, Han M, Ryu G, Shin S-A, Lee JH, Lee CS. Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. International Journal of Molecular Sciences. 2023; 24(20):15072. https://doi.org/10.3390/ijms242015072
Chicago/Turabian StyleMoon, Sun Young, Minjoo Han, Gyoungah Ryu, Seong-Ah Shin, Jun Hyuck Lee, and Chang Sup Lee. 2023. "Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200" International Journal of Molecular Sciences 24, no. 20: 15072. https://doi.org/10.3390/ijms242015072
APA StyleMoon, S. Y., Han, M., Ryu, G., Shin, S. -A., Lee, J. H., & Lee, C. S. (2023). Emerging Immune Checkpoint Molecules on Cancer Cells: CD24 and CD200. International Journal of Molecular Sciences, 24(20), 15072. https://doi.org/10.3390/ijms242015072