Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii
Abstract
:1. Introduction
2. Results
2.1. Primer Specificity and Amplification Efficiency
2.2. Expression Levels of the Candidate Reference Genes
2.3. Expression Stability of the Candidate Reference Genes
2.3.1. Developmental Stages
2.3.2. Populations
2.3.3. Fungicides
2.3.4. Photoperiods
2.3.5. pHs
2.3.6. Ranking of Reference Genes for All Samples
2.3.7. Reference Gene Validation
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. Experimental Conditions
4.2.1. Developmental Stages
4.2.2. Populations
4.2.3. Fungicides
4.2.4. Photoperiods
4.2.5. pHs
4.3. Candidate Reference Genes and Primer Design
4.4. RNA Extraction, cDNA Synthesis and RT-qPCR
4.5. Gene Expression Stability Analysis
4.6. Suitability Validation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bustin, S.A.; Benes, V.; Nolan, T.; Pfaffl, M.W. Quantitative real-time RT-PCR—A perspective. J. Mol. Endocrinol. 2005, 34, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Liang, G.; Dong, S.; Shan, S.; Zhao, M.; Guo, X. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization in Athetis dissimilis (Lepidoptera: Noctuidae) Under Different Conditions. Front. Physiol. 2022, 13, 842195. [Google Scholar] [CrossRef]
- Hao, X.; Horvath, D.P.; Chao, W.S.; Yang, Y.; Wang, X.; Xiao, B. Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze). Int. J. Mol. Sci. 2014, 15, 22155–22172. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Duan, H.; Chong, P.; Su, S.; Shan, L.; Yi, D.; Wang, L.; Li, Y. Systematic selection and validation of suitable reference genes for quantitative real-time PCR normalization studies of gene expression in Nitraria tangutorum. Sci. Rep. 2020, 10, 15891. [Google Scholar] [CrossRef]
- Shi, C.; Yang, F.; Zhu, X.; Du, E.; Yang, Y.; Wang, S.; Wu, Q.; Zhang, Y. Evaluation of housekeeping genes for quantitative real-time PCR analysis of Bradysia odoriphaga (Diptera: Sciaridae). Int. J. Mol. Sci. 2016, 17, 1034. [Google Scholar] [CrossRef]
- Gutierrez, L.; Mauriat, M.; Guénin, S.; Pelloux, J.; Lefebvre, J.F.; Louvet, R.; Rusterucci, C.; Moritz, T.; Guerineau, F.; Bellini, C.; et al. The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 2008, 6, 609–618. [Google Scholar] [CrossRef]
- He, Y.; Du, P.; Zhao, T.; Gao, F.; Wang, M.; Zhang, J.; He, L.; Cui, K.; Zhou, L. Baseline sensitivity and bioactivity of tetramycin against Sclerotium rolfsii isolates in Huanghuai peanut-growing region of China. Ecotoxicol. Environ. Saf. 2022, 238, 113580. [Google Scholar] [CrossRef]
- Han, Z.; Cui, K.; Wang, M.; Jiang, C.; Zhao, T.; Wang, M.; Du, P.; He, L.; Zhou, L. Bioactivity of the DMI fungicide mefentrifluconazole against Sclerotium rolfsii, the causal agent of peanut southern blight. Pest Manag. Sci. 2023, 79, 2126–2134. [Google Scholar] [CrossRef]
- Cilliers, A.J.; Herselman, L.; Pretorius, Z.A. Genetic variability within and among mycelial compatibility groups of Sclerotium rolfsii in South Africa. Phytopathology 2000, 90, 1026–1031. [Google Scholar] [CrossRef]
- Wei, X.; Langston, D.B.; Mehl, H.L. Comparison of Current Peanut Fungicides Against Athelia rolfsii through a Laboratory Bioassay of Detached Plant Tissues. Plant Dis. 2022, 106, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; Preter, K.D.; Pattyn, F.; Poppe, B.; Roy, N.V.; Paepe, A.D.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Kadam, U.S.; Lossie, A.C.; Schulz, B.; Irudayaraj, J. Gene Expression Analysis Using Conventional and Imaging Methods. In DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases; RNA Technologies; Erdmann, V., Barciszewski, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chen, X.; Chen, X.; Tan, Q.; He, Y.; Wang, Z.; Zhou, G.; Liu, J. Selection of potential reference genes for RT-qPCR in the plant pathogenic fungus Colletotrichum fructicola. Front. Microbiol. 2022, 13, 982748. [Google Scholar] [CrossRef]
- Kim, H.K.; Yun, S.H. Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol. J. 2011, 27, 301–309. [Google Scholar] [CrossRef]
- Llanos, A.; François, J.M.; Parrou, J.L. Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genom. 2015, 16, 71. [Google Scholar] [CrossRef]
- Ren, H.; Wu, X.; Lyu, Y.; Zhou, H.; Xie, X.; Zhang, X.; Yang, H. Selection of reliable reference genes for gene expression studies in Botrytis cinerea. J. Microbiol. Methods 2017, 142, 71–75. [Google Scholar] [CrossRef]
- Zhang, K.; Li, M.; Cao, S.; Sun, Y.; Long, R.; Kang, J.; Yan, L.; Cui, H. Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Ecotoxicol. Environ. Saf. 2019, 168, 127–137. [Google Scholar] [CrossRef]
- Papapostolou, I.; Sideri, M.; Georgiou, C.D. Cell proliferating and differentiating role of H2O2 in Sclerotium rolfsii and Sclerotinia sclerotiorum. Microbiol. Res. 2014, 169, 527–532. [Google Scholar] [CrossRef]
- Lee, S.J.; Kong, M.; Morse, D.; Hijri, M. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. Mycorrhiza 2018, 28, 523–534. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.D.; Chen, X.; Xiao, J. Genome resequencing and transcriptome analysis reveal the molecular mechanism of albinism in Cordyceps militaris. Front. Microbiol. 2023, 14, 1153153. [Google Scholar] [CrossRef] [PubMed]
- Rascle, C.; Dieryckx, C.; Dupuy, J.W.; Muszkieta, L.; Souibgui, E.; Droux, M.; Bruel, C.; Girard, V.; Poussereau, N. The pH regulator PacC: A host-dependent virulence factor in Botrytis cinerea. Environ. Microbiol. Rep. 2018, 10, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Han, Z.; Gong, D.; Xu, X.; Li, Y.; Sionov, E.; Prusky, D.; Bi, Y.; Zong, Y. The pH signalling transcription factor PacC modulate growth, development, stress response and pathogenicity of Trichothecium roseum. Environ. Microbiol. 2022, 24, 1608–1621. [Google Scholar] [CrossRef] [PubMed]
- Usman, H.M.; Tan, Q.; Fan, F.; Karim, M.M.; Yin, W.X.; Zhu, F.X.; Luo, C.X. Sensitivity of Colletotrichum nymphaeae to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China. Plant Dis. 2022, 106, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Ma, L.; Xiao, D.; Ying, Z.; Jiang, X.; Lin, Y. Identification and Evaluation of Reference Genes for qRT-PCR Normalization in Sparassis latifolia (Agaricomycetes). Int. J. Med. Mushrooms 2019, 21, 301–309. [Google Scholar] [CrossRef]
- Qian, J.; Deng, D. Stability comparison of three candidate internal reference genes in Chinese giant salamander (Andrias davidianus). Aquac. Res. 2020, 51, 362–369. [Google Scholar] [CrossRef]
- Yang, H.; Yan, Y.; Weng, P.; Sun, C.; Yu, J.; Tang, L.; Li, J.; Mo, Z. Evaluation of reference genes for quantitative real-time PCR normalization in the Neopyropia (Pyropia) oomycete pathogen Pythium porphyrae. J. Appl. Phycol. 2023, 35, 219–231. [Google Scholar] [CrossRef]
- Tatsuka, M.; Mitsui, H.; Wada, M.; Nagata, A.; Nojima, H.; Okayama, H. Elongation factor-1 alpha gene determines susceptibility to transformation. Nature 1992, 359, 333–336. [Google Scholar] [CrossRef]
- Sang, J.; Wang, Z.; Li, M.; Cao, J.; Niu, G.; Xia, L.; Zou, D.; Wang, F.; Xu, X.; Han, X.; et al. ICG: A wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res. 2018, 46, D121–D126. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xu, N.; Yang, Y.; Zhang, J.; Yin, H. Identification and Validation of Reference Genes for RT-qPCR Normalization in Mythimna separata (Lepidoptera: Noctuidae). Biomed Res. Int. 2018, 2018, 1828253. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, K.D.C.; Fernandes de Melo, D.; Morais, V.D.; Vasconcelos, I.M.; Costa, J.H. Selection of suitable soybean EF1α genes as internal controls for real-time PCR analyses of tissues during plant development and under stress conditions. Plant Cell Rep. 2014, 33, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Symbol | Gene Name | Accession Number | Primer Sequence (5′-3′) | Amplification Efficiency (%) | Product Length (bp) | Tm | Correlation Coefficient (R2) |
---|---|---|---|---|---|---|---|
UBC | Ubiquitin-conjugating enzyme | OQ944110 | F:AGGGTATTCCTCCCGACCAGCA R:CACGAAGACGGAGAACCAGATGAAG | 105.42 | 123 | 63.1 | 0.9975 |
59.7 | |||||||
β-TUB | β-tubulin | OQ944109 | F:GCTCAGCACGCCTACATACGG R:AGACGAGGGAAGGGCACCAT | 109.20 | 141 | 61.4 | 0.9901 |
61.7 | |||||||
28S | 28S ribosome | OQ944112 | F:TCTACTTGTGCGCTATCGGTCTCT R:ACGAGTCGAGTTGTTTGGGAATGC | 103.23 | 93 | 59.6 | 0.9987 |
60.0 | |||||||
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | OQ944106 | F:ACCAAGTCATCTCCAACGCTTCCT R:ACCGCCACGCCAGTCCTT | 102.82 | 167 | 60.6 | 0.9937 |
63.7 | |||||||
18S | 18S ribosome | OQ944113 | F:AGTTGGTGGAGTGATTTGTCTGGT R:CAGTCCCTCTAAGAAGCCAGCAATC | 99.76 | 105 | 58.3 | 0.9952 |
59.7 | |||||||
PGK | 3-Phosphoglycerate kinase | OQ944108 | F:CGACAAGGACGCCACAACTG R:AAGCACGGTCTCACGGAACA | 107.82 | 112 | 59.7 | 0.9996 |
59.5 | |||||||
EF1α | Elongation factor-1α | OQ944105 | F:GCTTCCTTCAACGCTCAGGTCATC R:AATGTGGGCAGTGTGGCAATCAA | 98.26 | 93 | 60.7 | 0.9969 |
60.0 | |||||||
WC1 | White Collar-1 | OQ944111 | F:TATTGCCATACAGCGGATGTCGTG R:CGTGGGGGTGATGCGT | 101.65 | 143 | 59.3 | 0.9988 |
58.4 | |||||||
PacC | pH-response transcription factor | OQ944107 | F:CACATACAGCACAAGCACTCCAAGG R:AGCAGCAATAGCGGCGTTCT | 106.46 | 99 | 60.6 | 0.9972 |
60.2 | |||||||
CAT | Catalase | OQ944104 | F:CCGCAGAGACACACCAAGGATG R:GTGCCACGGTCACTGAAGAGAA | 108.29 | 101 | 59.5 | 0.9994 |
59.3 | |||||||
atrB | ATP-binding cassette transporter atrB | OQ953998 | F:GACACGCTCGTCAACGGAAG R:GCGTAGATGCTAATGGAGATGGACT | 100.51 | 179 | 61.1 | 0.9978 |
59.9 |
Conditions | Reference Gene | geNorm | Normfinder | Bestkeeper | ΔCt | ||||
---|---|---|---|---|---|---|---|---|---|
M | Rank | SV | Rank | CV + SD | Rank | Avg. SD | Rank | ||
Developmental stages | 18S | 2.07 | 5 | 3.28 | 6 | 0.35 | 1 | 3.38 | 6 |
28S | 2.45 | 6 | 3.34 | 7 | 0.39 | 2 | 3.42 | 7 | |
EF1α | 0.04 | 1 | 2.12 | 4 | 3.08 | 6 | 2.30 | 4 | |
GAPDH | 0.80 | 3 | 0.29 | 1 | 2.15 | 4 | 1.84 | 1 | |
PGK | 0.51 | 2 | 1.11 | 3 | 2.56 | 5 | 1.94 | 2 | |
β-TUB | 0.04 | 1 | 2.17 | 5 | 3.11 | 7 | 2.34 | 5 | |
UBC | 1.07 | 4 | 0.34 | 2 | 1.67 | 3 | 1.95 | 3 | |
Populations | 18S | 0.93 | 4 | 1.02 | 5 | 0.38 | 1 | 1.30 | 5 |
28S | 1.04 | 5 | 1.35 | 6 | 0.51 | 4 | 1.48 | 6 | |
EF1α | 0.51 | 2 | 0.39 | 2 | 0.77 | 5 | 1.01 | 2 | |
GAPDH | 0.67 | 3 | 0.72 | 4 | 0.90 | 6 | 1.14 | 4 | |
PGK | 0.16 | 1 | 0.33 | 1 | 0.40 | 2 | 0.97 | 1 | |
β-TUB | 1.25 | 6 | 1.65 | 7 | 1.44 | 7 | 1.76 | 7 | |
UBC | 0.16 | 1 | 0.58 | 3 | 0.44 | 3 | 1.05 | 3 | |
Fungicides | 18S | 0.65 | 4 | 0.58 | 5 | 0.46 | 2 | 0.77 | 5 |
28S | 0.68 | 5 | 0.51 | 4 | 0.27 | 1 | 0.74 | 4 | |
EF1α | 0.40 | 2 | 0.62 | 6 | 0.77 | 5 | 0.78 | 6 | |
GAPDH | 0.33 | 1 | 0.34 | 1 | 0.78 | 6 | 0.64 | 1 | |
PGK | 0.56 | 3 | 0.41 | 2 | 0.57 | 3 | 0.69 | 2 | |
β-TUB | 0.33 | 1 | 0.49 | 3 | 0.78 | 7 | 0.69 | 3 | |
UBC | 0.75 | 6 | 0.80 | 7 | 0.64 | 4 | 0.91 | 7 | |
Photoperiods | 18S | 0.21 | 4 | 0.38 | 5 | 0.48 | 5 | 0.64 | 5 |
28S | 0.10 | 3 | 0.02 | 4 | 0.16 | 1 | 0.53 | 4 | |
EF1α | 0.03 | 1 | 0.01 | 2 | 0.26 | 3 | 0.50 | 1 | |
GAPDH | 0.39 | 5 | 0.97 | 6 | 0.80 | 6 | 1.01 | 6 | |
PGK | 0.03 | 1 | 0.01 | 1 | 0.28 | 4 | 0.50 | 2 | |
β-TUB | 0.09 | 2 | 0.02 | 3 | 0.18 | 2 | 0.51 | 3 | |
UBC | 0.78 | 6 | 1.77 | 7 | 0.90 | 7 | 1.77 | 7 | |
pHs | 18S | 0.48 | 6 | 0.61 | 7 | 0.30 | 4 | 0.67 | 7 |
28S | 0.23 | 3 | 0.20 | 3 | 0.30 | 3 | 0.41 | 4 | |
EF1α | 0.11 | 1 | 0.18 | 2 | 0.38 | 5 | 0.38 | 2 | |
GAPDH | 0.41 | 5 | 0.49 | 5 | 0.13 | 1 | 0.60 | 6 | |
PGK | 0.17 | 2 | 0.24 | 4 | 0.39 | 6 | 0.40 | 3 | |
β-TUB | 0.11 | 1 | 0.06 | 1 | 0.29 | 2 | 0.35 | 1 | |
UBC | 0.30 | 4 | 0.50 | 6 | 0.48 | 7 | 0.56 | 5 | |
Total | 18S | 1.22 | 5 | 1.21 | 5 | 0.41 | 2 | 1.46 | 5 |
28S | 1.34 | 6 | 1.52 | 7 | 0.40 | 1 | 1.65 | 7 | |
EF1α | 0.55 | 1 | 0.93 | 4 | 1.38 | 6 | 1.24 | 3 | |
GAPDH | 0.55 | 1 | 0.65 | 2 | 1.23 | 5 | 1.15 | 2 | |
PGK | 0.62 | 2 | 0.42 | 1 | 0.99 | 4 | 1.11 | 1 | |
β-TUB | 0.76 | 3 | 1.32 | 6 | 1.52 | 7 | 1.50 | 6 | |
UBC | 0.99 | 4 | 0.71 | 3 | 0.73 | 3 | 1.26 | 4 |
Experimental Conditions | Recommended Reference Genes | |
---|---|---|
Developmental stages | GADPH | UBC |
Populations | PGK | UBC |
Fungicides | GAPDH | PGK |
Photoperiods | EF1α | PGK |
pHs | β-TUB | EF1α |
All samples | PGK | GAPDH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Zhou, L.; Zhao, Q.; Wang, M.; Shen, S.; Zhao, T.; Cui, K.; He, L. Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. Int. J. Mol. Sci. 2023, 24, 15198. https://doi.org/10.3390/ijms242015198
Jiang C, Zhou L, Zhao Q, Wang M, Shen S, Zhao T, Cui K, He L. Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. International Journal of Molecular Sciences. 2023; 24(20):15198. https://doi.org/10.3390/ijms242015198
Chicago/Turabian StyleJiang, Chaofan, Lin Zhou, Qingchen Zhao, Mengke Wang, Sirui Shen, Te Zhao, Kaidi Cui, and Leiming He. 2023. "Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii" International Journal of Molecular Sciences 24, no. 20: 15198. https://doi.org/10.3390/ijms242015198
APA StyleJiang, C., Zhou, L., Zhao, Q., Wang, M., Shen, S., Zhao, T., Cui, K., & He, L. (2023). Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. International Journal of Molecular Sciences, 24(20), 15198. https://doi.org/10.3390/ijms242015198