The Significance of Microenvironmental and Circulating Lactate in Breast Cancer
Abstract
:1. Introduction
2. Lactate and Metabolism in the TME
3. Lactate in the Major TME Constituents of BC
4. Lactate in BC Metabolism and Tumorigenesis
5. Circulating Lactate in Breast Cancer
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kocianova, E.; Piatrikova, V.; Golias, T. Revisiting the warburg effect with focus on lactate. Cancers 2022, 14, 6028. [Google Scholar] [CrossRef]
- De Bari, L.; Atlante, A. Including the mitochondrial metabolism of l-lactate in cancer metabolic reprogramming. Cell. Mol. Life Sci. 2018, 75, 2763–2776. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Baltazar, F.; Afonso, J.; Costa, M.; Granja, S. Lactate beyond a waste metabolite: Metabolic affairs and signaling in malignancy. Front. Oncol. 2020, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Walenta, S.; Mueller-Klieser, W.F. Lactate: Mirror and motor of tumor malignancy. Semin. Radiat. Oncol. 2004, 14, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Pucino, V.; Bombardieri, M.; Pitzalis, C.; Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 2017, 47, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Brizel, D.M.; Schroeder, T.; Scher, R.L.; Walenta, S.; Clough, R.W.; Dewhirst, M.W.; Mueller-Klieser, W. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2001, 51, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Walenta, S.; Wetterling, M.; Lehrke, M.; Schwickert, G.; Sundfor, K.; Rofstad, E.K.; Mueller-Klieser, W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60, 916–921. [Google Scholar] [PubMed]
- Warburg, O.; Minami, S. Versuche an überlebendem carcinomgewebe. Klin. Wochenschr. 1923, 2, 776–777. [Google Scholar] [CrossRef]
- Racker, E. Bioenergetics and the problem of tumor growth. Am. Sci. 1972, 60, 56–63. [Google Scholar]
- Shim, H.; Dolde, C.; Lewis, B.C.; Wu, C.S.; Dang, G.; Jungmann, R.A.; Dalla-Favera, R.; Dang, C.V. C-myc transactivation of ldh-a: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. USA 1997, 94, 6658–6663. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Forbes, R.A.; Verma, A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the warburg effect in carcinogenesis. J. Biol. Chem. 2002, 277, 23111–23115. [Google Scholar] [CrossRef] [PubMed]
- Sonveaux, P.; Vegran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 2008, 118, 3930–3942. [Google Scholar] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, Y.; Yuan, M.; Song, Q.; Liu, M. Correlation between the warburg effect and progression of triple-negative breast cancer. Front. Oncol. 2022, 12, 1060495. [Google Scholar] [CrossRef] [PubMed]
- Reda, A.; Refaat, A.; Abd-Rabou, A.A.; Mahmoud, A.M.; Adel, M.; Sabet, S.; Ali, S.S. Role of mitochondria in rescuing glycolytically inhibited subpopulation of triple negative but not hormone-responsive breast cancer cells. Sci. Rep. 2019, 9, 13748. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.; Donohoe, C.L.; Davern, M.; Donlon, N.E. The oncogenic and clinical implications of lactate induced immunosuppression in the tumour microenvironment. Cancer Lett. 2021, 500, 75–86. [Google Scholar] [CrossRef]
- Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018, 9, 115. [Google Scholar] [CrossRef]
- Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med. 2011, 17, 1359–1370. [Google Scholar] [CrossRef]
- De la Cruz-Lopez, K.G.; Castro-Munoz, L.J.; Reyes-Hernandez, D.O.; Garcia-Carranca, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol. 2019, 9, 1143. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H.; Bounds, P.L.; Dang, C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011, 11, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Zong, W.X.; Rabinowitz, J.D.; White, E. Mitochondria and cancer. Mol. Cell 2016, 61, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Mahieu, N.G.; Huang, X.; Singh, M.; Crawford, P.A.; Johnson, S.L.; Gross, R.W.; Schaefer, J.; Patti, G.J. Lactate metabolism is associated with mammalian mitochondria. Nat. Chem. Biol. 2016, 12, 937–943. [Google Scholar] [CrossRef] [PubMed]
- Miholjcic, T.B.S.; Halse, H.; Bonvalet, M.; Bigorgne, A.; Rouanne, M.; Dercle, L.; Shankar, V.; Marabelle, A. Rationale for ldh-targeted cancer immunotherapy. Eur. J. Cancer 2023, 181, 166–178. [Google Scholar] [CrossRef]
- Brooks, G.A.; Dubouchaud, H.; Brown, M.; Sicurello, J.P.; Butz, C.E. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc. Natl. Acad. Sci. USA 1999, 96, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Guyon, J.; Fernandez-Moncada, I.; Larrieu, C.M.; Bouchez, C.L.; Pagano Zottola, A.C.; Galvis, J.; Chouleur, T.; Burban, A.; Joseph, K.; Ravi, V.M.; et al. Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis. EMBO Mol. Med. 2022, 14, e15343. [Google Scholar] [CrossRef]
- Claps, G.; Faouzi, S.; Quidville, V.; Chehade, F.; Shen, S.; Vagner, S.; Robert, C. The multiple roles of ldh in cancer. Nat. Rev. Clin. Oncol. 2022, 19, 749–762. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Y.; Lin, Y.; Lan, F.; Cui, Z. Cancer-testis antigen lactate dehydrogenase c4 as a novel biomarker of male infertility and cancer. Front. Oncol. 2022, 12, 936767. [Google Scholar] [CrossRef]
- Osaka, N.; Sasaki, A.T. Beyond warburg: Ldha activates rac for tumour growth. Nat. Metab. 2022, 4, 1623–1625. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Zhang, T.; Chang, C.Y.; Wang, J.; Bazile, L.; Zhang, L.; Haffty, B.G.; Hu, W.; Feng, Z. Metabolic enzyme ldha activates rac1 gtpase as a noncanonical mechanism to promote cancer. Nat. Metab. 2022, 4, 1830–1846. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Gao, Y.; Trappetti, V.; Hertig, D.; Karatkevich, D.; Losmanova, T.; Urzi, C.; Ge, H.; Geest, G.A.; Bruggmann, R.; et al. Targeting lactate dehydrogenase b-dependent mitochondrial metabolism affects tumor initiating cells and inhibits tumorigenesis of non-small cell lung cancer by inducing mtdna damage. Cell. Mol. Life Sci. 2022, 79, 445. [Google Scholar] [CrossRef] [PubMed]
- Bajzikova, M.; Kovarova, J.; Coelho, A.R.; Boukalova, S.; Oh, S.; Rohlenova, K.; Svec, D.; Hubackova, S.; Endaya, B.; Judasova, K.; et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metab. 2019, 29, 399–416.e310. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Ghergurovich, J.M.; Morscher, R.J.; Jang, C.; Teng, X.; Lu, W.; Esparza, L.A.; Reya, T.; Le, Z.; Yanxiang Guo, J.; et al. Glucose feeds the tca cycle via circulating lactate. Nature 2017, 551, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Faubert, B.; Li, K.Y.; Cai, L.; Hensley, C.T.; Kim, J.; Zacharias, L.G.; Yang, C.; Do, Q.N.; Doucette, S.; Burguete, D.; et al. Lactate metabolism in human lung tumors. Cell 2017, 171, 358–371.e359. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yu, X.; Ding, R.; Liu, B.; Gu, C.; Pan, X.W.; Han, Q.; Zhang, Y.; Wan, J.; Cui, X.G.; et al. Glycolysis drives sting signaling to facilitate dendritic cell antitumor function. J. Clin. Investig. 2023, 133, e166031. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Yin, N.; Chhangawala, S.; Xu, K.; Leslie, C.S.; Li, M.O. Aerobic glycolysis promotes t helper 1 cell differentiation through an epigenetic mechanism. Science 2016, 354, 481–484. [Google Scholar] [CrossRef]
- Ippolito, L.; Comito, G.; Parri, M.; Iozzo, M.; Duatti, A.; Virgilio, F.; Lorito, N.; Bacci, M.; Pardella, E.; Sandrini, G.; et al. Lactate rewires lipid metabolism and sustains a metabolic-epigenetic axis in prostate cancer. Cancer Res. 2022, 82, 1267–1282. [Google Scholar] [CrossRef]
- Wright, H.J.; Hou, J.; Xu, B.; Cortez, M.; Potma, E.O.; Tromberg, B.J.; Razorenova, O.V. Cdcp1 drives triple-negative breast cancer metastasis through reduction of lipid-droplet abundance and stimulation of fatty acid oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, E6556–E6565. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Attane, C.; Milhas, D.; Dirat, B.; Dauvillier, S.; Guerard, A.; Gilhodes, J.; Lazar, I.; Alet, N.; Laurent, V.; et al. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight 2017, 2, e87489. [Google Scholar] [CrossRef]
- Shima, T.; Taniguchi, K.; Tokumaru, Y.; Inomata, Y.; Arima, J.; Lee, S.W.; Takabe, K.; Yoshida, K.; Uchiyama, K. Glucose transporter-1 inhibition overcomes imatinib resistance in gastrointestinal stromal tumor cells. Oncol. Rep. 2022, 47, 7. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Koo, J.S. Glucose metabolism and glucose transporters in breast cancer. Front. Cell. Dev. Biol. 2021, 9, 728759. [Google Scholar] [CrossRef] [PubMed]
- Tilekar, K.; Upadhyay, N.; Iancu, C.V.; Pokrovsky, V.; Choe, J.Y.; Ramaa, C.S. Power of two: Combination of therapeutic approaches involving glucose transporter (glut) inhibitors to combat cancer. Biochim. Biophys. Acta Rev. Cancer 2020, 1874, 188457. [Google Scholar] [CrossRef] [PubMed]
- Lyssiotis, C.A.; Kimmelman, A.C. Metabolic interactions in the tumor microenvironment. Trends Cell Biol. 2017, 27, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; van der Hoeven, R.; Kattan, W.E.; Chang, J.T.; Montufar-Solis, D.; Chen, W.; Wong, M.; Zhou, Y.; Lebrilla, C.B.; Hancock, J.F. Glycolysis regulates kras plasma membrane localization and function through defined glycosphingolipids. Nat. Commun. 2023, 14, 465. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Li, R.; Wang, J.; Zhang, Y.; Yao, J.; Jiang, S.H.; Hu, X.; Feng, M.; Bao, Z. Hypoxia-dependent expression of map17 coordinates the warburg effect to tumor growth in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 121. [Google Scholar] [CrossRef] [PubMed]
- Sukonina, V.; Ma, H.; Zhang, W.; Bartesaghi, S.; Subhash, S.; Heglind, M.; Foyn, H.; Betz, M.J.; Nilsson, D.; Lidell, M.E.; et al. Foxk1 and foxk2 regulate aerobic glycolysis. Nature 2019, 566, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.S.; Liu, Q.; Tian, C.; Zhang, D.X.; Wang, B.; Zhou, D.X.; Li, Z.P.; Yuan, Z.X. Correlation and expression analysis of hypoxia-inducible factor 1alpha, glucose transporter 1 and lactate dehydrogenase 5 in human gastric cancer. Oncol. Lett. 2019, 18, 1431–1441. [Google Scholar] [PubMed]
- Koyasu, S.; Kobayashi, M.; Goto, Y.; Hiraoka, M.; Harada, H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 2018, 109, 560–571. [Google Scholar] [CrossRef]
- Gascard, P.; Tlsty, T.D. Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes Dev. 2016, 30, 1002–1019. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, Y.; Shi, Z.; Liu, J.; Sun, P.; Hou, X.; Zhang, J.; Zhao, S.; Zhou, B.P.; Mi, J. Metabolic reprogramming of cancer-associated fibroblasts by idh3alpha downregulation. Cell Rep. 2015, 10, 1335–1348. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, Y.I.; Patel, B.B.; Ackerstaff, E.; Sukenick, G.; Koutcher, J.A.; Glod, J.W.; Banerjee, D. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment. Exp. Cell Res. 2012, 318, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, M.I.; Giatromanolaki, A.; Harris, A.L.; Sivridis, E. Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Res. 2006, 66, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A. Understanding breast-cancer-associated fibroblasts and their epigenetic activation to unveil novel targets for breast cancer therapy. Cancers 2023, 15, 4073. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Tang, S.; Hou, Y.; Xi, L.; Chen, Y.; Yin, J.; Peng, M.; Zhao, M.; Cui, X.; Liu, M. Oxidized atm-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling. eBioMedicine 2019, 41, 370–383. [Google Scholar] [CrossRef] [PubMed]
- Andreucci, E.; Fioretto, B.S.; Rosa, I.; Matucci-Cerinic, M.; Biagioni, A.; Romano, E.; Calorini, L.; Manetti, M. Extracellular lactic acidosis of the tumor microenvironment drives adipocyte-to-myofibroblast transition fueling the generation of cancer-associated fibroblasts. Cells 2023, 12, 939. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.O.; Siska, P.J.; Contreras, D.C.; Rathmell, J.C. Nutrients and the microenvironment to feed a t cell army. Semin. Immunol. 2016, 28, 505–513. [Google Scholar] [CrossRef]
- Sukumar, M.; Liu, J.; Ji, Y.; Subramanian, M.; Crompton, J.G.; Yu, Z.; Roychoudhuri, R.; Palmer, D.C.; Muranski, P.; Karoly, E.D.; et al. Inhibiting glycolytic metabolism enhances cd8+ t cell memory and antitumor function. J. Clin. Investig. 2013, 123, 4479–4488. [Google Scholar] [CrossRef]
- Xia, L.; Oyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef]
- Togo, M.; Yokobori, T.; Shimizu, K.; Handa, T.; Kaira, K.; Sano, T.; Tsukagoshi, M.; Higuchi, T.; Yokoo, S.; Shirabe, K.; et al. Diagnostic value of (18)f-fdg-pet to predict the tumour immune status defined by tumoural pd-l1 and cd8(+)tumour-infiltrating lymphocytes in oral squamous cell carcinoma. Br. J. Cancer 2020, 122, 1686–1694. [Google Scholar] [CrossRef] [PubMed]
- Goetze, K.; Walenta, S.; Ksiazkiewicz, M.; Kunz-Schughart, L.A.; Mueller-Klieser, W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int. J. Oncol. 2011, 39, 453–463. [Google Scholar] [CrossRef]
- Yin, T.T.; Huang, M.X.; Wang, F.; Jiang, Y.H.; Long, J.; Li, L.; Cao, J. Lactate score predicts survival, immune cell infiltration and response to immunotherapy in breast cancer. Front. Genet. 2022, 13, 943849. [Google Scholar] [CrossRef] [PubMed]
- Kalezic, A.; Udicki, M.; Srdic Galic, B.; Aleksic, M.; Korac, A.; Jankovic, A.; Korac, B. Lactate metabolism in breast cancer microenvironment: Contribution focused on associated adipose tissue and obesity. Int. J. Mol. Sci. 2020, 21, 9676. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Li, B.; Li, Z.; Li, J.; Sun, S.; Sun, S. Cancer-associated adipocytes: Key players in breast cancer progression. J. Hematol. Oncol. 2019, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, S.; Kankainen, M.; Paavolainen, L.; Kovanen, R.M.; Ikonen, E.; Kangaspeska, S.; Pietiainen, V.; Kallioniemi, O. Association of tamoxifen resistance and lipid reprogramming in breast cancer. BMC Cancer 2018, 18, 850. [Google Scholar] [CrossRef] [PubMed]
- Allinen, M.; Beroukhim, R.; Cai, L.; Brennan, C.; Lahti-Domenici, J.; Huang, H.; Porter, D.; Hu, M.; Chin, L.; Richardson, A.; et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004, 6, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.A.; Scherer, P.E. Update on adipose tissue and cancer. Endocr. Rev. 2023, bnad015. [Google Scholar] [CrossRef]
- Krycer, J.R.; Quek, L.E.; Francis, D.; Fazakerley, D.J.; Elkington, S.D.; Diaz-Vegas, A.; Cooke, K.C.; Weiss, F.C.; Duan, X.; Kurdyukov, S.; et al. Lactate production is a prioritized feature of adipocyte metabolism. J. Biol. Chem. 2020, 295, 83–98. [Google Scholar] [CrossRef]
- GBD 2019 Cancer Risk Factors Collaborators. The global burden of cancer attributable to risk factors, 2010–2019: A systematic analysis for the global burden of disease study 2019. Lancet 2022, 400, 563–591. [Google Scholar] [CrossRef]
- World Health Organization. Breast Cancer. 2021. Available online: https://www.Who.Int/news-room/fact-sheets/detail/breast-cancer (accessed on 2 October 2023).
- Borri, F.; Granaglia, A. Pathology of triple negative breast cancer. Semin. Cancer Biol. 2021, 72, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Lu, J. The warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019, 38, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Damaghi, M.; West, J.; Robertson-Tessi, M.; Xu, L.; Ferrall-Fairbanks, M.C.; Stewart, P.A.; Persi, E.; Fridley, B.L.; Altrock, P.M.; Gatenby, R.A.; et al. The harsh microenvironment in early breast cancer selects for a warburg phenotype. Proc. Natl. Acad. Sci. USA 2021, 118, e2011342118. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kruper, L.; Dieli-Conwright, C.M.; Mortimer, J.E. The impact of obesity on breast cancer diagnosis and treatment. Curr. Oncol. Rep. 2019, 21, 41. [Google Scholar] [CrossRef] [PubMed]
- Yersal, O.; Barutca, S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014, 5, 412–424. [Google Scholar] [CrossRef] [PubMed]
- Barone, I.; Caruso, A.; Gelsomino, L.; Giordano, C.; Bonofiglio, D.; Catalano, S.; Ando, S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes. Rev. 2022, 23, e13358. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, A.; Johnson, R.S. Biology of hif-1alpha. Cell Death Differ. 2008, 15, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Golinska, M.; Griffiths, J.R. Hif-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells 2021, 10, 2371. [Google Scholar] [CrossRef]
- Sormendi, S.; Wielockx, B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front. Immunol. 2018, 9, 40. [Google Scholar] [CrossRef]
- Schiliro, C.; Firestein, B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells 2021, 10, 1056. [Google Scholar] [CrossRef]
- Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K.; et al. Ldha-associated lactic acid production blunts tumor immunosurveillance by t and nk cells. Cell Metab. 2016, 24, 657–671. [Google Scholar] [CrossRef]
- D’Esposito, V.; Ambrosio, M.R.; Giuliano, M.; Cabaro, S.; Miele, C.; Beguinot, F.; Formisano, P. Mammary adipose tissue control of breast cancer progression: Impact of obesity and diabetes. Front. Oncol. 2020, 10, 1554. [Google Scholar] [CrossRef] [PubMed]
- Vaupel, P.; Multhoff, G. Fatal alliance of hypoxia-/hif-1alpha-driven microenvironmental traits promoting cancer progression. Adv. Exp. Med. Biol. 2020, 1232, 169–176. [Google Scholar] [PubMed]
- Zhang, M.; Liu, J.; Liu, G.; Xing, Z.; Jia, Z.; Li, J.; Wang, W.; Wang, J.; Qin, L.; Wang, X.; et al. Anti-vascular endothelial growth factor therapy in breast cancer: Molecular pathway, potential targets, and current treatment strategies. Cancer Lett. 2021, 520, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, P.; Fu, Y.; Wu, Z.; Xu, L.; Wang, J.; Chen, S.; Yang, M.; Peng, B.; Yang, Y.; et al. Chaperone-mediated autophagy promotes breast cancer angiogenesis via regulation of aerobic glycolysis. PLoS ONE 2023, 18, e0281577. [Google Scholar] [CrossRef] [PubMed]
- Farabegoli, F.; Vettraino, M.; Manerba, M.; Fiume, L.; Roberti, M.; Di Stefano, G. Galloflavin, a new lactate dehydrogenase inhibitor, induces the death of human breast cancer cells with different glycolytic attitude by affecting distinct signaling pathways. Eur. J. Pharm. Sci. 2012, 47, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Sang, R.; Fan, R.; Deng, A.; Gou, J.; Lin, R.; Zhao, T.; Hai, Y.; Song, J.; Liu, Y.; Qi, B.; et al. Degradation of hexokinase 2 blocks glycolysis and induces gsdme-dependent pyroptosis to amplify immunogenic cell death for breast cancer therapy. J. Med. Chem. 2023, 66, 8464–8483. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.M.; Varghese, E.; Satheesh, N.J.; Triggle, C.R.; Busselberg, D. Metabolic heterogeneity in tnbcs: A potential determinant of therapeutic efficacy of 2-deoxyglucose and metformin combinatory therapy. Biomed. Pharmacother. 2023, 164, 114911. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qu, P.; Zhou, X.Z.; Ji, Y.X.; Yuan, S.; Liu, S.P.; Zhang, Q.G. Pimozide inhibits the growth of breast cancer cells by alleviating the warburg effect through the p53 signaling pathway. Biomed. Pharmacother. 2022, 150, 113063. [Google Scholar] [CrossRef]
- Mendes, C.; Serpa, J. Revisiting lactate dynamics in cancer—A metabolic expertise or an alternative attempt to survive? J. Mol. Med. 2020, 98, 1397–1414. [Google Scholar] [CrossRef]
- Park, S.; Chang, C.Y.; Safi, R.; Liu, X.; Baldi, R.; Jasper, J.S.; Anderson, G.R.; Liu, T.; Rathmell, J.C.; Dewhirst, M.W.; et al. Erralpha-regulated lactate metabolism contributes to resistance to targeted therapies in breast cancer. Cell Rep. 2016, 15, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Ying, M.; You, D.; Zhu, X.; Cai, L.; Zeng, S.; Hu, X. Lactate and glutamine support nadph generation in cancer cells under glucose deprived conditions. Redox Biol. 2021, 46, 102065. [Google Scholar] [CrossRef] [PubMed]
- La Ferla, M.; Lessi, F.; Aretini, P.; Pellegrini, D.; Franceschi, S.; Tantillo, E.; Menicagli, M.; Marchetti, I.; Scopelliti, C.; Civita, P.; et al. Ankrd44 gene silencing: A putative role in trastuzumab resistance in her2-like breast cancer. Front. Oncol. 2019, 9, 547. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.; Albergaria, A.; Paredes, J.; Sousa, B.; Dufloth, R.; Vieira, D.; Schmitt, F.; Baltazar, F. Monocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma. Histopathology 2010, 56, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Boidot, R.; Vegran, F.; Meulle, A.; Le Breton, A.; Dessy, C.; Sonveaux, P.; Lizard-Nacol, S.; Feron, O. Regulation of monocarboxylate transporter mct1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res. 2012, 72, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Whitaker-Menezes, D.; Martinez-Outschoorn, U.E.; Lin, Z.; Ertel, A.; Flomenberg, N.; Witkiewicz, A.K.; Birbe, R.C.; Howell, A.; Pavlides, S.; Gandara, R.; et al. Evidence for a stromal-epithelial “lactate shuttle” in human tumors: Mct4 is a marker of oxidative stress in cancer-associated fibroblasts. Cell Cycle 2011, 10, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Neagu, A.N.; Whitham, D.; Bruno, P.; Morrissiey, H.; Darie, C.A.; Darie, C.C. Omics-based investigations of breast cancer. Molecules 2023, 28, 4768. [Google Scholar] [CrossRef]
- Green, A.R.; Aleskandarany, M.A.; Agarwal, D.; Elsheikh, S.; Nolan, C.C.; Diez-Rodriguez, M.; Macmillan, R.D.; Ball, G.R.; Caldas, C.; Madhusudan, S.; et al. Myc functions are specific in biological subtypes of breast cancer and confers resistance to endocrine therapy in luminal tumours. Br. J. Cancer 2016, 114, 917–928. [Google Scholar] [CrossRef]
- Ripoll, C.; Roldan, M.; Ruedas-Rama, M.J.; Orte, A.; Martin, M. Breast cancer cell subtypes display different metabolic phenotypes that correlate with their clinical classification. Biology 2021, 10, 1267. [Google Scholar] [CrossRef]
- Cappelletti, V.; Iorio, E.; Miodini, P.; Silvestri, M.; Dugo, M.; Daidone, M.G. Metabolic footprints and molecular subtypes in breast cancer. Dis. Markers 2017, 2017, 7687851. [Google Scholar] [CrossRef]
- Liu, T.; Nath, K.; Liu, W.; Zhou, R.; Chen, I.W. A study of the relationship of metabolic mr parameters to estrogen dependence in breast cancer xenografts. NMR Biomed. 2015, 28, 1087–1096. [Google Scholar] [CrossRef]
- Burke, R.E.; Harris, S.C.; McGuire, W.L. Lactate dehydrogenase in estrogen-responsive human breast cancer cells. Cancer Res. 1978, 38, 2773–2776. [Google Scholar] [PubMed]
- Neeman, M.; Degani, H. Early estrogen-induced metabolic changes and their inhibition by actinomycin d and cycloheximide in human breast cancer cells: 31p and 13c nmr studies. Proc. Natl. Acad. Sci. USA 1989, 86, 5585–5589. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.A.; Sonohara, S.; Brentani, M.M. Estrogen control of lactate dehydrogenase isoenzyme-5 in human breast cancer. Int. J. Cancer 1988, 41, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Saumet, A.; Vetter, G.; Bouttier, M.; Antoine, E.; Roubert, C.; Orsetti, B.; Theillet, C.; Lecellier, C.H. Estrogen and retinoic acid antagonistically regulate several microrna genes to control aerobic glycolysis in breast cancer cells. Mol. Biosyst. 2012, 8, 3242–3253. [Google Scholar] [CrossRef]
- Furman, E.; Rushkin, E.; Margalit, R.; Bendel, P.; Degani, H. Tamoxifen induced changes in mcf7 human breast cancer: In vitro and in vivo studies using nuclear magnetic resonance spectroscopy and imaging. J. Steroid Biochem. Mol. Biol. 1992, 43, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Woo, Y.M.; Shin, Y.; Lee, E.J.; Lee, S.; Jeong, S.H.; Kong, H.K.; Park, E.Y.; Kim, H.K.; Han, J.; Chang, M.; et al. Inhibition of aerobic glycolysis represses akt/mtor/hif-1alpha axis and restores tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS ONE 2015, 10, e0132285. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Outschoorn, U.E.; Goldberg, A.; Lin, Z.; Ko, Y.H.; Flomenberg, N.; Wang, C.; Pavlides, S.; Pestell, R.G.; Howell, A.; Sotgia, F.; et al. Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol. Ther. 2011, 12, 924–938. [Google Scholar] [CrossRef] [PubMed]
- Das, C.K.; Parekh, A.; Parida, P.K.; Bhutia, S.K.; Mandal, M. Lactate dehydrogenase a regulates autophagy and tamoxifen resistance in breast cancer. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 1004–1018. [Google Scholar] [CrossRef]
- Steifensand, F.; Gallwas, J.; Bauerschmitz, G.; Grundker, C. Inhibition of metabolism as a therapeutic option for tamoxifen-resistant breast cancer cells. Cells 2021, 10, 2398. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Revisiting the warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757. [Google Scholar] [CrossRef]
- Castagnoli, L.; Iorio, E.; Dugo, M.; Koschorke, A.; Faraci, S.; Canese, R.; Casalini, P.; Nanni, P.; Vernieri, C.; Di Nicola, M.; et al. Intratumor lactate levels reflect her2 addiction status in her2-positive breast cancer. J. Cell. Physiol. 2019, 234, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Zhou, M.; Liu, H.; Ding, Y.; Khong, H.T.; Yu, D.; Fodstad, O.; Tan, M. Upregulation of lactate dehydrogenase a by erbb2 through heat shock factor 1 promotes breast cancer cell glycolysis and growth. Oncogene 2009, 28, 3689–3701. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, D.; Wu, C.; Zhang, L.; Mei, Q.; Hu, G.; Long, G.; Sun, W. Prognostic significance of serum lactate dehydrogenase in patients with breast cancer: A meta-analysis. Cancer Manag. Res. 2019, 11, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Levy, B. Lactate and shock state: The metabolic view. Curr. Opin. Crit. Care 2006, 12, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, B.S.; Rogatzki, M.J.; Goodwin, M.L.; Kane, D.A.; Rightmire, Z.; Gladden, L.B. Lactate metabolism: Historical context, prior misinterpretations, and current understanding. Eur. J. Appl. Physiol. 2018, 118, 691–728. [Google Scholar] [CrossRef] [PubMed]
- Pino, R.M.; Singh, J. Appropriate clinical use of lactate measurements. Anesthesiology 2021, 134, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Buppajarntham, S.; Junpaparp, P.; Kue, A.P.P. Warburg effect associated with transformed lymphoplasmacytic lymphoma to diffuse large b-cell lymphoma. Am. J. Emerg. Med. 2013, 31, 999.e5–999.e6. [Google Scholar] [CrossRef] [PubMed]
- Jabr, F.I. Lactic acidosis in patients with neoplasms: An oncologic emergency. Mayo Clin. Proc. 2006, 81, 1505–1506. [Google Scholar] [CrossRef] [PubMed]
- Heneberg, P. Lactic acidosis in patients with solid cancer. Antioxid Redox Signal. 2022, 37, 1130–1152. [Google Scholar] [CrossRef]
- De Groot, R.; Sprenger, R.A.; Imholz, A.L.; Gerding, M.N. Type b lactic acidosis in solid malignancies. Neth. J. Med. 2011, 69, 120–123. [Google Scholar] [PubMed]
- Lagampan, C.; Poovorawan, N.; Parinyanitikul, N. Lactic acidosis, a potential toxicity from drug-drug interaction related to concomitant ribociclib and metformin in preexisting renal insufficiency: A case report. Cancer Rep. 2022, 5, e1575. [Google Scholar] [CrossRef]
- Al Qahtani, S.Y.; Al Argan, R.J. Liver metastasis in a young female secondary to breast cancer: A case report. Saudi J. Med. Med. Sci. 2019, 7, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Deeren, D.; Verbeken, E.; Vanderschueren, S.; Wilmer, A.; Bobbaers, H.; Meersseman, W. Cancer presenting as fatal pulmonary tumour embolism. Acta Clin. Belg. 2006, 61, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.R.; Stein, R.C.; Ford, H.T.; Gazet, J.C.; Chamberlain, G.V.; Coombes, R.C. Lactic acidosis. A presentation of metastatic breast cancer arising in pregnancy. Cancer 1992, 69, 453–456. [Google Scholar] [CrossRef] [PubMed]
- Warner, E. Type b lactic acidosis and metastatic breast cancer. Breast Cancer Res. Treat. 1992, 24, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Brivet, F.; Fouqueray, B.; Rain, B.; Benattar, C. Lactic acidosis in breast cancer. Intensive Care Med. 1984, 10, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Sculier, J.P.; Nicaise, C.; Klastersky, J. Lactic acidosis: A metabolic complication of extensive metastatic cancer. Eur. J. Cancer Clin. Oncol. 1983, 19, 597–601. [Google Scholar] [CrossRef]
- Varanasi, U.R.; Carr, B.; Simpson, D.P. Lactic acidosis associated with metastatic breast carcinoma. Cancer Treat. Rep. 1980, 64, 1283–1285. [Google Scholar]
- Ellis, R.W. Breast cancer and lactic acidosis. An unusual metabolic complication. Minn. Med. 1985, 68, 441–442. [Google Scholar]
- Sillos, E.M.; Shenep, J.L.; Burghen, G.A.; Pui, C.H.; Behm, F.G.; Sandlund, J.T. Lactic acidosis: A metabolic complication of hematologic malignancies: Case report and review of the literature. Cancer 2001, 92, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- McNeillis, R.; Greystoke, A.; Walton, J.; Bacon, C.; Keun, H.; Siskos, A.; Petrides, G.; Leech, N.; Jenkinson, F.; Bowron, A.; et al. A case of malignant hyperlactaemic acidosis appearing upon treatment with the mono-carboxylase transporter 1 inhibitor azd3965. Br. J. Cancer 2020, 122, 1141–1145. [Google Scholar] [CrossRef]
- Katopodis, P.; Pappas, E.M.; Katopodis, K.P. Acid-base abnormalities and liver dysfunction. Ann. Hepatol. 2022, 27, 100675. [Google Scholar] [CrossRef] [PubMed]
- Smith, Z.R.; Horng, M.; Rech, M.A. Medication-induced hyperlactatemia and lactic acidosis: A systematic review of the literature. Pharmacotherapy 2019, 39, 946–963. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, R.W.F.; Jansman, F.G.A.; van den Bemt, P.; de Man, F.; Piran, F.; Vincenten, I.; Jager, A.; Rijneveld, A.W.; Brugma, J.D.; Mathijssen, R.H.J.; et al. Drug-drug interactions in patients treated for cancer: A prospective study on clinical interventions. Ann. Oncol. 2015, 26, 992–997. [Google Scholar] [CrossRef] [PubMed]
- Maschmeyer, G.; Haas, A. The epidemiology and treatment of infections in cancer patients. Int. J. Antimicrob. Agents 2008, 31, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Polegato, B.F.; Pereira, A.G.; Azevedo, P.S.; Costa, N.A.; Zornoff, L.A.M.; Paiva, S.A.R.; Minicucci, M.F. Role of thiamin in health and disease. Nutr. Clin. Pract. 2019, 34, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Svahn, J.; Schiaffino, M.C.; Caruso, U.; Calvillo, M.; Minniti, G.; Dufour, C. Severe lactic acidosis due to thiamine deficiency in a patient with b-cell leukemia/lymphoma on total parenteral nutrition during high-dose methotrexate therapy. J. Pediatr. Hematol. Oncol. 2003, 25, 965–968. [Google Scholar] [CrossRef]
- Looyens, C.; Giraud, R.; Neto Silva, I.; Bendjelid, K. Burkitt lymphoma and lactic acidosis: A case report and review of the literature. Physiol. Rep. 2021, 9, e14737. [Google Scholar] [CrossRef]
- Lende, T.H.; Austdal, M.; Varhaugvik, A.E.; Skaland, I.; Gudlaugsson, E.; Kvaloy, J.T.; Akslen, L.A.; Soiland, H.; Janssen, E.A.M.; Baak, J.P.A. Influence of pre-operative oral carbohydrate loading vs. Standard fasting on tumor proliferation and clinical outcome in breast cancer patients horizontal line a randomized trial. BMC Cancer 2019, 19, 1076. [Google Scholar] [CrossRef]
- Lende, T.H.; Austdal, M.; Bathen, T.F.; Varhaugvik, A.E.; Skaland, I.; Gudlaugsson, E.; Egeland, N.G.; Lunde, S.; Akslen, L.A.; Jonsdottir, K.; et al. Metabolic consequences of perioperative oral carbohydrates in breast cancer patients—An explorative study. BMC Cancer 2019, 19, 1183. [Google Scholar] [CrossRef]
- Suzumura, D.N.; Schleder, J.C.; Appel, M.H.; Naliwaiko, K.; Tanhoffer, R.; Fernandes, L.C. Fish oil supplementation enhances pulmonary strength and endurance in women undergoing chemotherapy. Nutr. Cancer 2016, 68, 935–942. [Google Scholar] [CrossRef]
- Khodabakhshi, A.; Seyfried, T.N.; Kalamian, M.; Beheshti, M.; Davoodi, S.H. Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: A randomized controlled clinical trial. Nutr. J. 2020, 19, 87. [Google Scholar] [CrossRef]
Year of Publication | Article | Description |
---|---|---|
1923 | [9] | Increased production of lactate and acidification by tumor cells upon addition of glucose, independent of oxygen. |
1972 | [10] | Aerobic glycolysis in tumors named “Warburg effect”. |
1997 | [11] | Transcription factor Myc transactivates the gene encoding the enzyme LDHA, which links oncogenic tumor pathways and metabolic rewiring that takes place during carcinogenesis. |
2002 | [12] | Lactate, mainly through conversion into pyruvate, stimulates HIF-1 accumulation through increased protein stability and gene expression; lactate acts as a signaling molecule. |
2008 | [13] | Lactate produced in hypoxic regions is taken up by oxygenated cancer cells through “metabolic symbiosis” between cancer cells and tumor microenvironment. |
2011 | [14] | Rewiring of energy metabolism elevated to the status of emerging hallmark of cancer. |
Year of Publication | Authors | Age | Liver Metastasis | Lactate Peak (mmol/L) | Therapy | Survival after the Onset of Lactic Acidosis | Notes |
---|---|---|---|---|---|---|---|
1980 | [130] | 61 | Yes | 17.2 | Chemotherapy and oral bicarbonate | Alive after 2 weeks | Self-discharge against medical advice. |
1983 | [129] | 36 | Yes | 13 | Chemotherapy and bicarbonate | 6 days | |
1984 | [128] | 54 | Yes | 27 | Chemotherapy (initiated 3 months prior for stage IV breast cancer); bicarbonate infusion | 2 days | Lactate increased despite bicarbonate infusion. |
1985 | [131] | 67 | Yes | 16.6 | Chemotherapy | 10 days | |
1992 | [126] | 36 | Yes | 5 | Bicarbonate and chemotherapy/gonadotropin antagonist (6 cycles) | Alive after 14 months | Onset at 36 weeks of pregnancy. |
1992 | [127] | 67 | Yes | 13 | Chemotherapy and bicarbonate | 8 days | |
2006 | [125] | 29 | NR | 12 | Only support therapy | Hours | Tumor emboli in lungs. |
2006 | [125] | 46 | NR | 12 | Only support therapy | Hours | Tumor emboli in lungs; mild lactic acidosis three months before emolization not resolved after stopping antiretroviral therapy. |
2011 | [122] | 86 | Yes | 7.5 | Thiamine, i.v. bicarbonate, chemotherapy | Few weeks | Mild thiamine deficit; no reduction in lactate levels after supplementation. |
2019 | [124] | 26 | Yes | 16.9 | Support/antibiotic therapy | 14 days | Presentation with sign/symptoms of liver failure; spontaneous bacterial peritonitis; death of liver failure and coagulopathy. |
2021 | [123] | 62 | 0 | 13.7 | Ribociclib | Alive after 12 months | Interaction between Ribociclib and Metformin in the setting of acute kidney injury likely causing lactic acidosis; recovery after Ribociclib discontinuation and renal replacement therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frisardi, V.; Canovi, S.; Vaccaro, S.; Frazzi, R. The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 15369. https://doi.org/10.3390/ijms242015369
Frisardi V, Canovi S, Vaccaro S, Frazzi R. The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. International Journal of Molecular Sciences. 2023; 24(20):15369. https://doi.org/10.3390/ijms242015369
Chicago/Turabian StyleFrisardi, Vincenza, Simone Canovi, Salvatore Vaccaro, and Raffaele Frazzi. 2023. "The Significance of Microenvironmental and Circulating Lactate in Breast Cancer" International Journal of Molecular Sciences 24, no. 20: 15369. https://doi.org/10.3390/ijms242015369
APA StyleFrisardi, V., Canovi, S., Vaccaro, S., & Frazzi, R. (2023). The Significance of Microenvironmental and Circulating Lactate in Breast Cancer. International Journal of Molecular Sciences, 24(20), 15369. https://doi.org/10.3390/ijms242015369