Regular Exercise Modulates the dfoxo/dsrebp Pathway to Alleviate High-Fat-Diet-Induced Obesity and Cardiac Dysfunction in Drosophila
Abstract
:1. Introduction
2. Results
2.1. High-Fat Diet Induces Obesity and Cardiac Dysfunction in Drosophila
2.2. HFDs Induce Obesity and Cardiac Dysfunction in Drosophila and Exercise Improves HFD-Induced Obesity and Cardiac Dysfunction
2.3. dfoxo and dsrebp Signaling Factors Play Vital Roles in Exercise-Mediated Amelioration of HFD-Induced Lipid Metabolism
2.4. dfoxo and dsrebp Signaling Factors Play Important Roles in the Improvement of HFD-Induced Cardiac Function with Exercise
3. Discussion
4. Materials and Methods
4.1. Drosophila Strains and Rearing
4.2. Body Weight and Triglyceride Measurement
4.3. Negative Geotaxis Assay
4.4. Phalloidin
4.5. Quantification of Nile Red Staining
4.6. M-Mode Cardiac Function Assay
4.7. Athletic Training Equipment and Programs
4.8. Real-Time Quantitative PCR
4.9. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stefan, N.; Birkenfeld, A.L.; Schulze, M.B. Global Pandemics Interconnected—Obesity, Impaired Metabolic Health and COVID-19. Nat. Rev. Endocrinol. 2021, 17, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; Hu, F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015, 33, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Zeng, L.; Zheng, C.; Song, B.; Li, F.; Kong, X.; Xu, K. Inflammatory Links between High Fat Diets and Diseases. Front. Immunol. 2018, 9, 2649. [Google Scholar] [CrossRef] [PubMed]
- Gaesser, G.A.; Angadi, S.S. Obesity Treatment: Weight Loss versus Increasing Fitness and Physical Activity for Reducing Health Risks. iScience 2021, 24, 102995. [Google Scholar] [CrossRef] [PubMed]
- The Connection between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes|Sports Medicine. Available online: https://link.springer.com/article/10.1007/s40279-022-01696-x (accessed on 10 September 2023).
- Ding, M.; Li, H.; Zheng, L. Drosophila Exercise, an Emerging Model Bridging the Fields of Exercise and Aging in Human. Front. Cell Dev. Biol. 2022, 10, 966531. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, M.J.; Marr, M.T. FOXO Regulates RNA Interference in Drosophila and Protects from RNA Virus Infection. Proc. Natl. Acad. Sci. USA 2015, 112, 14587–14592. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.-O.; Sánchez-Ramos, C.; Prieto-Arroyo, I.; Urbánek, P.; Steinbrenner, H.; Monsalve, M. Redox Regulation of FoxO Transcription Factors. Redox Biology 2015, 6, 51–72. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Dong, H.H. FoxO Integration of Insulin Signaling with Glucose and Lipid Metabolism. J. Endocrinol. 2017, 233, R67–R79. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, G.; Lou, Z. Role of the Sterol Regulatory Element Binding Protein Pathway in Tumorigenesis. Front. Oncol. 2020, 10, 1788. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, W.; O-Sullivan, I.; Williams, J.B.; Dong, Q.; Park, E.A.; Raghow, R.; Unterman, T.G.; Elam, M.B. FoxO1 Inhibits Sterol Regulatory Element-Binding Protein-1c (SREBP-1c) Gene Expression via Transcription Factors Sp1 and SREBP-1c. J. Biol. Chem. 2012, 287, 20132–20143. [Google Scholar] [CrossRef]
- Desvergne, B.; Michalik, L.; Wahli, W. Transcriptional Regulation of Metabolism. Physiol. Rev. 2006, 86, 465–514. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Yahagi, N.; Matsuzaka, T.; Takeuchi, Y.; Nakagawa, Y.; Takahashi, H.; Okazaki, H.; Iizuka, Y.; Ohashi, K.; Gotoda, T.; et al. SREBP-1-Independent Regulation of Lipogenic Gene Expression in Adipocytes. J. Lipid Res. 2007, 48, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Behl, T.; Kaur, I.; Sehgal, A.; Singh, S.; Zengin, G.; Negrut, N.; Nistor-Cseppento, D.C.; Pavel, F.M.; Corb Aron, R.A.; Bungau, S. Exploring the Genetic Conception of Obesity via the Dual Role of FoxO. Int. J. Mol. Sci. 2021, 22, 3179. [Google Scholar] [CrossRef] [PubMed]
- Birse, R.T.; Choi, J.; Reardon, K.; Rodriguez, J.; Graham, S.; Diop, S.; Ocorr, K.; Bodmer, R.; Oldham, S. High Fat Diet-Induced Obesity and Heart Dysfunction Is Regulated by the TOR Pathway in Drosophila. Cell Metab. 2010, 12, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Li, T.Y.; Rana, J.S.; Manson, J.E.; Willett, W.C.; Stampfer, M.J.; Colditz, G.A.; Rexrode, K.M.; Hu, F.B. Obesity as Compared with Physical Activity in Predicting Risk of Coronary Heart Disease in Women. Circulation 2006, 113, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Q.; Pan, Y.; Chen, S.; Zhao, Y.; Hu, Y. New Insights into the Role of Dietary Triglyceride Absorption in Obesity and Metabolic Diseases. Front. Pharmacol. 2023, 14, 1097835. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Meng, J. Exercise for Prevention and Relief of Cardiovascular Disease: Prognoses, Mechanisms, and Approaches. Oxid. Med. Cell Longev. 2019, 2019, 3756750. [Google Scholar] [CrossRef]
- Sibouakaz, D.; Othmani-Mecif, K.; Fernane, A.; Taghlit, A.; Benazzoug, Y. Biochemical and Ultrastructural Cardiac Changes Induced by High-Fat Diet in Female and Male Prepubertal Rabbits. Anal. Cell Pathol. (Amst) 2018, 2018, 6430696. [Google Scholar] [CrossRef]
- Qiu, Y.; Fernández-García, B.; Lehmann, H.I.; Li, G.; Kroemer, G.; López-Otín, C.; Xiao, J. Exercise Sustains the Hallmarks of Health. J. Sport. Health Sci. 2023, 12, 8–35. [Google Scholar] [CrossRef]
- Tikhanovich, I.; Cox, J.; Weinman, S. FOXO Transcription Factors in Liver Function and Disease. J Gastroenterol. Hepatol. 2013, 28, 125–131. [Google Scholar] [CrossRef]
- Xiaoping, Z.; Fajun, Y. Regulation of SREBP-Mediated Gene Expression. Sheng Wu Wu Li Hsueh Bao 2012, 28, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling Pathways in Obesity: Mechanisms and Therapeutic Interventions. Sig. Transduct. Target. Ther. 2022, 7, 1–31. [Google Scholar] [CrossRef]
- Zeng, H.; Vaka, V.R.; He, X.; Booz, G.W.; Chen, J.-X. High-Fat Diet Induces Cardiac Remodelling and Dysfunction: Assessment of the Role Played by SIRT3 Loss. J. Cell. Mol. Med. 2015, 19, 1847–1856. [Google Scholar] [CrossRef] [PubMed]
- Coronado, F. Global Responses to Prevent, Manage, and Control Cardiovascular Diseases. Prev. Chronic Dis. 2022, 19, E84. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.J.; Kabi, A.; Nickerson, K.P.; McDonald, C. Combinatorial Effects of Diet and Genetics on Inflammatory Bowel Disease Pathogenesis. Inflamm. Bowel Dis. 2015, 21, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity—A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Jarzebska, N.; Raubenheimer, D.; Simpson, S.J.; Rodionov, R.N.; O’Sullivan, J.F. Cardio-Metabolic Effects of High-Fat Diets and Their Underlying Mechanisms—A Narrative Review. Nutrients 2020, 12, 1505. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Heier, C.; Kühnlein, R.P. Triacylglycerol Metabolism in Drosophila Melanogaster. Genetics 2018, 210, 1163–1184. [Google Scholar] [CrossRef]
- Heinrichsen, E.T.; Zhang, H.; Robinson, J.E.; Ngo, J.; Diop, S.; Bodmer, R.; Joiner, W.J.; Metallo, C.M.; Haddad, G.G. Metabolic and Transcriptional Response to a High-Fat Diet in Drosophila Melanogaster. Mol. Metab. 2013, 3, 42–54. [Google Scholar] [CrossRef]
- Cao, Y.; He, S.; Ding, M.; Gu, W.; Wang, T.; Zhang, S.; Feng, J.; Li, Q.; Zheng, L. Regular Exercise in Drosophila Prevents Age-Related Cardiac Dysfunction Caused by High Fat and Heart-Specific Knockdown of Skd. Int. J. Mol. Sci. 2023, 24, 1216. [Google Scholar] [CrossRef] [PubMed]
- Guida, M.C.; Birse, R.T.; Dall’Agnese, A.; Toto, P.C.; Diop, S.B.; Mai, A.; Adams, P.D.; Puri, P.L.; Bodmer, R. Intergenerational Inheritance of High Fat Diet-Induced Cardiac Lipotoxicity in Drosophila. Nat. Commun. 2019, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Zheng, L.; Li, Q.F.; Wang, W.L.; Peng, W.D.; Zhou, M. Exercise-Training Regulates Apolipoprotein B in Drosophila to Improve HFD-Mediated Cardiac Function Damage and Low Exercise Capacity. Front. Physiol. 2021, 12, 650959. [Google Scholar] [CrossRef] [PubMed]
- Farhan, M.; Silva, M.; Xingan, X.; Huang, Y.; Zheng, W. Role of FOXO Transcription Factors in Cancer Metabolism and Angiogenesis. Cells 2020, 9, 1586. [Google Scholar] [CrossRef] [PubMed]
- Kousteni, S. FoxO1, the Transcriptional Chief of Staff of Energy Metabolism. Bone 2012, 50, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Moll, L.; Schubert, M. The Role of Insulin and Insulin-Like Growth Factor-1/FoxO-Mediated Transcription for the Pathogenesis of Obesity-Associated Dementia. Curr. Gerontol. Geriatr. Res. 2012, 2012, e384094. [Google Scholar] [CrossRef] [PubMed]
- Mechanisms of Insulin Action and Insulin Resistance|Physiological Reviews. Available online: https://journals.physiology.org/doi/full/10.1152/physrev.00063.2017 (accessed on 11 September 2023).
- McDonagh, L.R. Investigating the Effects of FoxO Transcriptional Activity on Metabolic Homeostasis. Ph.D. Thesis, Aston University, Birmingham, UK, 2022. [Google Scholar]
- Obesity and Cardiovascular Disease: Pathophysiology, Evaluation, and Effect of Weight Loss|Circulation. Available online: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.106.171016 (accessed on 21 October 2023).
- Association between Insulin Resistance and the Development of Cardiovascular Disease|Cardiovascular Diabetology|Full Text. Available online: https://cardiab.biomedcentral.com/articles/10.1186/s12933-018-0762-4 (accessed on 21 October 2023).
- Drosophila—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/drosophila (accessed on 20 October 2023).
- Ding, M.; Li, Q.F.; Yin, G.; Liu, J.L.; Jan, X.Y.; Huang, T.; Li, A.C.; Zheng, L. Effects of Drosophila Melanogaster Regular Exercise and Apolipoprotein B Knockdown on Abnormal Heart Rhythm Induced by a High-Fat Diet. PLoS ONE 2022, 17, e0262471. [Google Scholar] [CrossRef] [PubMed]
- Diop, S.B.; Birse, R.T.; Bodmer, R. High Fat Diet Feeding and High Throughput Triacylglyceride Assay in Drosophila Melanogaster. J. Vis. Exp. 2017, 127, 56029. [Google Scholar] [CrossRef]
- Gargano, J.W.; Martin, I.; Bhandari, P.; Grotewiel, M.S. Rapid Iterative Negative Geotaxis (RING): A New Method for Assessing Age-Related Locomotor Decline in Drosophila. Exp. Gerontol. 2005, 40, 386–395. [Google Scholar] [CrossRef]
- Vogler, G.; Ocorr, K. Visualizing the Beating Heart in Drosophila. J. Vis. Exp. 2009, 31, 1425. [Google Scholar] [CrossRef]
- Nayak, N.; Mishra, M. High Fat Diet Induced Abnormalities in Metabolism, Growth, Behavior, and Circadian Clock in Drosophila Melanogaster. Life Sci. 2021, 281, 119758. [Google Scholar] [CrossRef]
- Fink, M.; Callol-Massot, C.; Chu, A.; Ruiz-Lozano, P.; Belmonte, J.C.I.; Giles, W.; Bodmer, R.; Ocorr, K. A New Method for Detection and Quantification of Heartbeat Parameters in Drosophila, Zebrafish, and Embryonic Mouse Hearts. Biotechniques 2009, 46, 101–113. [Google Scholar] [CrossRef]
- Zheng, L.; Feng, Y.; Wen, D.T.; Wang, H.; Wu, X.S. Fatiguing Exercise Initiated Later in Life Reduces Incidence of Fibrillation and Improves Sleep Quality in Drosophila. Age (Dordr.) 2015, 37, 77. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Ding, M.; Peng, T.; Zhang, P.; Tian, R.; Zheng, L. Regular Exercise Modulates the dfoxo/dsrebp Pathway to Alleviate High-Fat-Diet-Induced Obesity and Cardiac Dysfunction in Drosophila. Int. J. Mol. Sci. 2023, 24, 15562. https://doi.org/10.3390/ijms242115562
Yan H, Ding M, Peng T, Zhang P, Tian R, Zheng L. Regular Exercise Modulates the dfoxo/dsrebp Pathway to Alleviate High-Fat-Diet-Induced Obesity and Cardiac Dysfunction in Drosophila. International Journal of Molecular Sciences. 2023; 24(21):15562. https://doi.org/10.3390/ijms242115562
Chicago/Turabian StyleYan, Hanhui, Meng Ding, Tianhang Peng, Ping Zhang, Rui Tian, and Lan Zheng. 2023. "Regular Exercise Modulates the dfoxo/dsrebp Pathway to Alleviate High-Fat-Diet-Induced Obesity and Cardiac Dysfunction in Drosophila" International Journal of Molecular Sciences 24, no. 21: 15562. https://doi.org/10.3390/ijms242115562
APA StyleYan, H., Ding, M., Peng, T., Zhang, P., Tian, R., & Zheng, L. (2023). Regular Exercise Modulates the dfoxo/dsrebp Pathway to Alleviate High-Fat-Diet-Induced Obesity and Cardiac Dysfunction in Drosophila. International Journal of Molecular Sciences, 24(21), 15562. https://doi.org/10.3390/ijms242115562