The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches
Abstract
:1. Introduction
2. An Insight into EVs’ Biogenetic Pathways
3. The Role of EVs in Biliary Tract Physiology and Cholangiopathies
4. The Implication of EVs in CCA
4.1. The Interplay between EVs and TME in CCA
4.1.1. A Brief Review of TME Components and Their Role
4.1.2. The Implication of TME in CCA Progression
4.1.3. The Role of EVs in CCA-TME
- (1)
- CCA-Derived EVs with Non-Coding RNA Molecules as Cargoes
- (2)
- CCA-Derived EVs with Protein Molecules as Cargoes
- (3)
- Other CCA-Derived EVs
- (4)
- TME Modulation by Different Sources of EVs
4.2. The Implication of Parasite-Derived EVs in CCA Progression
5. EVs as Diagnostic Tools in CCA—A Novel Liquid Biopsy Approach
5.1. EV as Diagnostic Tools in Bile Samples
5.2. EVs in Blood Samples
5.3. EVs in Urine Samples and CCA Tissues
6. EVs s Staging, Prognostic, and Predictive Biomarkers
7. EVs as Therapeutic Tools
7.1. EVs as Drug Vectors
7.2. EV-Based Vaccination
7.3. EV as a Therapeutic Target
8. Challenges and Limitations of EV Utilization for Research
9. Future Approaches in Diagnosis and Therapeutic Management of CCA
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-fluorouracil | 5-FU |
activating transcription factor 4 | ATF4 |
alpha-1-acid glycoprotein 1 | A1AG1 |
alpha-actinin-1 | ACTN1 |
apoptotic vesicles | ApoEVs |
biliary epithelial cells | BECs |
B-cell-specific Moloney murine leukemia virus integration site 1 | BMI1 |
B-regulatory | Breg |
natural killer | NK |
cancer-associated fibroblast | CAFs |
carbohydrate antigen 19-9 | CA19-9 |
cartilage oligomeric matrix protein | COMP |
chemokine (C-C motif) ligand 2 | CCL2 |
chemokine (C-X-C motif) ligand 1 | CXCL-1 |
cholangiocarcinoma | CCA |
circular RNAs | circRNA |
Clonorchis sinensis | C. sinensis |
complement factor I | CFAI |
cyclin-dependent kinases | CDK |
cytokine-induced killer cells | CIKs |
cytotoxic T-lymphocyte-associated protein 4 | CTLA-4 |
C-reactive protein | CRP |
C. sinensis | CsEVs |
dendritic cells | DCs |
distal cholangiocarcinoma | dCCA |
endosomal sorting complex | ESCRT |
endothelial cells | ECs |
extracellular matrix | ECM |
ferritin light chain protein | FRIL |
fibrinogen gamma chain | FIBG |
ficolin-2 | FCN2 |
G protein subunit i2 | GNAI2 |
gamma-glutamyltranspeptidase 1 | GGT1 |
hepatic stellate cells | HSCs |
hepatocellular carcinoma | HCC |
immune checkpoints | ICs |
INO80 complex subunit D | INO80D |
inter-alpha-trypsin inhibitor heavy chain H4 | ITIH4 |
intrahepatic cholangiocarcinoma | iCCA |
intraluminal vesicles | ILVs |
long non-coding RNA | lncRNA |
MAP6-domain-containing 1 | MAP6D1 |
metabolic (dysfunction)-associated fatty liver disease | MAFLD |
microRNAs | miRs |
mitochondrial DNAs | mtDNAs |
multivesicular bodies | MVBs |
MYC target 1 | MYCT1 |
myeloid-derived suppressor cells | MDSCs |
nuclear factor-kappa B | NF-kB |
pantetheinase | VNN1 |
paraoxonase 1 | PON1 |
perihilar cholangiocarcinoma | pCCA |
phosphoglycerate dehydrogenase | PHGDH |
plasma protease C1 inhibitor | IC1 |
polymeric immunoglobulin receptor | PIGR |
primary sclerosing cholangitis | PSC |
programmed cell death ligand 1 | PD-L1 |
programmed death-1 | PD-1 |
Ras-related GTP binding D | RRAGD |
serum amyloid P-component | SAMP |
tetraspanin | TSP |
tumor microenvironment | TME |
tumor-associated macrophages | TAMs |
tumor-associated neutrophils | TANs |
tumor-infiltrating lymphocytes | TILs |
T-cell receptor | TCR |
T-regulatory | Treg |
viral hepatitis B | HBV |
viral hepatitis C | HCV |
vitamin D-binding protein | VTDB |
Von Willebrand factor | VWF |
References
- Koustas, E.; Trifylli, E.-M.; Sarantis, P.; Papavassiliou, A.G.; Karamouzis, M.V. Role of Autophagy in Cholangiocarcinoma: An Autophagy-Based Treatment Strategy. World J. Gastrointest. Oncol. 2021, 13, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Hang, H.; Jeong, S.; Sha, M.; Kong, D.; Xi, Z.; Tong, Y.; Xia, Q. Cholangiocarcinoma: Anatomical Location-Dependent Clinical, Prognostic, and Genetic Disparities. Ann. Transl. Med. 2019, 7, 744. [Google Scholar] [CrossRef] [PubMed]
- Labib, P.L.; Goodchild, G.; Pereira, S.P. Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer 2019, 19, 185. [Google Scholar] [CrossRef]
- Banales, J.M.; Marin, J.J.G.; Lamarca, A.; Rodrigues, P.M.; Khan, S.A.; Roberts, L.R.; Cardinale, V.; Carpino, G.; Andersen, J.B.; Braconi, C.; et al. Cholangiocarcinoma 2020: The next Horizon in Mechanisms and Management. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 557–588. [Google Scholar] [CrossRef]
- Zheng, Y.; Qin, Y.; Gong, W.; Li, H.; Li, B.; Wang, Y.; Chao, B.; Zhao, S.; Liu, L.; Yao, S.; et al. Specific Genomic Alterations and Prognostic Analysis of Perihilar Cholangiocarcinoma and Distal Cholangiocarcinoma. J. Gastrointest. Oncol. 2021, 12, 2631–2642. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Alexander, W.B.; Guo, B.; Kato, Y.; Patra, K.; O’Dell, M.R.; McCall, M.N.; Whitney-Miller, C.L.; Bardeesy, N.; Hezel, A.F. Kras and Tp53 Mutations Cause Cholangiocyte- and Hepatocyte-Derived Cholangiocarcinoma. Cancer Res. 2018, 78, 4445–4451. [Google Scholar] [CrossRef]
- Lendvai, G.; Szekerczés, T.; Illyés, I.; Dóra, R.; Kontsek, E.; Gógl, A.; Kiss, A.; Werling, K.; Kovalszky, I.; Schaff, Z.; et al. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis. Pathol. Oncol. Res. 2020, 26, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.A.; Tavolari, S.; Brandi, G. Cholangiocarcinoma: Epidemiology and Risk Factors. Liver Int. 2019, 39, 19–31. [Google Scholar] [CrossRef]
- Vithayathil, M.; Khan, S.A. Current Epidemiology of Cholangiocarcinoma in Western Countries. J. Hepatol. 2022, 77, 1690–1698. [Google Scholar] [CrossRef]
- Barner-Rasmussen, N.; Pukkala, E.; Hadkhale, K.; Färkkilä, M. Risk Factors, Epidemiology and Prognosis of Cholangiocarcinoma in Finland. United Eur. Gastroenterol. J. 2021, 9, 1128–1135. [Google Scholar] [CrossRef]
- Kamsa-ard, S.; Kamsa-ard, S.; Luvria, V.; Suwanrungruang, K.; Vatanasapt, P.; Wiangnon, S. Risk Factors for Cholangiocarcinoma in Thailand: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer Prev. 2018, 19, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Blechacz, B.; Komuta, M.; Roskams, T.; Gores, G.J. Clinical Diagnosis and Staging of Cholangiocarcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, S.; Yang, D.; Xu, W.; Qian, H. Extracellular Vesicles: Emerging Roles, Biomarkers and Therapeutic Strategies in Fibrotic Diseases. J. Nanobiotechnol. 2023, 21, 164. [Google Scholar] [CrossRef]
- Maas, S.L.N.; Breakefield, X.O.; Weaver, A.M. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol. 2017, 27, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Fu, W.; Su, G.; Cao, J.; Gao, L.; Huang, C.; Ma, H.; Zhang, J.; Yue, P.; Bai, B.; et al. The Role of Extracellular Vesicles in Cholangiocarcinoma. Cancer Cell Int. 2020, 20, 435. [Google Scholar] [CrossRef]
- Doyle, L.; Wang, M. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef]
- Trifylli, E.-M.; Kriebardis, A.G.; Koustas, E.; Papadopoulos, N.; Deutsch, M.; Aloizos, G.; Fortis, S.P.; Papageorgiou, E.G.; Tsagarakis, A.; Manolakopoulos, S. The Emerging Role of Extracellular Vesicles and Autophagy Machinery in NASH—Future Horizons in NASH Management. Int. J. Mol. Sci. 2022, 23, 12185. [Google Scholar] [CrossRef]
- Han, Q.-F.; Li, W.-J.; Hu, K.-S.; Gao, J.; Zhai, W.-L.; Yang, J.-H.; Zhang, S.-J. Exosome Biogenesis: Machinery, Regulation, and Therapeutic Implications in Cancer. Mol. Cancer 2022, 21, 207. [Google Scholar] [CrossRef]
- Juan, T.; Fürthauer, M. Biogenesis and Function of ESCRT-Dependent Extracellular Vesicles. Semin. Cell Dev. Biol. 2018, 74, 66–77. [Google Scholar] [CrossRef]
- Vietri, M.; Radulovic, M.; Stenmark, H. The Many Functions of ESCRTs. Nat. Rev. Mol. Cell Biol. 2020, 21, 25–42. [Google Scholar] [CrossRef]
- Kenific, C.M.; Zhang, H.; Lyden, D. An Exosome Pathway without an ESCRT. Cell Res. 2021, 31, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Piper, R.C.; Katzmann, D.J. Biogenesis and Function of Multivesicular Bodies. Annu. Rev. Cell Dev. Biol. 2007, 23, 519–547. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, D.; Wang, S.; Gan, L.; Yang, X.; Ma, C. Identification of the SNARE Complex That Mediates the Fusion of Multivesicular Bodies with the Plasma Membrane in Exosome Secretion. J. Extracell. Vesicles 2023, 12, e12356. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; D’Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef]
- Buratta, S.; Tancini, B.; Sagini, K.; Delo, F.; Chiaradia, E.; Urbanelli, L.; Emiliani, C. Lysosomal Exocytosis, Exosome Release and Secretory Autophagy: The Autophagic- and Endo-Lysosomal Systems Go Extracellular. Int. J. Mol. Sci. 2020, 21, 2576. [Google Scholar] [CrossRef]
- Dixson, A.C.; Dawson, T.R.; Di Vizio, D.; Weaver, A.M. Context-Specific Regulation of Extracellular Vesicle Biogenesis and Cargo Selection. Nat. Rev. Mol. Cell Biol. 2023, 24, 454–476. [Google Scholar] [CrossRef]
- Ratajczak, M.Z.; Ratajczak, J. Extracellular Microvesicles/Exosomes: Discovery, Disbelief, Acceptance, and the Future? Leukemia 2020, 34, 3126–3135. [Google Scholar] [CrossRef]
- Söllner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. SNAP Receptors Implicated in Vesicle Targeting and Fusion. Nature 1993, 362, 318–324. [Google Scholar] [CrossRef]
- Kreger, B.T.; Dougherty, A.L.; Greene, K.S.; Cerione, R.A.; Antonyak, M.A. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J. Biol. Chem. 2016, 291, 19774–19785. [Google Scholar] [CrossRef]
- Santavanond, J.P.; Rutter, S.F.; Atkin-Smith, G.K.; Poon, I.K.H. Apoptotic Bodies: Mechanism of Formation, Isolation and Functional Relevance. In Subcellular Biochemistry; Springer International Publishing: Cham, Switzerland, 2021; Volume 97, pp. 61–88. [Google Scholar]
- Battistelli, M.; Falcieri, E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology 2020, 9, 21. [Google Scholar] [CrossRef]
- Caruso, S.; Poon, I.K.H. Apoptotic Cell-Derived Extracellular Vesicles: More than Just Debris. Front. Immunol. 2018, 9, 1486. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Camfield, R.; Gorski, S.M. The Interplay between Exosomes and Autophagy—Partners in Crime. J. Cell Sci. 2018, 131, jcs215210. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Tan, J.; Miao, Y.; Lv, Y.; Zhang, Q. Crosstalk between Exosomes and Autophagy: A Review of Molecular Mechanisms and Therapies. J. Cell. Mol. Med. 2021, 25, 2297–2308. [Google Scholar] [CrossRef] [PubMed]
- Salimi, L.; Akbari, A.; Jabbari, N.; Mojarad, B.; Vahhabi, A.; Szafert, S.; Kalashani, S.A.; Soraya, H.; Nawaz, M.; Rezaie, J. Synergies in Exosomes and Autophagy Pathways for Cellular Homeostasis and Metastasis of Tumor Cells. Cell Biosci. 2020, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Leidal, A.M.; Debnath, J. LC3-Dependent Extracellular Vesicle Loading and Secretion (LDELS). Autophagy 2020, 16, 1162–1163. [Google Scholar] [CrossRef]
- van Niel, G.; Carter, D.R.F.; Clayton, A.; Lambert, D.W.; Raposo, G.; Vader, P. Challenges and Directions in Studying Cell–Cell Communication by Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23, 369–382. [Google Scholar] [CrossRef]
- Joshi, B.S.; de Beer, M.A.; Giepmans, B.N.G.; Zuhorn, I.S. Endocytosis of Extracellular Vesicles and Release of Their Cargo from Endosomes. ACS Nano 2020, 14, 4444–4455. [Google Scholar] [CrossRef]
- Huang, D.; Rao, D.; Xi, X.; Zhang, Z.; Zhong, T. Application of Extracellular Vesicles Proteins in Cancer Diagnosis. Front. Cell Dev. Biol. 2022, 10, 1007360. [Google Scholar] [CrossRef]
- Yuana, Y.; Sturk, A.; Nieuwland, R. Extracellular Vesicles in Physiological and Pathological Conditions. Blood Rev. 2013, 27, 31–39. [Google Scholar] [CrossRef]
- Thietart, S.; Rautou, P.-E. Extracellular Vesicles as Biomarkers in Liver Diseases: A Clinician’s Point of View. J. Hepatol. 2020, 73, 1507–1525. [Google Scholar] [CrossRef]
- Maji, S.; Matsuda, A.; Yan, I.K.; Parasramka, M.; Patel, T. Extracellular Vesicles in Liver Diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G194–G200. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, D. The Challenge of Cholangiocarcinoma Diagnosis: The Turning Point Is in Extracellular Vesicles? Hepatology 2017, 66, 1029–1031. [Google Scholar] [CrossRef]
- Banales, J.M.; Huebert, R.C.; Karlsen, T.; Strazzabosco, M.; LaRusso, N.F.; Gores, G.J. Cholangiocyte Pathobiology. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 269–281. [Google Scholar] [CrossRef]
- Povero, D.; Tameda, M.; Eguchi, A.; Ren, W.; Kim, J.; Myers, R.; Goodman, Z.D.; Harrison, S.A.; Sanyal, A.J.; Bosch, J.; et al. Protein and MiRNA Profile of Circulating Extracellular Vesicles in Patients with Primary Sclerosing Cholangitis. Sci. Rep. 2022, 12, 3027. [Google Scholar] [CrossRef]
- Koustas, E.; Trifylli, E.-M.; Sarantis, P.; Papadopoulos, N.; Karapedi, E.; Aloizos, G.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Papavassiliou, K.A.; et al. Immunotherapy as a Therapeutic Strategy for Gastrointestinal Cancer—Current Treatment Options and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 6664. [Google Scholar] [CrossRef] [PubMed]
- Koustas, E.; Trifylli, E.-M.; Sarantis, P.; Papadopoulos, N.; Papanikolopoulos, K.; Aloizos, G.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Matthaios, D.; et al. Exploiting Autophagy-Dependent Neoantigen Presentation in Tumor Microenvironment. Genes 2023, 14, 474. [Google Scholar] [CrossRef] [PubMed]
- Mayer, C.T.; Floess, S.; Baru, A.M.; Lahl, K.; Huehn, J.; Sparwasser, T. CD8+Foxp3+ T Cells Share Developmental and Phenotypic Features with Classical CD4+Foxp3+ Regulatory T Cells but Lack Potent Suppressive Activity. Eur. J. Immunol. 2011, 41, 716–725. [Google Scholar] [CrossRef]
- Sarvaria, A.; Madrigal, J.A.; Saudemont, A. B Cell Regulation in Cancer and Anti-Tumor Immunity. Cell. Mol. Immunol. 2017, 14, 662–674. [Google Scholar] [CrossRef]
- Speiser, D.E.; Chijioke, O.; Schaeuble, K.; Münz, C. CD4+ T Cells in Cancer. Nat. Cancer 2023, 4, 317–329. [Google Scholar] [CrossRef]
- Wu, F.; Yang, J.; Liu, J.; Wang, Y.; Mu, J.; Zeng, Q.; Deng, S.; Zhou, H. Signaling Pathways in Cancer-Associated Fibroblasts and Targeted Therapy for Cancer. Signal Transduct. Target. Ther. 2021, 6, 218. [Google Scholar] [CrossRef]
- Yan, M.; Zheng, M.; Niu, R.; Yang, X.; Tian, S.; Fan, L.; Li, Y.; Zhang, S. Roles of Tumor-Associated Neutrophils in Tumor Metastasis and Its Clinical Applications. Front. Cell Dev. Biol. 2022, 10, 938289. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.C.; Lee, S.E.; Jin, Y.; Park, H.W.; Chun, K.-H.; Lee, H.-W. Classifying the Linkage between Adipose Tissue Inflammation and Tumor Growth through Cancer-Associated Adipocytes. Mol. Cells 2020, 43, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, Y.; Wang, L. Shaping Polarization of Tumor-Associated Macrophages in Cancer Immunotherapy. Front. Immunol. 2022, 13, 888713. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Lu, Y.; Zheng, J.; Jiang, X.; Shen, H.; Shang, X.; Lu, Y.; Fu, P. Exploring the Crosstalk between Endothelial Cells, Immune Cells, and Immune Checkpoints in the Tumor Microenvironment: New Insights and Therapeutic Implications. Cell Death Dis. 2023, 14, 586. [Google Scholar] [CrossRef]
- Dysthe, M.; Parihar, R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. In Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2020; Volume 1224, pp. 117–140. [Google Scholar]
- Carloni, R.; Rizzo, A.; Ricci, A.D.; Federico, A.D.; De Luca, R.; Guven, D.C.; Yalcin, S.; Brandi, G. Targeting Tumor Microenvironment for Cholangiocarcinoma: Opportunities for Precision Medicine. Transl. Oncol. 2022, 25, 101514. [Google Scholar] [CrossRef] [PubMed]
- Høgdall, D.; Lewinska, M.; Andersen, J.B. Desmoplastic Tumor Microenvironment and Immunotherapy in Cholangiocarcinoma. Trends Cancer 2018, 4, 239–255. [Google Scholar] [CrossRef]
- van Tienderen, G.S.; Rosmark, O.; Lieshout, R.; Willemse, J.; de Weijer, F.; Elowsson Rendin, L.; Westergren-Thorsson, G.; Doukas, M.; Groot Koerkamp, B.; van Royen, M.E.; et al. Extracellular Matrix Drives Tumor Organoids toward Desmoplastic Matrix Deposition and Mesenchymal Transition. Acta Biomater. 2023, 158, 115–131. [Google Scholar] [CrossRef]
- Sirica, A.E. Matricellular Proteins in Intrahepatic Cholangiocarcinoma. In Advances in Cancer Research; Elsevier: Amsterdam, The Netherlands, 2022; Volume 156, pp. 249–281. [Google Scholar]
- Sirica, A.E.; Almenara, J.A.; Li, C. Periostin in Intrahepatic Cholangiocarcinoma: Pathobiological Insights and Clinical Implications. Exp. Mol. Pathol. 2014, 97, 515–524. [Google Scholar] [CrossRef]
- Aishima, S.-I.; Taguchi, K.-I.; Terashi, T.; Matsuura, S.; Shimada, M.; Tsuneyoshi, M. Tenascin Expression at the Invasive Front Is Associated with Poor Prognosis in Intrahepatic Cholangiocarcinoma. Mod. Pathol. 2003, 16, 1019–1027. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, C.; Lu, S.; Xu, Y.; Li, Z.; Jiang, H.; Ma, Y. Tumor-Associated Macrophages in Cholangiocarcinoma: Complex Interplay and Potential Therapeutic Target. EBioMedicine 2021, 67, 103375. [Google Scholar] [CrossRef]
- Xiang, X.; Wang, J.; Lu, D.; Xu, X. Targeting Tumor-Associated Macrophages to Synergize Tumor Immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Vaquero, J.; Aoudjehane, L.; Fouassier, L. Cancer-Associated Fibroblasts in Cholangiocarcinoma. Curr. Opin. Gastroenterol. 2020, 36, 63–69. [Google Scholar] [CrossRef]
- Zhao, K.; Li, X.; Shi, Y.; Lu, Y.; Qiu, P.; Deng, Z.; Yao, W.; Wang, J. Exosomes in the Tumor Microenvironment of Cholangiocarcinoma: Current Status and Future Perspectives. J. Transl. Med. 2022, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Olaizola, P.; Lee-Law, P.Y.; Arbelaiz, A.; Lapitz, A.; Perugorria, M.J.; Bujanda, L.; Banales, J.M. MicroRNAs and Extracellular Vesicles in Cholangiopathies. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 1293–1307. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Hong, J.; Wu, J. Potential of Extracellular Vesicles and Exosomes as Diagnostic Markers for Cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2022, 11, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Takahashi, K.; Otake, S.; Tamaki, Y.; Okada, M.; Aso, K.; Makino, Y.; Fujii, S.; Ota, T.; Haneda, M. Extracellular Vesicle-Encapsulated MiR-30e Suppresses Cholangiocarcinoma Cell Invasion and Migration via Inhibiting Epithelial-Mesenchymal Transition. Oncotarget 2018, 9, 16400–16417. [Google Scholar] [CrossRef]
- Li, L.; Piontek, K.; Ishida, M.; Fausther, M.; Dranoff, J.A.; Fu, R.; Mezey, E.; Gould, S.J.; Fordjour, F.K.; Meltzer, S.J.; et al. Extracellular Vesicles Carry MicroRNA-195 to Intrahepatic Cholangiocarcinoma and Improve Survival in a Rat Model. Hepatology 2017, 65, 501–514. [Google Scholar] [CrossRef]
- Shen, L.; Chen, G.; Xia, Q.; Shao, S.; Fang, H. Exosomal MiR-200 Family as Serum Biomarkers for Early Detection and Prognostic Prediction of Cholangiocarcinoma. Int. J. Clin. Exp. Pathol. 2019, 12, 3870–3876. [Google Scholar]
- Luo, C.; Xin, H.; Zhou, Z.; Hu, Z.; Sun, R.; Yao, N.; Sun, Q.; Borjigin, U.; Wu, X.; Fan, J.; et al. Tumor-derived Exosomes Induce Immunosuppressive Macrophages to Foster Intrahepatic Cholangiocarcinoma Progression. Hepatology 2022, 76, 982–999. [Google Scholar] [CrossRef]
- Shu, L.; Li, X.; Liu, Z.; Li, K.; Shi, A.; Tang, Y.; Zhao, L.; Huang, L.; Zhang, Z.; Zhang, D.; et al. Bile Exosomal MiR-182/183-5p Increases Cholangiocarcinoma Stemness and Progression by Targeting HPGD and Increasing PGE2 Generation. Hepatology 2023. Publish Ahead of Print. [Google Scholar] [CrossRef]
- Louis, C.; Desoteux, M.; Coulouarn, C. Exosomal CircRNAs: New Players in the Field of Cholangiocarcinoma. Clin. Sci. 2019, 133, 2239–2244. [Google Scholar] [CrossRef]
- Li, J.; Zhang, G.; Liu, C.-G.; Xiang, X.; Le, M.T.N.; Sethi, G.; Wang, L.; Goh, B.-C.; Ma, Z. The Potential Role of Exosomal CircRNAs in the Tumor Microenvironment: Insights into Cancer Diagnosis and Therapy. Theranostics 2022, 12, 87–104. [Google Scholar] [CrossRef]
- Xu, Y.; Leng, K.; Yao, Y.; Kang, P.; Liao, G.; Han, Y.; Shi, G.; Ji, D.; Huang, P.; Zheng, W.; et al. A Circular RNA, Cholangiocarcinoma-associated Circular RNA 1, Contributes to Cholangiocarcinoma Progression, Induces Angiogenesis, and Disrupts Vascular Endothelial Barriers. Hepatology 2021, 73, 1419–1435. [Google Scholar] [CrossRef]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting Integrin Pathways: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 1–42. [Google Scholar] [CrossRef]
- Marar, C.; Starich, B.; Wirtz, D. Extracellular Vesicles in Immunomodulation and Tumor Progression. Nat. Immunol. 2021, 22, 560–570. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, C.; Zheng, L.; Liu, J.; Li, K.; Li, X.; Wang, Y.; Mu, W.; Chen, T.; Shi, A.; et al. BMI1 Promotes Cholangiocarcinoma Progression and Correlates with Antitumor Immunity in an Exosome-Dependent Manner. Cell. Mol. Life Sci. 2022, 79, 469. [Google Scholar] [CrossRef] [PubMed]
- Oliviero, B.; Dei Cas, M.; Zulueta, A.; Maiello, R.; Villa, A.; Martinelli, C.; Del Favero, E.; Falleni, M.; Montavoci, L.; Varchetta, S.; et al. Ceramide Present in Cholangiocarcinoma-Derived Extracellular Vesicle Induces a pro-Inflammatory State in Monocytes. Sci. Rep. 2023, 13, 7766. [Google Scholar] [CrossRef] [PubMed]
- Ying, F.; Chan, M.S.M.; Lee, T.K.W. Cancer-Associated Fibroblasts in Hepatocellular Carcinoma and Cholangiocarcinoma. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 985–999. [Google Scholar] [CrossRef]
- Haga, H.; Yan, I.K.; Takahashi, K.; Wood, J.; Zubair, A.; Patel, T. Tumour Cell–Derived Extracellular Vesicles Interact with Mesenchymal Stem Cells to Modulate the Microenvironment and Enhance Cholangiocarcinoma Growth. J. Extracell. Vesicles 2015, 4, 24900. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Xiang, J.-Y.; Ding, G.-P.; Cao, L.-P. Cholangiocarcinoma-Derived Exosomes Inhibit the Antitumor Activity of Cytokine-Induced Killer Cells by down-Regulating the Secretion of Tumor Necrosis Factor-α and Perforin. J. Zhejiang Univ. Sci. B 2016, 17, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Feng, S.; Yang, H.; Mao, Y. Extracellular Vesicles in Hepatocellular Cancer and Cholangiocarcinoma. Ann. Transl. Med. 2019, 7, 86. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Li, Z.; Li, S.; Wen, Z.; Cao, L.; Chen, Y.; Xue, P.; Li, H.; Zhang, D. Tumor-Associated Macrophages Promote Cholangiocarcinoma Progression via Exosomal Circ_0020256. Cell Death Dis. 2022, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Cheng, X. Parasite-Associated Cancers (Blood Flukes/Liver Flukes). In Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1018, pp. 193–205. [Google Scholar]
- Smout, M.J.; Sripa, B.; Laha, T.; Mulvenna, J.; Gasser, R.B.; Young, N.D.; Bethony, J.M.; Brindley, P.J.; Loukas, A. Infection with the Carcinogenic Human Liver Fluke, Opisthorchis Viverrini. Mol. Biosyst. 2011, 7, 1367. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, L.; Li, J.; Wang, L.; Wu, Z.; Sun, X. Extracellular Vesicle-Mediated Communication within Host-Parasite Interactions. Front. Immunol. 2019, 9, 3066. [Google Scholar] [CrossRef] [PubMed]
- Chaiyadet, S.; Sotillo, J.; Smout, M.; Cantacessi, C.; Jones, M.K.; Johnson, M.S.; Turnbull, L.; Whitchurch, C.B.; Potriquet, J.; Laohaviroj, M.; et al. Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype. J. Infect. Dis. 2015, 212, 1636–1645. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Zhou, Q.-Y.; Wu, J.; Xu, N.; Du, Y.; Li, J.; Liu, J.-X.; Koda, S.; Zhang, B.-B.; Yu, Q.; et al. Csi-Let-7a-5p Delivered by Extracellular Vesicles from a Liver Fluke Activates M1-like Macrophages and Exacerbates Biliary Injuries. Proc. Natl. Acad. Sci. USA 2021, 118, e2102206118. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Zhang, N.; Yu, Y.; Bao, P.; Ma, Y.; Zhang, H.; Zhang, X.; Zhang, X.; Gong, P.; et al. Extracellular Vesicles of Clonorchis Sinensis Promote IL-6 and TNF-α Secretion via the Toll-like Receptor 9-Mediated ERK Pathway in Biliary Epithelial Cells. Dev. Comp. Immunol. 2023, 139, 104555. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gong, P.; Zhang, X.; Wang, X.; Zhang, X.; Zhang, N.; Yu, Y.; Ma, Y.; Zhang, H.; Zhang, X.; et al. TLR3 Activation by Clonorchis Sinensis Infection Alleviates the Fluke-Induced Liver Fibrosis. PLoS Negl. Trop. Dis. 2023, 17, e0011325. [Google Scholar] [CrossRef]
- Arunsan, P.; Chaidee, A.; Cochran, C.J.; Mann, V.H.; Tanno, T.; Kumkhaek, C.; Smout, M.J.; Karinshak, S.E.; Rodpai, R.; Sotillo, J.; et al. Liver Fluke Granulin Promotes Extracellular Vesicle-Mediated Crosstalk and Cellular Microenvironment Conducive to Cholangiocarcinoma. Neoplasia 2020, 22, 203–216. [Google Scholar] [CrossRef]
- Urabe, F.; Kosaka, N.; Ito, K.; Kimura, T.; Egawa, S.; Ochiya, T. Extracellular Vesicles as Biomarkers and Therapeutic Targets for Cancer. Am. J. Physiol. Cell Physiol. 2020, 318, C29–C39. [Google Scholar] [CrossRef]
- Qi, X.; Chen, S.; He, H.; Wen, W.; Wang, H. The Role and Potential Application of Extracellular Vesicles in Liver Cancer. Sci. China Life Sci. 2021, 64, 1281–1294. [Google Scholar] [CrossRef]
- Li, L.; Masica, D.; Ishida, M.; Tomuleasa, C.; Umegaki, S.; Kalloo, A.N.; Georgiades, C.; Singh, V.K.; Khashab, M.; Amateau, S.; et al. Human Bile Contains MicroRNA-Laden Extracellular Vesicles That Can Be Used for Cholangiocarcinoma Diagnosis. Hepatology 2014, 60, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Severino, V.; Dumonceau, J.-M.; Delhaye, M.; Moll, S.; Annessi-Ramseyer, I.; Robin, X.; Frossard, J.-L.; Farina, A. Extracellular Vesicles in Bile as Markers of Malignant Biliary Stenoses. Gastroenterology 2017, 153, 495–504. [Google Scholar] [CrossRef]
- Yoon, S.B.; Chang, J.H. Extracellular Vesicles in Bile: A Game Changer in the Diagnosis of Indeterminate Biliary Stenoses? Hepatobiliary Surg. Nutr. 2017, 6, 408–410. [Google Scholar] [CrossRef]
- Ge, X.; Wang, Y.; Nie, J.; Li, Q.; Tang, L.; Deng, X.; Wang, F.; Xu, B.; Wu, X.; Zhang, X.; et al. The Diagnostic/Prognostic Potential and Molecular Functions of Long Non-Coding RNAs in the Exosomes Derived from the Bile of Human Cholangiocarcinoma. Oncotarget 2017, 8, 69995–70005. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, Y.; Liu, K.; Tan, L. Tumor Cell-Derived Extracellular Vesicles Promote the Growth, Metastasis and Chemoresistance in Cholangiocarcinoma by Delivering MicroRNA-210 to Downregulate RECK. Mol. Biotechnol. 2023, 65, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Urban, S.K.; Sänger, H.; Krawczyk, M.; Julich-Haertel, H.; Willms, A.; Ligocka, J.; Azkargorta, M.; Mocan, T.; Kahlert, C.; Kruk, B.; et al. Synergistic Effects of Extracellular Vesicle Phenotyping and AFP in Hepatobiliary Cancer Differentiation. Liver Int. 2020, 40, 3103–3116. [Google Scholar] [CrossRef]
- Gu, X.; Wang, C.; Deng, H.; Qing, C.; Liu, R.; Liu, S.; Xue, X. Exosomal PiRNA Profiling Revealed Unique Circulating PiRNA Signatures of Cholangiocarcinoma and Gallbladder Carcinoma. Acta Biochim. Biophys. Sin. 2020, 52, 475–484. [Google Scholar] [CrossRef]
- Xue, X.-Y.; Liu, Y.-X.; Wang, C.; Gu, X.-J.; Xue, Z.-Q.; Zang, X.-L.; Ma, X.-D.; Deng, H.; Liu, R.; Pan, L.; et al. Identification of Exosomal MiRNAs as Diagnostic Biomarkers for Cholangiocarcinoma and Gallbladder Carcinoma. Signal Transduct. Target. Ther. 2020, 5, 77. [Google Scholar] [CrossRef]
- Lapitz, A.; Azkargorta, M.; Milkiewicz, P.; Olaizola, P.; Zhuravleva, E.; Grimsrud, M.M.; Schramm, C.; Arbelaiz, A.; O’Rourke, C.J.; La Casta, A.; et al. Liquid Biopsy-Based Protein Biomarkers for Risk Prediction, Early Diagnosis, and Prognostication of Cholangiocarcinoma. J. Hepatol. 2023, 79, 93–108. [Google Scholar] [CrossRef]
- Arbelaiz, A.; Azkargorta, M.; Krawczyk, M.; Santos-Laso, A.; Lapitz, A.; Perugorria, M.J.; Erice, O.; Gonzalez, E.; Jimenez-Agüero, R.; Lacasta, A.; et al. Serum Extracellular Vesicles Contain Protein Biomarkers for Primary Sclerosing Cholangitis and Cholangiocarcinoma. Hepatology 2017, 66, 1125–1143. [Google Scholar] [CrossRef]
- Lapitz, A.; Arbelaiz, A.; O’Rourke, C.J.; Lavin, J.L.; Casta, A.L.; Ibarra, C.; Jimeno, J.P.; Santos-Laso, A.; Izquierdo-Sanchez, L.; Krawczyk, M.; et al. Patients with Cholangiocarcinoma Present Specific RNA Profiles in Serum and Urine Extracellular Vesicles Mirroring the Tumor Expression: Novel Liquid Biopsy Biomarkers for Disease Diagnosis. Cells 2020, 9, 721. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-H.; Liang, M.-X.; Wu, Y.; Yang, K.; Tang, J.-H.; Zhang, W. Extracellular Vesicles as Drug Vectors for Precise Cancer Treatment. Nanomedicine 2021, 16, 1519–1537. [Google Scholar] [CrossRef] [PubMed]
- Gradilone, S.A. Extracellular Vesicles as Therapeutic Carriers of MicroRNAs for Cholangiocarcinoma. Hepatology 2017, 65, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Glaser, S.; Alvaro, D.; Meng, F.; Francis, H.; Alpini, G. Cholangiocarcinoma: Novel Therapeutic Targets. Expert Opin. Ther. Targets 2020, 24, 345–357. [Google Scholar] [CrossRef]
- Chen, M.; Li, Y.; Ma, N.; Zang, J. Mesenchymal Stem Cell derived Exosomes Loaded with 5 Fu against Cholangiocarcinoma in Vitro. Mol. Med. Rep. 2022, 25, 213. [Google Scholar] [CrossRef]
- Chaiyadet, S.; Sotillo, J.; Krueajampa, W.; Thongsen, S.; Brindley, P.J.; Sripa, B.; Loukas, A.; Laha, T. Vaccination of Hamsters with Opisthorchis Viverrini Extracellular Vesicles and Vesicle-Derived Recombinant Tetraspanins Induces Antibodies That Block Vesicle Uptake by Cholangiocytes and Reduce Parasite Burden after Challenge Infection. PLoS Negl. Trop. Dis. 2019, 13, e0007450. [Google Scholar] [CrossRef]
- Haag, F.; Manikkam, A.; Kraft, D.; Bär, C.; Wilke, V.; Nowak, A.J.; Bertrand, J.; Omari, J.; Pech, M.; Gylstorff, S.; et al. Selective Internal Radiotherapy Changes the Immune Profiles of Extracellular Vesicles and Their Immune Origin in Patients with Inoperable Cholangiocarcinoma. Cells 2022, 11, 2309. [Google Scholar] [CrossRef]
- Jiang, T.-Y.; Shi, Y.-Y.; Cui, X.-W.; Pan, Y.-F.; Lin, Y.-K.; Feng, X.-F.; Ding, Z.-W.; Yang, C.; Tan, Y.-X.; Dong, L.-W.; et al. PTEN Deficiency Facilitates Exosome Secretion and Metastasis in Cholangiocarcinoma by Impairing TFEB-Mediated Lysosome Biogenesis. Gastroenterology 2023, 164, 424–438. [Google Scholar] [CrossRef]
- Karn, V.; Ahmed, S.; Tsai, L.-W.; Dubey, R.; Ojha, S.; Singh, H.; Kumar, M.; Gupta, P.; Sadhu, S.; Jha, N.; et al. Extracellular Vesicle-Based Therapy for COVID-19: Promises, Challenges and Future Prospects. Biomedicines 2021, 9, 1373. [Google Scholar] [CrossRef]
- Gelibter, S.; Marostica, G.; Mandelli, A.; Siciliani, S.; Podini, P.; Finardi, A.; Furlan, R. The Impact of Storage on Extracellular Vesicles: A Systematic Study. J. Extracell. Vesicles 2022, 11, e12162. [Google Scholar] [CrossRef]
- Tessier, S.N.; Bookstaver, L.D.; Angpraseuth, C.; Stannard, C.J.; Marques, B.; Ho, U.K.; Muzikansky, A.; Aldikacti, B.; Reátegui, E.; Rabe, D.C.; et al. Isolation of Intact Extracellular Vesicles from Cryopreserved Samples. PLoS ONE 2021, 16, e0251290. [Google Scholar] [CrossRef]
- Cheng, Y.; Zeng, Q.; Han, Q.; Xia, W. Effect of PH, Temperature and Freezing-Thawing on Quantity Changes and Cellular Uptake of Exosomes. Protein Cell 2019, 10, 295–299. [Google Scholar] [CrossRef]
- Li, Y.-J.; Wu, J.-Y.; Liu, J.; Xu, W.; Qiu, X.; Huang, S.; Hu, X.-B.; Xiang, D.-X. Artificial Exosomes for Translational Nanomedicine. J. Nanobiotechnol. 2021, 19, 1–20. [Google Scholar] [CrossRef]
- Guarro, M.; Suñer, F.; Lecina, M.; Borrós, S.; Fornaguera, C. Efficient Extracellular Vesicles Freeze-Dry Method for Direct Formulations Preparation and Use. Colloids Surf. B Biointerfaces 2022, 218, 112745. [Google Scholar] [CrossRef] [PubMed]
- Görgens, A.; Corso, G.; Hagey, D.W.; Jawad Wiklander, R.; Gustafsson, M.O.; Felldin, U.; Lee, Y.; Bostancioglu, R.B.; Sork, H.; Liang, X.; et al. Identification of Storage Conditions Stabilizing Extracellular Vesicles Preparations. J. Extracell. Vesicles 2022, 11, e12238. [Google Scholar] [CrossRef] [PubMed]
- Sivanantham, A.; Jin, Y. Impact of Storage Conditions on EV Integrity/Surface Markers and Cargos. Life 2022, 12, 697. [Google Scholar] [CrossRef] [PubMed]
Source/EVs Cargoes | Effect in TME | Role in CCA | Expression Levels |
---|---|---|---|
CCA cells | |||
MiR-34c [68] | CAF activation, tumor development | Tumor promoter | Upregulated |
MiR-30e [69] | EMT suppression/targeting Snail/ Suppression of tumor invasion/metastatic dissemination | Tumor suppressor | Downregulated |
miR-195 [70] | Limitation of tumor growth/progression (cell culture model) | Tumor suppressor | Downregulated |
MiR-200b-3p MiR-200c-3p [71] | ↑ tumor stage, growth, diagnostic biomarker | Tumor promoter Tumor promoter | Upregulated Upregulated |
miR-183-5p [72,73] | iCCA progression via PD-L1 overexpression in macrophages aiming at HPGD in mast cells and CCA cells ↑ (PGE2) and PTGER1 stimulation ↑ VEGF release by mast cells, promoting neoangiogenesis | Tumor promoter | Upregulated |
Circ-0000284 [75] | Cholangiocyte malignant transformation miR-637/LY6E pathway | Tumor promoter | Upregulated |
Circ-CCAC1 [76] | Interacting with endothelial cells/ Promotion of neoangiogenesis Tumor growth/migration Sponging the miR-514a-5p/↑ YY1, ↑ CAMLG | Tumor promoter | Upregulated |
FZD10 [66,77,78] | Proliferation/migration/metastatic dissemination Cancer reoccurrence | Tumor promoter | Upregulated |
vitronectin, integrin a/b, lactadherin [66,77,78]; BMI1 [79]; ceramide [80], dihydroceramide | β-catenin overexpression Tumor invasion/migration Suppressed T-cell (CD8+) recruitment Ubiquitination of histones CCA growth, migration, local invasion, and metastatic dissemination Monocyte pro-inflammatory cytokine secretion Vascular spreading-invasion/Progression of iCCA | Tumor promoter Tumor promoter Tumor promoter | Upregulated Upregulated Upregulated |
CCA-derived exosomes [81,82,83] | ↑ MSC migratory behavior Formation of desmoplastic tumor stroma (↑ FAP, a-SMA, vimentin mRNA expression/Differentiation of BMSCs into CAFs to promote tumor stroma) ↑ CXCL-1, ↑ IL-6, ↑ CCL2 expression in MSCs in exposure of KMBC-EVs ↓ cytokine-induced killer cells (CIKs), ↓ perforin/TNF-a Tumor immune escape | Tumor promoter | Upregulated |
HSCs | |||
MiR-195 [84] | Inhibition of tumor growth | Tumor suppressor | Downregulated |
TAMs | |||
Circ-0020256 [85] | Proliferation/migration/Metastatic dissemination | Tumor promoter | Upregulated |
Fluke-Worm-Derived EVs | Role in CCA Progression |
---|---|
O. viverrine-derived EVs [89,93] | Modified wound-healing process Dysregulation of several protein expression ↑ IL-6 cytokine release/↑ cell proliferation Cholangiocarcinogenesis ↑ parasite-secreted granulin Intercellular crosstalk between CCA-secreted EVs and naïve cholangiocytes Modulation of MAPK phosphorylation in naïve cholangiocytes |
C. sinensis-derived EVs [90,91,92] | EV-contained Csi-let-7a-5p are internalized by M1-type macrophages. Inhibition of Clec7a and Socs1 Deregulation of NF-κΒ pathway ↑ proinflammatory state Overexpression of TLR4 ↑ biliary tract fibrosis via NF-κB-TGF-b-TLR4 signaling pathway Upregulation of ERK, AKT, p65, and p38 in BECs TNF-a, IL6 oversecretion via TLR9 expression in BECs |
Type of Biomarker | Sample | Type of Cargoes | Expression in CCA Samples |
---|---|---|---|
Diagnostic | Bile | cel-miR-39 miR-126 miR-486-3p miR-222 miR-19a | ↑ concentration in CCA patient’s bile vs. (null expression) PSC, bile leak syndrome, bile obstruction [96] |
Bile Bile Bile Serum | miR-31 mir-484, miR-1274b miR-16 miR-618 miR-19a, miR-486-3p miR-191 Bile-EVs long-non-coding RNAs ENST00000517758 ENST00000588480.1 circulating serum EVs and A-fetoprotein levels AnnV+CD44v6+ PiRNAs piR-10506469 PiRNAs piRNAs nov-piR-2002537 nov-piR-14022777 nov-piR-17802142 nov-piR-4813367 nov-piR-12355115 nov-piR-15024555 nov-piR-9052713 nov-piR-4262304 nov-piR-3659538 nov-piR-5114107. nov-piR-4333713 nov-piR-10506469, piR-20548188 nov-piR-14090389 nov-piR-10506469, piR-20548188 miR-218-5p NC_000010.11_20947 miR-433-3p miR-9-3p miR-129-5p NC_000001.11_1920 miR-151a-5p, miR-4732-3p miR-191-5p miR-96-5p Fibrinogen FRIL CRP FRIL/CRP VWF/CRP/PIGR FIBG A1AG1 VNN1 GGT1 CRP IGHA1 CRP, VTDB FIBG A1AG1 mRNA transcripts PHGDH ATF4 PON1 miR-200b-3p miR-200c-3p RRAGD MAP6D1 INO80D | ↑ concentration in CCA patient’s bile vs (lower expression) PSC, bile leak syndrome, bile obstruction [96] ↑ over 10-fold increased levels in CCA and pancreatic cancer Higher diagnostic accuracy than CA19-9 Differentiation of malignant stenosis vs. cholelithiasis Threshold of 9.46 × 10 nanoparticles/L in the bile sample [84,97,98] ↑ in malignant stenosis vs. obstructive pathology [99] Synergistic effect of serum EVs and AFP differentiation of hepatobiliary malignancies vs. other types of cancers [101] Differentiation of biliary malignancies vs. HCC ↑ diagnostic value by combining AFP [101] ↑ concentration levels of 323 EV-piRNAs in GBC /694 piRNAs CCA vs. healthy [102] ↓ concentration levels of 191 EV-piRNAs in GBC/36 in CCA vs. healthy [102] Downregulated only in CCA [102] Upregulated in CCA (↑ pre-surgical levels) [102] ↓ post-surgical exosomal piRNA concentration levels in CCA [102] Downregulated EV-miRNAs in CCA/GBC vs. healthy [102] Upregulated EV-miRNAs in CCA/GBC vs. healthy (↑ stage II CCA) [103] ↓ post-surgical levels (7 days after) +/− CA-19-9 for diagnosis of local PSC-associated CCA vs. PSC ↑ in Pan-CCA vs. healthy Non-PSC vs. healthy [104] ↑ in CCA vs. (PSC, HCC, healthy) [67,105] ↑ in iCCA vs. HCC [67,105] ↑ in CCA vs. PSC patients [106] ↑ in CCA—early detection of CCA proportional to tumor-stage [71] Most auspicious urine EV biomarkers for CCA [106] | |
Serum Plasma Plasma Plasma Plasma Serum Serum Serum Serum Serum Serum | |||
Predictive | Serum Bile | PIGR/CRP/ FRIL/Fibrinogen MiR-183-5p | Predictive biomarkers for CCA development in patients with PSC, before it is clinically evident [104] ↑ PD-L1-expression-immune suppression Immune tolerance of ICC [72] |
Staging | Serum | FIBG SAMP FCN2 IC1 ITIH4 miR-96-5p miR-4732-3p miR-151a-5p miR-191-5p | Overexpressed in I–II stage vs. PSC [67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105] Overexpressed in II stages vs. healthy [103] |
Serum | miR-192-5p miR-182-5p miR-191-5p | Overexpressed in III stage [103] | |
Prognosis | Serum CCA Tissue Serum Tissue/bile | PF4V/ACTN1/MYCT1 CFAI/COMP/GNAI2 BM1 MiR-200 family miR-200b-3p miR-200c-3p miR-182/183-5p | Good prognosis-survival of CCA patients [104] Poor prognosis-survival of CCA patients [104] Independent poor prognostic biomarker [79] ↑ levels in CCA—↑ proportionally to tumor-stage [71] ↑ levels—poor prognosis [72,73] |
Modality | Cargoes | Anti-Tumor Effect |
---|---|---|
EV as a drug delivery system | MiR-195 [70,108] | Suppression of CCA cells in vitro Downregulation of CDK6, CDK1, CDK4, VEGF Transfected LX2 (hepatic stellate cell line) Suppression of tumor growth Elongation of survival of the animal CCA model (rat) via limiting the desmoplastic reaction of stromal cells ↓ a-SMA and Ki67 expression levels in the rats |
MiR-30e [69,109] | Transfected HuCCT1 cells with miR-30e Suppression of CCA growth and progression miR-30e that targets Snail (EMT-inducible transcription factor) EMT suppression and inhibition via Snail inhibition manner | |
F-FU [110] | MSC-derived exosomes artificially loaded with 5-FU in vitro EVs-5FU proved to be more effective in CCA cell elimination Vs free-5FU | |
Vaccination SIRT-targeting EVs [112] EV as therapeutic target BMI1 knockdown Μyriocin TFEB agonist curcumin analog C1 [113] | Tetraspanins O. viverrini Evs [111] | The mechanism of the response to O. viverrini challenge is via the tetraspanin O. viverrini antibodies block the uptake and internalization of O. viverrini EVs by host cholangiocytes Decrease of the O. viverrini burden, ↓ worm growth (shorter) |
BMI1 [79] Ceramide [80] | Selected for patients with inoperable tumors Radioactive materials are delivered via an arterial catheter, directly into the tumor vasculature SIRT for the modification of EV immune profiling ↓ PLT-derived EVs (CD41b, CD62P and CD42a) post-treatment ↓ CD44 and CD24—EVs after the SIRT ↓ tumor growth and progression. ↓ EV derived by tumor progenitors and stem cells CD133 after SIRT CCA tumor progression/growth Enhancing the ICI effect Suppression of ceramide production Ceramide-induced inflammation Suppression of vascular invasion Aiming at the biogenetic pathway of exosomes Prevention of CCA metastatic dissemination and cancer relapse |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trifylli, E.-M.; Kriebardis, A.G.; Koustas, E.; Papadopoulos, N.; Vasileiadi, S.; Fortis, S.P.; Tzounakas, V.L.; Anastasiadi, A.T.; Sarantis, P.; Papageorgiou, E.G.; et al. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. Int. J. Mol. Sci. 2023, 24, 15563. https://doi.org/10.3390/ijms242115563
Trifylli E-M, Kriebardis AG, Koustas E, Papadopoulos N, Vasileiadi S, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Papageorgiou EG, et al. The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences. 2023; 24(21):15563. https://doi.org/10.3390/ijms242115563
Chicago/Turabian StyleTrifylli, Eleni-Myrto, Anastasios G. Kriebardis, Evangelos Koustas, Nikolaos Papadopoulos, Sofia Vasileiadi, Sotirios P. Fortis, Vassilis L. Tzounakas, Alkmini T. Anastasiadi, Panagiotis Sarantis, Effie G. Papageorgiou, and et al. 2023. "The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches" International Journal of Molecular Sciences 24, no. 21: 15563. https://doi.org/10.3390/ijms242115563
APA StyleTrifylli, E. -M., Kriebardis, A. G., Koustas, E., Papadopoulos, N., Vasileiadi, S., Fortis, S. P., Tzounakas, V. L., Anastasiadi, A. T., Sarantis, P., Papageorgiou, E. G., Tsagarakis, A., Aloizos, G., Manolakopoulos, S., & Deutsch, M. (2023). The Arising Role of Extracellular Vesicles in Cholangiocarcinoma: A Rundown of the Current Knowledge Regarding Diagnostic and Therapeutic Approaches. International Journal of Molecular Sciences, 24(21), 15563. https://doi.org/10.3390/ijms242115563