Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs
Abstract
:1. Introduction
2. Case Presentation
2.1. Results
2.1.1. Analysis of Nucleic Acid Content in Crude and Extracted Sample Aliquots
2.1.2. Identification of Transgenic EPO-DNA by Gene Doping Panel Analysis
2.1.3. Verification of Transgenic EPO-DNA Detection via Real-Time PCR
2.2. Materials and Methods
2.2.1. Sample Preparation
2.2.2. Gel Electrophoresis
2.2.3. Gene Doping Panel Analysis
2.2.4. Real-Time PCR Analysis
2.2.5. Specificity Analyses
2.2.6. LC-HRMS Analysis for Chemically Modified Nucleotides
2.2.7. Testing on Steroids and Their Derivatives
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Anti-Doping Agency (WADA). Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/2022-09/2023list_en_final_9_september_2022.pdf (accessed on 4 September 2023).
- Baoutina, A. A brief history of the development of a gene doping test. Bioanalysis 2020, 12, 723–727. [Google Scholar] [CrossRef]
- International Olympic Committee (IOC). IOC Gene Therapy Working Group-Conclusions. Available online: https://olympics.com/ioc/news/ioc-gene-therapy-working-group-conclusions (accessed on 15 September 2023).
- Cantelmo, R.A.; da Silva, A.P.; Mendes-Junior, C.T.; Dorta, D.J. Gene doping: Present and future. Eur. J. Sport. Sci. 2020, 20, 1093–1101. [Google Scholar] [CrossRef] [PubMed]
- Hardee, C.L.; Arevalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes 2017, 8, 65. [Google Scholar] [CrossRef]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Brzezianska, E.; Domanska, D.; Jegier, A. Gene doping in sport-perspectives and risks. Biol. Sport. 2014, 31, 251–259. [Google Scholar] [CrossRef]
- Dunbar, C.E.; High, K.A.; Joung, J.K.; Kohn, D.B.; Ozawa, K.; Sadelain, M. Gene therapy comes of age. Science 2018, 359, eaan4672. [Google Scholar] [CrossRef]
- Arabi, F.; Mansouri, V.; Ahmadbeigi, N. Gene therapy clinical trials, where do we go? An overview. Biomed. Pharmacother. 2022, 153, 113324. [Google Scholar] [CrossRef]
- Ginn, S.L.; Amaya, A.K.; Alexander, I.E.; Edelstein, M.; Abedi, M.R. Gene therapy clinical trials worldwide to 2017: An update. J. Gene Med. 2018, 20, e3015. [Google Scholar] [CrossRef]
- World Anti-Doping Agency (WADA). Gene Doping Detection based on Polymerase Chain Reaction (PCR). Available online: https://www.wada-ama.org/sites/default/files/resources/files/wada_guidelines_for_gene_doping_pcr_test_v1_jan_2021_eng.pdf (accessed on 4 September 2023).
- Baoutina, A.; Bhat, S.; Zheng, M.; Partis, L.; Dobeson, M.; Alexander, I.E.; Emslie, K.R. Synthetic certified DNA reference material for analysis of human erythropoietin transgene and transcript in gene doping and gene therapy. Gene Ther. 2016, 23, 708–717. [Google Scholar] [CrossRef]
- Baoutina, A.; Coldham, T.; Bains, G.S.; Emslie, K.R. Gene doping detection: Evaluation of approach for direct detection of gene transfer using erythropoietin as a model system. Gene Ther. 2010, 17, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Baoutina, A.; Coldham, T.; Fuller, B.; Emslie, K.R. Improved detection of transgene and nonviral vectors in blood. Hum. Gene Ther. Methods 2013, 24, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Beiter, T.; Zimmermann, M.; Fragasso, A.; Armeanu, S.; Lauer, U.M.; Bitzer, M.; Su, H.; Young, W.L.; Niess, A.M.; Simon, P. Establishing a novel single-copy primer-internal intron-spanning PCR (spiPCR) procedure for the direct detection of gene doping. Exerc. Immunol. Rev. 2008, 14, 73–85. [Google Scholar] [PubMed]
- Beiter, T.; Zimmermann, M.; Fragasso, A.; Hudemann, J.; Niess, A.M.; Bitzer, M.; Lauer, U.M.; Simon, P. Direct and long-term detection of gene doping in conventional blood samples. Gene Ther. 2011, 18, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Moser, D.A.; Braga, L.; Raso, A.; Zacchigna, S.; Giacca, M.; Simon, P. Transgene detection by digital droplet PCR. PLoS ONE 2014, 9, e111781. [Google Scholar] [CrossRef]
- Moser, D.A.; Neuberger, E.W.; Simon, P. A quick one-tube nested PCR-protocol for EPO transgene detection. Drug Test. Anal. 2012, 4, 870–875. [Google Scholar] [CrossRef] [PubMed]
- Neuberger, E.W.; Jurkiewicz, M.; Moser, D.A.; Simon, P. Detection of EPO gene doping in blood. Drug Test. Anal. 2012, 4, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Le Guiner, C.; Gernoux, G.; Penaud-Budloo, M.; Moullier, P.; Snyder, R.O. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: Implications for gene doping. Gene Ther. 2011, 18, 709–718. [Google Scholar] [CrossRef]
- De Boer, E.N.; van der Wouden, P.E.; Johansson, L.F.; van Diemen, C.C.; Haisma, H.J. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Ther. 2019, 26, 338–346. [Google Scholar] [CrossRef]
- Marchand, A.; Roulland, I.; Semence, F.; Ericsson, M. EPO transgene detection in dried blood spots for antidoping application. Drug Test. Anal. 2021, 13, 1888–1896. [Google Scholar] [CrossRef]
- Yi, J.Y.; Kim, M.; Min, H.; Kim, B.G.; Son, J.; Kwon, O.S.; Sung, C. New application of the CRISPR-Cas9 system for site-specific exogenous gene doping analysis. Drug Test. Anal. 2021, 13, 871–875. [Google Scholar] [CrossRef]
- Naumann, N.V.C.; Krajina, M.; Thevis, M. Evaluation of a novel gene doping detection approach via high multiplex MALDI-TOF MassARRAY analysis (Poster). In Proceedings of the 41th Manfred Donike Workshop on Dope Analysis, Cologne, Germany, 26 February–3 March 2023. [Google Scholar]
- Oeth, P.; Beaulieu, M.; Park, C.; Kosman, D.; del Mistro, G.; van den Boom, D.; Jurinke, C. iPLEX™ Assay: Increased Plexing Efficiency and Flexibility for MassARRAY System Through Single Base Primer Extension with Mass-Modified Terminators. Seq. Appl. Note 2005, 27. [Google Scholar]
- Au, H.K.E.; Isalan, M.; Mielcarek, M. Gene Therapy Advances: A Meta-Analysis of AAV Usage in Clinical Settings. Front. Med. 2021, 8, 809118. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Semyonov, A.; Dawes, G.; Crameri, A.; Lyons, R.; Stemmer, W.P.; Apt, D.; Punnonen, J. Diverse plasmid DNA vectors by directed molecular evolution of cytomegalovirus promoters. Hum. Gene Ther. 2005, 16, 881–892. [Google Scholar] [CrossRef] [PubMed]
- Oeth, P.; del Mistro, G.; Marnellos, G.; Shi, T.; van den Boom, D. Qualitative and quantitative genotyping using single base primer extension coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MassARRAY). Methods Mol. Biol. 2009, 578, 307–343. [Google Scholar] [PubMed]
- Thomas, A.; Walpurgis, K.; Delahaut, P.; Kohler, M.; Schanzer, W.; Thevis, M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test. Anal. 2013, 5, 853–860. [Google Scholar] [CrossRef]
- Krug, O.; Thomas, A.; Walpurgis, K.; Piper, T.; Sigmund, G.; Schanzer, W.; Laussmann, T.; Thevis, M. Identification of black market products and potential doping agents in Germany 2010–2013. Eur. J. Clin. Pharmacol. 2014, 70, 1303–1311. [Google Scholar] [CrossRef]
- Eisenstein, M. Base editing marches on the clinic. Nat. Biotechnol. 2022, 40, 623–625. [Google Scholar] [CrossRef]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Deev, R.; Plaksa, I.; Bozo, I.; Mzhavanadze, N.; Suchkov, I.; Chervyakov, Y.; Staroverov, I.; Kalinin, R.; Isaev, A. Results of 5-year follow-up study in patients with peripheral artery disease treated with PL-VEGF165 for intermittent claudication. Ther. Adv. Cardiovasc. Dis. 2018, 12, 237–246. [Google Scholar] [CrossRef]
- Shafaati, M.; Saidijam, M.; Soleimani, M.; Hazrati, F.; Mirzaei, R.; Amirheidari, B.; Tanzadehpanah, H.; Karampoor, S.; Kazemi, S.; Yavari, B.; et al. A brief review on DNA vaccines in the era of COVID-19. Future Virol. 2021, 17, 49–66. [Google Scholar] [CrossRef]
Extraction 1 | Extraction 2 | NTC-Ext | |
---|---|---|---|
EPO-P | |||
hE | 25.59/25.51 | 32.20/31.92 | nd/nd |
hC1 | 24.59/24.75 | 30.48/30.48 | 38.68/44.46 |
IGF1-P | |||
hE | 28.29/28.22 | 28.41/28.37 | nd/nd |
hC1 | 23.34/22.97 | 23.14/23.20 | 41.24/42.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumann, N.; Paßreiter, A.; Thomas, A.; Krug, O.; Walpurgis, K.; Thevis, M. Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs. Int. J. Mol. Sci. 2023, 24, 15835. https://doi.org/10.3390/ijms242115835
Naumann N, Paßreiter A, Thomas A, Krug O, Walpurgis K, Thevis M. Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs. International Journal of Molecular Sciences. 2023; 24(21):15835. https://doi.org/10.3390/ijms242115835
Chicago/Turabian StyleNaumann, Nana, Alina Paßreiter, Andreas Thomas, Oliver Krug, Katja Walpurgis, and Mario Thevis. 2023. "Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs" International Journal of Molecular Sciences 24, no. 21: 15835. https://doi.org/10.3390/ijms242115835
APA StyleNaumann, N., Paßreiter, A., Thomas, A., Krug, O., Walpurgis, K., & Thevis, M. (2023). Analysis of Potential Gene Doping Preparations for Transgenic DNA in the Context of Sports Drug Testing Programs. International Journal of Molecular Sciences, 24(21), 15835. https://doi.org/10.3390/ijms242115835