Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes
Abstract
:1. Historical Perspective of Doping and Stamina Boost Cause
2. Detection of Blood Doping and Its Limitations
3. Transcriptomics as a Newcomer to the Field
4. Comparing the Benefits: microRNA vs. Protein Biomarkers and Methods
5. Evaluation of the ABT-Induced miRNA Fingerprint in Blood
6. Effecting Factors to the miRNA Pattern
7. Conclusions
8. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schumacher, Y.O.; Ashenden, M. Doping with artificial oxygen carriers: An update. Sports Med. 2004, 34, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Yesalis, C.E.; Bahrke, M.S. History of doping in sport. Int. Sports Stud. 2002, 24, 42–76. [Google Scholar]
- Mazanov, J.; McDermott, V. The case for a social science of drugs in sport. In Towards a Social Science of Drugs in Sport; Routledge: London, UK, 2013; pp. 4–23. [Google Scholar]
- Dimeo, P. A history of Drug Use in Sport: 1876–1976: Beyond Good and Evil; Routledge: London, UK, 2008. [Google Scholar]
- Spitzer, G. Doping and Doping Control in Europe: Performance Enhancing Drugs, Elite Sports and Leisure Time Sport in Denmark, Great Britain, East and West Germany, Poland, France, Italy; Meyer & Meyer (Verlag): Aachen, Germany, 2006. [Google Scholar]
- World Anti-Doping CODE. Available online: https://www.wada-ama.org/sites/default/files/resources/files/2021_wada_code.pdf (accessed on 2 October 2023).
- World Anti-Doping Code-International Standard Prohibited List. Available online: https://www.wada-ama.org/sites/default/files/resources/files/2021list_en.pdf (accessed on 2 October 2023).
- Lippi, G.; Franchini, M.; Salvagno, G.L.; Guidi, G.C. Biochemistry, physiology, and complications of blood doping: Facts and speculation. Crit. Rev. Clin. Lab. Sci. 2006, 43, 349–391. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S.; Rajvanshi, P.K.; Noguchi, C.T. The many facets of erythropoietin physiologic and metabolic response. Front. Physiol. 2020, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Sgrò, P.; Sansone, M.; Sansone, A.; Romanelli, F.; Di Luigi, L. Effects of erythropoietin abuse on exercise performance. Physician Sportsmed. 2018, 46, 105–115. [Google Scholar] [CrossRef] [PubMed]
- John, M.J.; Jaison, V.; Jain, K.; Kakkar, N.; Jacob, J.J. Erythropoietin use and abuse. Indian J. Endocrinol. Metab. 2012, 16, 220–227. [Google Scholar] [PubMed]
- Lundby, C.; Robach, P.; Boushel, R.; Thomsen, J.J.; Rasmussen, P.; Koskolou, M.; Calbet, J.A. Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport? J. Appl. Physiol. 2008, 105, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Jelkmann, W. Autologous Red Blood Cell Transfusions in Clinics and their Misuse in Sports. Ger. J. Sports Med./Dtsch. Z. Sportmed. 2020, 71, 62–68. [Google Scholar] [CrossRef]
- Kohli, N.; Bhaumik, S.; Jagadesh, S.; Sales, R.K.; Bates, I. Packed red cells versus whole blood transfusion for severe paediatric anaemia, pregnancy-related anaemia and obstetric bleeding: An analysis of clinical practice guidelines from sub-Saharan Africa and evidence underpinning recommendations. Trop. Med. Int. Health 2019, 24, 11–22. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, P.; Tyler, L.N. Transfusion of blood and blood products: Indications and complications. Am. Fam. Physician 2011, 83, 719–724. [Google Scholar]
- Atkinson, T.S.; Kahn, M.J. Blood doping: Then and now. A narrative review of the history, science and efficacy of blood doping in elite sport. Blood Rev. 2020, 39, 100632. [Google Scholar] [CrossRef] [PubMed]
- Malm, C.B.; Khoo, N.S.; Granlund, I.; Lindstedt, E.; Hult, A. Autologous doping with cryopreserved red blood cells–effects on physical performance and detection by multivariate statistics. PLoS ONE 2016, 11, e0156157. [Google Scholar] [CrossRef] [PubMed]
- Athlete Biological Passport Operating Guidelines. Available online: https://www.wada-ama.org/sites/default/files/2023-07/guidelines_abp_v9_2023_final_eng_1.pdf (accessed on 2 October 2023).
- ISTI Guidelines for Sample Collection. Available online: https://www.wada-ama.org/sites/default/files/resources/files/isti_sample_collection_guidelines_en_final_2_feb_2021_0.pdf (accessed on 2 October 2023).
- Gore, C.J.; Parisotto, R.; Ashenden, M.J.; Stray-Gundersen, J.; Sharpe, K.; Hopkins, W.; Emslie, K.R.; Howe, C.; Trout, G.J.; Kazlauskas, R. Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 2003, 88, 333–344. [Google Scholar] [PubMed]
- Lasne, F.; Martin, L.; Crepin, N.; de Ceaurriz, J. Detection of isoelectric profiles of erythropoietin in urine: Differentiation of natural and administered recombinant hormones. Anal. Biochem. 2002, 311, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Thevis, M.; Ogorzalek Loo, R.R.; Loo, J.A.; Schänzer, W. Doping control analysis of bovine hemoglobin-based oxygen therapeutics in human plasma by LC− electrospray ionization-MS/MS. Anal. Chem. 2003, 75, 3287–3293. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, N.; Saugy, M.; Augsburger, M.; Varlet, V. Blood monitoring of perfluorocarbon compounds (F-tert-butylcyclohexane, perfluoromethyldecalin and perfluorodecalin) by headspace-gas chromatography-tandem mass spectrometry. Talanta 2015, 144, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Storry, J.R.; Clausen, F.B.; Castilho, L.; Chen, Q.; Daniels, G.; Denomme, G.; Flegel, W.A.; Gassner, C.; de Haas, M.; Hyland, C. International society of blood transfusion working party on red cell immunogenetics and blood group terminology: Report of the Dubai, Copenhagen and Toronto meetings. Vox Sang. 2019, 114, 95–102. [Google Scholar] [CrossRef]
- Pottgiesser, T.; Umhau, M.; Ahlgrim, C.; Ruthardt, S.; Roecker, K.; Schumacher, Y.O. Hb mass measurement suitable to screen for illicit autologous blood transfusions. Med. Sci. Sports Exerc. 2007, 39, 1748–1756. [Google Scholar] [CrossRef]
- Gore, C.J.; Bourdon, P.C.; Woolford, S.M.; Ostler, L.M.; Eastwood, A.; Scroop, G.C. Time and sample site dependency of the optimized co-rebreathing method. Med. Sci. Sports Exerc. 2006, 38, 1187–1193. [Google Scholar] [CrossRef]
- Pottgiesser, T.; Echteler, T.; Sottas, P.-E.; Umhau, M.; Schumacher, Y.O. Hemoglobin mass and biological passport for the detection of autologous blood doping. Med. Sci. Sports Exerc. 2012, 44, 835–843. [Google Scholar] [CrossRef]
- Leuenberger, N.; Barras, L.; Nicoli, R.; Robinson, N.; Baume, N.; Lion, N.; Barelli, S.; Tissot, J.D.; Saugy, M. Urinary di-(2-ethylhexyl) phthalate metabolites for detecting transfusion of autologous blood stored in plasticizer-free bags. Transfusion 2016, 56, 571–578. [Google Scholar] [CrossRef]
- Cox, H.D.; Miller, G.D.; Lai, A.; Cushman, D.; Eichner, D. Detection of autologous blood transfusions using a novel dried blood spot method. Drug Test. Anal. 2017, 9, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Craviari, C.; Fossati, C.; Quaranta, F.; Tomassi, G.; Fagnani, F.; Borrione, P. Hepcidin as possible new indirect biomarker for blood doping. Med. Sport 2021, 74, 153–174. [Google Scholar] [CrossRef]
- Iljukov, S.; Bermon, S.; Schumacher, Y.O. Application of the athlete’s performance passport for doping control: A case report. Front. Physiol. 2018, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Pottgiesser, T.; Sottas, P.E.; Echteler, T.; Robinson, N.; Umhau, M.; Schumacher, Y.O. Detection of autologous blood doping with adaptively evaluated biomarkers of doping: A longitudinal blinded study. Transfusion 2011, 51, 1707–1715. [Google Scholar] [CrossRef] [PubMed]
- Monte, A.A.; Vasiliou, V.; Heard, K.J. Omics screening for pharmaceutical efficacy and safety in clinical practice. J. Pharmacogenom. Pharmacoproteom. 2012. [Google Scholar] [CrossRef]
- Durussel, J.; Haile, D.W.; Mooses, K.; Daskalaki, E.; Beattie, W.; Mooses, M.; Mekonen, W.; Ongaro, N.; Anjila, E.; Patel, R.K. Blood transcriptional signature of recombinant human erythropoietin administration and implications for antidoping strategies. Physiol. Genom. 2016, 48, 202–209. [Google Scholar] [CrossRef]
- Pottgiesser, T.; Schumacher, Y.; Funke, H.; Rennert, K.; Baumstark, M.; Neunuebel, K.; Mosig, S. Gene expression in the detection of autologous blood transfusion in sports–a pilot study. Vox Sang. 2009, 96, 333–336. [Google Scholar] [CrossRef]
- Leuenberger, N.; Jan, N.; Pradervand, S.; Robinson, N.; Saugy, M. Circulating microRNAs as long-term biomarkers for the detection of erythropoiesis-stimulating agent abuse. Drug Test. Anal. 2011, 3, 771–776. [Google Scholar] [CrossRef]
- Gasparello, J.; Lamberti, N.; Papi, C.; Lampronti, I.; Cosenza, L.C.; Fabbri, E.; Bianchi, N.; Zambon, C.; Dalla Corte, F.; Govoni, M. Altered erythroid-related miRNA levels as a possible novel biomarker for detection of autologous blood transfusion misuse in sport. Transfusion 2019, 59, 2709–2721. [Google Scholar] [CrossRef]
- Doss, J.F.; Corcoran, D.L.; Jima, D.D.; Telen, M.J.; Dave, S.S.; Chi, J.-T. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genom. 2015, 16, 952. [Google Scholar] [CrossRef] [PubMed]
- Haberberger, A.; Kirchner, B.; Riedmaier, I.; Henschler, R.; Wichmann, C.; Buhmann, R.; Pfaffl, M.W. Changes in the microRNA expression profile during blood storage. BMJ Open Sport Exerc. Med. 2018, 4, e000354. [Google Scholar] [CrossRef] [PubMed]
- Van Niel, G.; d’Angelo, G.; Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [PubMed]
- van Niel, G.; Carter, D.R.; Clayton, A.; Lambert, D.W.; Raposo, G.; Vader, P. Challenges and directions in studying cell–cell communication by extracellular vesicles. Nat. Rev. Mol. Cell Biol. 2022, 23, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Dellar, E.R.; Hill, C.; Melling, G.E.; Carter, D.R.; Baena-Lopez, L.A. Unpacking extracellular vesicles: RNA cargo loading and function. J. Extracell. Biol. 2022, 1, e40. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, F.; Zhang, D.; Qi, S.; Liu, Y. Metabolites as extracellular vesicle cargo in health, cancer, pleural effusion, and cardiovascular diseases: An emerging field of study to diagnostic and therapeutic purposes. Biomed. Pharmacother. 2023, 157, 114046. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Azzimato, V.; Choudhury, R.P.; Aouadi, M. Extracellular vesicles in metabolic disease. Diabetologia 2019, 62, 2179–2187. [Google Scholar] [CrossRef]
- Koide, T.; Mandai, S.; Kitaoka, R.; Matsuki, H.; Chiga, M.; Yamamoto, K.; Yoshioka, K.; Yagi, Y.; Suzuki, S.; Fujiki, T. Circulating Extracellular Vesicle-Propagated microRNA Signature as a Vascular Calcification Factor in Chronic Kidney Disease. Circ. Res. 2023, 132, 415–431. [Google Scholar] [CrossRef]
- Han, Y.; Drobisch, P.; Krüger, A.; William, D.; Grützmann, K.; Böthig, L.; Polster, H.; Seifert, L.; Seifert, A.M.; Distler, M. Plasma extracellular vesicle messenger RNA profiling identifies prognostic EV signature for non-invasive risk stratification for survival prediction of patients with pancreatic ductal adenocarcinoma. J. Hematol. Oncol. 2023, 16, 7. [Google Scholar] [CrossRef]
- Burrello, J.; Monticone, S.; Burrello, A.; Bolis, S.; Cristalli, C.P.; Comai, G.; Corradetti, V.; Grange, C.; Orlando, G.; Bonafè, M. Identification of a serum and urine extracellular vesicle signature predicting renal outcome after kidney transplant. Nephrol. Dial. Transplant. 2023, 38, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Voss, S.C.; Jaganjac, M.; Al-Thani, A.M.; Grivel, J.C.; Raynaud, C.M.; Al-Jaber, H.; Al-Menhali, A.S.; Merenkov, Z.A.; Alsayrafi, M.; Latiff, A. Analysis of RBC-microparticles in stored whole blood bags–a promising marker to detect blood doping in sports? Drug Test. Anal. 2017, 9, 1794–1798. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Tian, X.; He, R.; Li, C.; Xu, H.; Tian, L.; Liu, Z. The accumulation of exosome-associated microRNA-1246 and microRNA-150-3p in human red blood cell suspensions. J. Transl. Med. 2021, 19, 225. [Google Scholar] [CrossRef] [PubMed]
- Cox, H.D.; Eichner, D. Mass spectrometry method to measure membrane proteins in dried blood spots for the detection of blood doping practices in sport. Anal. Chem. 2017, 89, 10029–10036. [Google Scholar] [CrossRef] [PubMed]
- Sajic, T.; Liu, Y.; Aebersold, R. Using data-independent, high-resolution mass spectrometry in protein biomarker research: Perspectives and clinical applications. PROTEOMICS–Clin. Appl. 2015, 9, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Eklund, E.; Berglund, B.; Labrie, F.; Carlström, K.; Ekström, L.; Hirschberg, A.L. Serum androgen profile and physical performance in women Olympic athletes. Br. J. Sports Med. 2017, 51, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Salamin, O.; Jaggi, L.; Baume, N.; Robinson, N.; Saugy, M.; Leuenberger, N. Circulating microRNA-122 as potential biomarker for detection of testosterone abuse. PLoS ONE 2016, 11, e0155248. [Google Scholar] [CrossRef]
- Leuenberger, N.; Saugy, M. Circulating microRNAs: The future of biomarkers in anti-doping field. In microRNA: Medical Evidence: From Molecular Biology to Clinical Practice; Springer: Cham, Switzerland, 2015; pp. 401–408. [Google Scholar]
- Danese, E.; Benati, M.; Sanchis-Gomar, F.; Tarperi, C.; Salvagno, G.L.; Paviati, E.; Montagnana, M.; Schena, F.; Lippi, G. Physiological determinants of urine and plasma myomiRNAs in recreational, middle-age athletes. J. Lab. Precis. Med. 2017, 2, 13. [Google Scholar] [CrossRef]
- Chana, G.; Bousman, C.A.; Money, T.T.; Gibbons, A.; Gillett, P.; Dean, B.; Everall, I.P. Biomarker investigations related to pathophysiological pathways in schizophrenia and psychosis. Front. Cell. Neurosci. 2013, 7, 95. [Google Scholar] [CrossRef]
- Mussack, V.; Wittmann, G.; Pfaffl, M.W. On the trail of blood doping—microRNA fingerprints to monitor autologous blood transfusions in vivo. Am. J. Hematol. 2021, 96, 338–353. [Google Scholar] [CrossRef]
- Leuenberger, N.; Schumacher, Y.O.; Pradervand, S.; Sander, T.; Saugy, M.; Pottgiesser, T. Circulating microRNAs as biomarkers for detection of autologous blood transfusion. PLoS ONE 2013, 8, e66309. [Google Scholar] [CrossRef] [PubMed]
- Solheim, S.A.; Bejder, J.; Breenfeldt Andersen, A.; Mørkeberg, J.; Nordsborg, N.B. Autologous blood transfusion enhances exercise performance—Strength of the evidence and physiological mechanisms. Sports Med. Open 2019, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Tan, Y.S.; Cheng, W.C.; Kingsbury, T.J.; Heimfeld, S.; Civin, C.I. MIR 144 and MIR 451 regulate human erythropoiesis via RAB 14. Br. J. Haematol. 2015, 168, 583–597. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.P.; Mathai, J.; Kulkarni, A.P.; Pal, J.K.; Chattopadhyay, S. miR-320a regulates erythroid differentiation through MAR binding protein SMAR1. Int. J. Biochem. Cell Biol. 2013, 45, 2519–2529. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, F.; Li, R.; Niu, B.; Zhu, L.; Yu, S.; Wang, S.; Li, C.; Wang, D. Different erythrocyte microRNA profiles in low-and high-altitude individuals. Front. Physiol. 2018, 9, 1099. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, K.D.; Simmini, S.; Abreu-Goodger, C.; Bartonicek, N.; Di Giacomo, M.; Bilbao-Cortes, D.; Horos, R.; Von Lindern, M.; Enright, A.J.; O’Carroll, D. The miR-144/451 locus is required for erythroid homeostasis. J. Exp. Med. 2010, 207, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Marchand, A.; Roulland, I.; Semence, F.; Schröder, K.; Domergue, V.; Audran, M. Detection of hypoxia-regulated MicroRNAs in blood as potential biomarkers of HIF stabilizer Molidustat. MicroRNA 2019, 8, 189–197. [Google Scholar] [CrossRef]
- Sottas, P.-E.; Robinson, N.; Giraud, S.; Taroni, F.; Kamber, M.; Mangin, P.; Saugy, M. Statistical classification of abnormal blood profiles in athletes. Int. J. Biostat. 2006, 2, 3. [Google Scholar] [CrossRef]
- Seo, Y.; Park, J.; Lee, H.-J.; Kim, M.; Kang, I.; Son, J.; Oh, M.-K.; Min, H. Development and validation of a method for analyzing the sialylated glycopeptides of recombinant erythropoietin in urine using LC–HRMS. Sci. Rep. 2023, 13, 3860. [Google Scholar] [CrossRef]
- Adams, G.R.; Zaldivar, F.P.; Nance, D.M.; Kodesh, E.; Radom-Aizik, S.; Cooper, D.M. Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain. Behav. Immun. 2011, 25, 658–666. [Google Scholar] [CrossRef]
- Miranda, K.C.; Bond, D.T.; McKee, M.; Skog, J.; Păunescu, T.G.; Da Silva, N.; Brown, D.; Russo, L.M. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 2010, 78, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Llorente, A.; Erdbrügger, U.; Blijdorp, C.J.; Martens-Uzunova, E.S. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- Dhondt, B.; Van Deun, J.; Vermaerke, S.; de Marco, A.; Lumen, N.; De Wever, O.; Hendrix, A. Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. Int. J. Biochem. Cell Biol. 2018, 99, 236–256. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Wang, X.; Yang, J.; Duan, X.; Yao, Y.; Shi, X.; Chen, Z.; Fan, Z.; Liu, X.; Qin, S. A translational study of urine miRNAs in acute myocardial infarction. J. Mol. Cell. Cardiol. 2012, 53, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Mussack, V. The Role of microRNAs and Extracellular Vesicles in the Detection of Autologous Blood Doping. Ph.D. Thesis, Technische Universität München, Munich, Germany, 2022. [Google Scholar]
- Willinger, C.M.; Rong, J.; Tanriverdi, K.; Courchesne, P.L.; Huan, T.; Wasserman, G.A.; Lin, H.; Dupuis, J.; Joehanes, R.; Jones, M.R. MicroRNA signature of cigarette smoking and evidence for a putative causal role of microRNAs in smoking-related inflammation and target organ damage. Circ. Cardiovasc. Genet. 2017, 10, e001678. [Google Scholar] [CrossRef]
- Mullen, J.; Bækken, L.; Bergström, H.; Björkhem Bergman, L.; Ericsson, M.; Ekström, L. Fluctuations in hematological athlete biological passport biomarkers in relation to the menstrual cycle. Drug Test. Anal. 2020, 12, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Aikin, R.; Baume, N.; Equey, T.; Rabin, O. Biomarkers of doping: Uses, discovery and validation. Bioanalysis 2020, 12, 791–800. [Google Scholar] [CrossRef]
- Thangaraju, K.; Neerukonda, S.N.; Katneni, U.; Buehler, P.W. Extracellular vesicles from red blood cells and their evolving roles in health, coagulopathy and therapy. Int. J. Mol. Sci. 2020, 22, 153. [Google Scholar] [CrossRef]
- Yang, L.; Huang, S.; Zhang, Z.; Liu, Z.; Zhang, L. Roles and Applications of Red Blood Cell-Derived Extracellular Vesicles in Health and Diseases. Int. J. Mol. Sci. 2022, 23, 5927. [Google Scholar] [CrossRef]
- Wannez, A.; Devalet, B.; Chatelain, B.; Chatelain, C.; Dogne, J.-M.; Mullier, F. Extracellular vesicles in red blood cell concentrates: An overview. Transfus. Med. Rev. 2019, 33, 125–130. [Google Scholar] [CrossRef]
- Jiang, Z.; Lu, Y.; Shi, M.; Li, H.; Duan, J.; Huang, J. Effects of storage temperature, storage time, and hemolysis on the RNA quality of blood specimens: A systematic quantitative assessment. Heliyon 2023, 9, e16234. [Google Scholar] [CrossRef] [PubMed]
- Bracht, J.W.; Los, M.; van Eijndhoven, M.A.; Bettin, B.; van der Pol, E.; Pegtel, D.M.; Nieuwland, R. Platelet removal from human blood plasma improves detection of extracellular vesicle-associated miRNA. J. Extracell. Vesicles 2023, 12, 12302. [Google Scholar] [CrossRef] [PubMed]
- Winter, J.; Diederichs, S. Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol. 2011, 8, 1149–1157. [Google Scholar] [CrossRef] [PubMed]
- Matias-Garcia, P.R.; Wilson, R.; Mussack, V.; Reischl, E.; Waldenberger, M.; Gieger, C.; Anton, G.; Peters, A.; Kuehn-Steven, A. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS ONE 2020, 15, e0227648. [Google Scholar] [CrossRef]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef]
- Mantel, P.-Y.; Hjelmqvist, D.; Walch, M.; Kharoubi-Hess, S.; Nilsson, S.; Ravel, D.; Ribeiro, M.; Grüring, C.; Ma, S.; Padmanabhan, P. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat. Commun. 2016, 7, 12727. [Google Scholar] [CrossRef]
Type of Blood Doping | Species | Expressed miRNAs | Ref. | |
---|---|---|---|---|
Up | Down | |||
ABT | Human | miR-197-3p | - | [37] |
ABT | Human | miRNA-26a, miRNA-26b, miRNA-30b, miRNA- 30c, miRNA-103, miRNA-142-3p, miRNA-339-5p, let-7b, let-7d, let-7g | - | [59] |
ABT | Human | miRNA-144-3p | miRNA-320d | [58] |
rhEPO | Human | miRNA-17, miRNA-19a, miRNA-19b, miRNA-25, miRNA-29c, miRNA-92a, miRNA-93, miRNA-101, miRNA-106b, miRNA-140-3p, miRNA-142-5p, miRNA-144, miRNA-185 | miRNA-874 | [36] |
HIF booster | Rat | miRNA-21, miRNA-130a | - | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassanpour, M.; Salybekov, A.A. Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. Int. J. Mol. Sci. 2024, 25, 249. https://doi.org/10.3390/ijms25010249
Hassanpour M, Salybekov AA. Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. International Journal of Molecular Sciences. 2024; 25(1):249. https://doi.org/10.3390/ijms25010249
Chicago/Turabian StyleHassanpour, Mehdi, and Amankeldi A. Salybekov. 2024. "Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes" International Journal of Molecular Sciences 25, no. 1: 249. https://doi.org/10.3390/ijms25010249
APA StyleHassanpour, M., & Salybekov, A. A. (2024). Whispers in the Blood: Leveraging MicroRNAs for Unveiling Autologous Blood Doping in Athletes. International Journal of Molecular Sciences, 25(1), 249. https://doi.org/10.3390/ijms25010249