Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism
Abstract
:1. Introduction
2. Genomic and Protein Structure of GnRHR
2.1. Genomic Structure of GnRHR
2.2. Protein Structure of GnRHR
2.3. Signal Transduction Pathways of GNRHR
2.4. Tissue Expression of GnRHR in Humans
2.5. GnRHR Characterized Mutations
2.6. GnRHR Ligands: Agonists, Antagonists, and Pharmacoperones
2.7. GnRHR Agonists
2.7.1. Gonadotropin-Releasing Hormone (GnRH)
2.7.2. GnRH Analogues (GnRHa)
2.8. GnRHR Antagonists
2.9. GnRHR Pharmacoperones
2.10. Clinical Implications of Mutated GnRHR
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maggi, R.; Cariboni, A.M.; Marelli, M.M.; Moretti, R.M.; Andre, V.; Marzagalli, M.; Limonta, P. GnRH and GnRH receptors in the pathophysiology of the human female reproductive system. Hum. Reprod. Update 2016, 22, 358–381. [Google Scholar] [CrossRef] [PubMed]
- Schally, A.V.; Arimura, A.; Baba, Y.; Nair, R.M.; Matsuo, H.; Redding, T.W.; Debeljuk, L. Isolation and properties of the FSH and LH-releasing hormone. Biochem. Biophys. Res. Commun. 1971, 43, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Plant, T.M.; Zeleznik, A.J. (Eds.) Knobil and Neill’s Physiology of Reproduction, 4th ed.; Academic Press: New York, NY, USA, 2014. [Google Scholar]
- Perrett, R.M.; McArdle, C.A. Molecular mechanisms of gonadotropin-releasing hormone signaling: Integrating cyclic nucleotides into the network. Front. Endocrinol. 2013, 4, 180. [Google Scholar] [CrossRef]
- Bliss, S.P.; Navratil, A.M.; Xie, J.; Roberson, M.S. GnRH signaling, the gonadotrope and endocrine control of fertility. Front. Neuroendocrinol. 2010, 31, 322–340. [Google Scholar] [CrossRef] [PubMed]
- Coss, D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol. Cell Endocrinol. 2018, 463, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Naor, Z. Signaling by G-protein-coupled receptor (GPCR): Studies on the GnRH receptor. Front. Neuroendocrinol. 2009, 30, 10–29. [Google Scholar] [CrossRef]
- Kuiri-Hanninen, T.; Sankilampi, U.; Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: Minipuberty. Horm. Res. Paediatr. 2014, 82, 73–80. [Google Scholar] [CrossRef]
- Young, J.; Xu, C.; Papadakis, G.E.; Acierno, J.S.; Maione, L.; Hietamaki, J.; Raivio, T.; Pitteloud, N. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr. Rev. 2019, 40, 669–710. [Google Scholar] [CrossRef]
- Brioude, F.; Bouligand, J.; Trabado, S.; Francou, B.; Salenave, S.; Kamenicky, P.; Brailly-Tabard, S.; Chanson, P.; Guiochon-Mantel, A.; Young, J. Non-syndromic congenital hypogonadotropic hypogonadism: Clinical presentation and genotype-phenotype relationships. Eur. J. Endocrinol. 2010, 162, 835–851. [Google Scholar] [CrossRef]
- Morgan, K.; Conklin, D.; Pawson, A.J.; Sellar, R.; Ott, T.R.; Millar, R.P. A transcriptionally active human type II gonadotropin-releasing hormone receptor gene homolog overlaps two genes in the antisense orientation on chromosome 1q.12. Endocrinology 2003, 144, 423–436. [Google Scholar] [CrossRef]
- Neill, J.D. Mammalian gonadotropin-releasing hormone (GnRH) receptor subtypes. Arch. Physiol. Biochem. 2002, 110, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Neill, J.D. GnRH and GnRH receptor genes in the human genome. Endocrinology 2002, 143, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Stojilkovic, S.S.; Reinhart, J.; Catt, K.J. Gonadotropin-releasing hormone receptors: Structure and signal transduction pathways. Endocr. Rev. 1994, 15, 462–499. [Google Scholar] [CrossRef]
- Limonta, P.; Montagnani Marelli, M.; Mai, S.; Motta, M.; Martini, L.; Moretti, R.M. GnRH receptors in cancer: From cell biology to novel targeted therapeutic strategies. Endocr. Rev. 2012, 33, 784–811. [Google Scholar] [CrossRef] [PubMed]
- Grundker, C.; Emons, G. The Role of Gonadotropin-Releasing Hormone in Cancer Cell Proliferation and Metastasis. Front. Endocrinol. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Rojas, A.; Huerta-Reyes, M. Human gonadotropin-releasing hormone receptor-activated cellular functions and signaling pathways in extra-pituitary tissues and cancer cells (Review). Oncol. Rep. 2009, 22, 981–990. [Google Scholar] [CrossRef]
- Chen, Y.M.; Qi, Q.R.; Xie, Q.Z.; Yang, Y.F.; Xia, Y.; Zhou, X.D. Effect of Progestin-primed Ovarian Stimulation Protocol on Outcomes of Aged Infertile Women Who Failed to Get Pregnant in the First IVF/ ICSI Cycle: A Self-controlled Study. Curr. Med. Sci. 2018, 38, 513–518. [Google Scholar] [CrossRef]
- Ali, M.; Chaudhry, Z.T.; Al-Hendy, A. Successes and failures of uterine leiomyoma drug discovery. Expert Opin. Drug Discov. 2018, 13, 169–177. [Google Scholar] [CrossRef]
- Perricos, A.; Wenzl, R. Efficacy of elagolix in the treatment of endometriosis. Expert Opin. Pharmacother. 2017, 18, 1391–1397. [Google Scholar] [CrossRef]
- Schally, A.V.; Block, N.L.; Rick, F.G. Discovery of LHRH and development of LHRH analogs for prostate cancer treatment. Prostate 2017, 77, 1036–1054. [Google Scholar] [CrossRef]
- Finch, A.R.; Caunt, C.J.; Armstrong, S.P.; McArdle, C.A. Agonist-induced internalization and downregulation of gonadotropin-releasing hormone receptors. Am. J. Physiol. Cell Physiol. 2009, 297, C591–C600. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.B.; Schally, A.V. Drug Insight: Clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nat. Clin. Pract. Endocrinol. Metab. 2007, 3, 157–167. [Google Scholar] [CrossRef]
- Fan, N.C.; Peng, C.; Krisinger, J.; Leung, P.C. The human gonadotropin-releasing hormone receptor gene: Complete structure including multiple promoters, transcription initiation sites, and polyadenylation signals. Mol. Cell Endocrinol. 1995, 107, R1–R8. [Google Scholar] [CrossRef] [PubMed]
- Kakar, S.S. Molecular structure of the human gonadotropin-releasing hormone receptor gene. Eur. J. Endocrinol. 1997, 137, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, C.T.; Kaiser, U.B.; Chin, W.W. Isolation and characterization of the 5’-flanking region of the mouse gonadotropin-releasing hormone receptor gene. Endocrinology 1994, 135, 2300–2306. [Google Scholar] [CrossRef]
- Leung, P.C.; Squire, J.; Peng, C.; Fan, N.; Hayden, M.R.; Olofsson, J.I. Mapping of the gonadotropin-releasing hormone (GnRH) receptor gene to human chromosome 4q21.2 by fluorescence in situ hybridization. Mamm. Genome 1995, 6, 309–310. [Google Scholar] [CrossRef]
- Grosse, R.; Schoneberg, T.; Schultz, G.; Gudermann, T. Inhibition of gonadotropin-releasing hormone receptor signaling by expression of a splice variant of the human receptor. Mol. Endocrinol. 1997, 11, 1305–1318. [Google Scholar] [CrossRef]
- Trzaskowski, B.; Latek, D.; Yuan, S.; Ghoshdastider, U.; Debinski, A.; Filipek, S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr. Med. Chem. 2012, 19, 1090–1109. [Google Scholar] [CrossRef]
- Davidson, J.S.; Assefa, D.; Pawson, A.; Davies, P.; Hapgood, J.; Becker, I.; Flanagan, C.; Roeske, R.; Millar, R. Irreversible activation of the gonadotropin-releasing hormone receptor by photoaffinity cross-linking: Localization of attachment site to Cys residue in N-terminal segment. Biochemistry 1997, 36, 12881–12889. [Google Scholar] [CrossRef]
- Hoffmann, S.H.; ter Laak, T.; Kuhne, R.; Reilander, H.; Beckers, T. Residues within transmembrane helices 2 and 5 of the human gonadotropin-releasing hormone receptor contribute to agonist and antagonist binding. Mol. Endocrinol. 2000, 14, 1099–1115. [Google Scholar] [CrossRef]
- Zhou, W.; Rodic, V.; Kitanovic, S.; Flanagan, C.A.; Chi, L.; Weinstein, H.; Maayani, S.; Millar, R.P.; Sealfon, S.C. A locus of the gonadotropin-releasing hormone receptor that differentiates agonist and antagonist binding sites. J. Biol. Chem. 1995, 270, 18853–18857. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.S.; McArdle, C.A.; Davies, P.; Elario, R.; Flanagan, C.A.; Millar, R.P. Asn102 of the gonadotropin-releasing hormone receptor is a critical determinant of potency for agonists containing C-terminal glycinamide. J. Biol. Chem. 1996, 271, 15510–15514. [Google Scholar] [CrossRef]
- Flanagan, C.A.; Rodic, V.; Konvicka, K.; Yuen, T.; Chi, L.; Rivier, J.E.; Millar, R.P.; Weinstein, H.; Sealfon, S.C. Multiple interactions of the Asp(2.61(98)) side chain of the gonadotropin-releasing hormone receptor contribute differentially to ligand interaction. Biochemistry 2000, 39, 8133–8141. [Google Scholar] [CrossRef] [PubMed]
- Fromme, B.J.; Katz, A.A.; Roeske, R.W.; Millar, R.P.; Flanagan, C.A. Role of aspartate7.32(302) of the human gonadotropin-releasing hormone receptor in stabilizing a high-affinity ligand conformation. Mol. Pharmacol. 2001, 60, 1280–1287. [Google Scholar] [CrossRef]
- Strader, C.D.; Fong, T.M.; Tota, M.R.; Underwood, D.; Dixon, R.A. Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 1994, 63, 101–132. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Benovic, J.L. G-protein-coupled receptor kinases. Trends Biochem. Sci. 1991, 16, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.S.; Wakefield, I.K.; Millar, R.P. Absence of rapid desensitization of the mouse gonadotropin-releasing hormone receptor. Biochem. J. 1994, 300 (Pt 2), 299–302. [Google Scholar] [CrossRef]
- McArdle, C.A.; Forrest-Owen, W.; Willars, G.; Davidson, J.; Poch, A.; Kratzmeier, M. Desensitization of gonadotropin-releasing hormone action in the gonadotrope-derived alpha T3-1 cell line. Endocrinology 1995, 136, 4864–4871. [Google Scholar] [CrossRef]
- Probst, W.C.; Snyder, L.A.; Schuster, D.I.; Brosius, J.; Sealfon, S.C. Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol. 1992, 11, 1–20. [Google Scholar] [CrossRef]
- Baldwin, J.M. Structure and function of receptors coupled to G proteins. Curr. Opin. Cell Biol. 1994, 6, 180–190. [Google Scholar] [CrossRef]
- Davidson, J.S.; Flanagan, C.A.; Becker, I.I.; Illing, N.; Sealfon, S.C.; Millar, R.P. Molecular function of the gonadotropin-releasing hormone receptor: Insights from site-directed mutagenesis. Mol. Cell Endocrinol. 1994, 100, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Arora, K.K.; Sakai, A.; Catt, K.J. Effects of second intracellular loop mutations on signal transduction and internalization of the gonadotropin-releasing hormone receptor. J. Biol. Chem. 1995, 270, 22820–22826. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros, J.; Kitanovic, S.; Guarnieri, F.; Davies, P.; Fromme, B.J.; Konvicka, K.; Chi, L.; Millar, R.P.; Davidson, J.S.; Weinstein, H.; et al. Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J. Biol. Chem. 1998, 273, 10445–10453. [Google Scholar] [CrossRef] [PubMed]
- Kakar, S.S.; Jennes, L. Expression of gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor mRNAs in various non-reproductive human tissues. Cancer Lett. 1995, 98, 57–62. [Google Scholar] [CrossRef]
- Liu, F.; Usui, I.; Evans, L.G.; Austin, D.A.; Mellon, P.L.; Olefsky, J.M.; Webster, N.J. Involvement of both G(q/11) and G(s) proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J. Biol. Chem. 2002, 277, 32099–32108. [Google Scholar] [CrossRef]
- Lambert, N.A. Dissociation of heterotrimeric g proteins in cells. Sci. Signal. 2008, 1, re5. [Google Scholar] [CrossRef]
- Sealfon, S.C.; Weinstein, H.; Millar, R.P. Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 1997, 18, 180–205. [Google Scholar] [CrossRef]
- Hamm, H.E. How activated receptors couple to G proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 4819–4821. [Google Scholar] [CrossRef]
- Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2008, 9, 60–71. [Google Scholar] [CrossRef]
- Simon, M.I.; Strathmann, M.P.; Gautam, N. Diversity of G proteins in signal transduction. Science 1991, 252, 802–808. [Google Scholar] [CrossRef]
- Lerea, C.L.; Somers, D.E.; Hurley, J.B.; Klock, I.B.; Bunt-Milam, A.H. Identification of specific transducin alpha subunits in retinal rod and cone photoreceptors. Science 1986, 234, 77–80. [Google Scholar] [CrossRef]
- Grosse, R.; Schmid, A.; Schoneberg, T.; Herrlich, A.; Muhn, P.; Schultz, G.; Gudermann, T. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to G(q/11) proteins. J. Biol. Chem. 2000, 275, 9193–9200. [Google Scholar] [CrossRef]
- Gilman, A.G. G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 1987, 56, 615–649. [Google Scholar] [CrossRef]
- Ford, C.E.; Skiba, N.P.; Bae, H.; Daaka, Y.; Reuveny, E.; Shekter, L.R.; Rosal, R.; Weng, G.; Yang, C.S.; Iyengar, R.; et al. Molecular basis for interactions of G protein betagamma subunits with effectors. Science 1998, 280, 1271–1274. [Google Scholar] [CrossRef]
- Liu, F.; Austin, D.A.; Mellon, P.L.; Olefsky, J.M.; Webster, N.J. GnRH activates ERK1/2 leading to the induction of c-fos and LHbeta protein expression in LbetaT2 cells. Mol. Endocrinol. 2002, 16, 419–434. [Google Scholar] [CrossRef]
- Berridge, M.J.; Irvine, R.F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 1984, 312, 315–321. [Google Scholar] [CrossRef]
- Limor, R.; Ayalon, D.; Capponi, A.M.; Childs, G.V.; Naor, Z. Cytosolic free calcium levels in cultured pituitary cells separated by centrifugal elutriation: Effect of gonadotropin-releasing hormone. Endocrinology 1987, 120, 497–503. [Google Scholar] [CrossRef]
- Naor, Z.; Harris, D.; Shacham, S. Mechanism of GnRH receptor signaling: Combinatorial cross-talk of Ca2+ and protein kinase C. Front. Neuroendocrinol. 1998, 19, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Widmann, C.; Gibson, S.; Jarpe, M.B.; Johnson, G.L. Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol. Rev. 1999, 79, 143–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, J.M.; Park, J.B.; Lee, S.D.; Oh, Y.S.; Chung, C.; Lee, T.G.; Kim, J.H.; Park, S.K.; Yoo, J.S.; et al. Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: Determination of multiple phosphorylation sites. Biochemistry 1999, 38, 10344–10351. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.; Robertson, D.N.; Holland, P.J.; Collins, D.; Lutz, E.M.; Johnson, M.S. ADP-ribosylation factor-dependent phospholipase D activation by the M3 muscarinic receptor. J. Biol. Chem. 2003, 278, 33818–33830. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Stojilkovic, S.S.; Hunyady, L.; Krsmanovic, L.Z.; Catt, K.J. Sequential activation of phospholipase-C and -D in agonist-stimulated gonadotrophs. Endocrinology 1994, 134, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Seger, R.; Krebs, E.G. The MAPK signaling cascade. FASEB J. 1995, 9, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Naor, Z.; Benard, O.; Seger, R. Activation of MAPK cascades by G-protein-coupled receptors: The case of gonadotropin-releasing hormone receptor. Trends Endocrinol. Metab. 2000, 11, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Naor, Z.; Seger, R. Intracellular signaling pathways mediated by the gonadotropin-releasing hormone (GnRH) receptor. Arch. Med. Res. 2001, 32, 499–509. [Google Scholar] [CrossRef]
- Maurer, R.A.; Kim, K.E.; Schoderbek, W.E.; Roberson, M.S.; Glenn, D.J. Regulation of glycoprotein hormone alpha-subunit gene expression. Recent Prog. Horm. Res. 1999, 54, 455–484; discussion 485. [Google Scholar]
- Ben-Menahem, D.; Shraga-Levine, Z.; Limor, R.; Naor, Z. Arachidonic acid and lipoxygenase products stimulate gonadotropin alpha-subunit mRNA levels in pituitary alpha T3-1 cell line: Role in gonadotropin releasing hormone action. Biochemistry 1994, 33, 12795–12799. [Google Scholar] [CrossRef]
- Shraga-Levine, Z.; Ben-Menahem, D.; Naor, Z. Arachidonic acid and lipoxygenase products stimulate protein kinase C beta mRNA levels in pituitary alpha T3-1 cell line: Role in gonadotropin-releasing hormone action. Biochem. J. 1996, 316 (Pt 2), 667–670. [Google Scholar] [CrossRef]
- Haisenleder, D.J.; Dalkin, A.C.; Ortolano, G.A.; Marshall, J.C.; Shupnik, M.A. A pulsatile gonadotropin-releasing hormone stimulus is required to increase transcription of the gonadotropin subunit genes: Evidence for differential regulation of transcription by pulse frequency in vivo. Endocrinology 1991, 128, 509–517. [Google Scholar] [CrossRef]
- Chi, H.; Horie, H.; Hikawa, N.; Takenaka, T. Isolation and age-related characterization of mouse Schwann cells from dorsal root ganglion explants in type I collagen gels. J. Neurosci. Res. 1993, 35, 183–187. [Google Scholar] [CrossRef]
- Kottler, M.L.; Bergametti, F.; Carre, M.C.; Morice, S.; Decoret, E.; Lagarde, J.P.; Starzec, A.; Counis, R. Tissue-specific pattern of variant transcripts of the human gonadotropin-releasing hormone receptor gene. Eur. J. Endocrinol. 1999, 140, 561–569. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, S.; Celato, N.; Uccella, S.; Capella, C. Detection of gonadotropin-releasing hormone receptor in normal human pituitary cells and pituitary adenomas using immunohistochemistry. Virchows Arch. 2000, 437, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Sanno, N.; Jin, L.; Qian, X.; Osamura, R.Y.; Scheithauer, B.W.; Kovacs, K.; Lloyd, R.V. Gonadotropin-releasing hormone and gonadotropin-releasing hormone receptor messenger ribonucleic acids expression in nontumorous and neoplastic pituitaries. J. Clin. Endocrinol. Metab. 1997, 82, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Emons, G.; Pahwa, G.S.; Brack, C.; Sturm, R.; Oberheuser, F.; Knuppen, R. Gonadotropin releasing hormone binding sites in human epithelial ovarian carcinomata. Eur. J. Cancer Clin. Oncol. 1989, 25, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Emons, G.; Ortmann, O.; Becker, M.; Irmer, G.; Springer, B.; Laun, R.; Holzel, F.; Schulz, K.D.; Schally, A.V. High affinity binding and direct antiproliferative effects of LHRH analogues in human ovarian cancer cell lines. Cancer Res. 1993, 53, 5439–5446. [Google Scholar] [PubMed]
- Kakar, S.S.; Grizzle, W.E.; Neill, J.D. The nucleotide sequences of human GnRH receptors in breast and ovarian tumors are identical with that found in pituitary. Mol. Cell Endocrinol. 1994, 106, 145–149. [Google Scholar] [CrossRef]
- Brus, L.; Lambalk, C.B.; de Koning, J.; Helder, M.N.; Janssens, R.M.; Schoemaker, J. Specific gonadotrophin-releasing hormone analogue binding predominantly in human luteinized follicular aspirates and not in human pre-ovulatory follicles. Hum. Reprod 1997, 12, 769–773. [Google Scholar] [CrossRef]
- Chatzaki, E.; Bax, C.M.; Eidne, K.A.; Anderson, L.; Grudzinskas, J.G.; Gallagher, C.J. The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer, and its relevance as an autocrine growth factor. Cancer Res. 1996, 56, 2059–2065. [Google Scholar]
- Borroni, R.; Di Blasio, A.M.; Gaffuri, B.; Santorsola, R.; Busacca, M.; Vigano, P.; Vignali, M. Expression of GnRH receptor gene in human ectopic endometrial cells and inhibition of their proliferation by leuprolide acetate. Mol. Cell Endocrinol. 2000, 159, 37–43. [Google Scholar] [CrossRef]
- Lin, L.S.; Roberts, V.J.; Yen, S.S. Expression of human gonadotropin-releasing hormone receptor gene in the placenta and its functional relationship to human chorionic gonadotropin secretion. J. Clin. Endocrinol. Metab. 1995, 80, 580–585. [Google Scholar] [CrossRef]
- Bahk, J.Y.; Hyun, J.S.; Lee, H.; Kim, M.O.; Cho, G.J.; Lee, B.H.; Choi, W.S. Expression of gonadotropin-releasing hormone (GnRH) and GnRH receptor mRNA in prostate cancer cells and effect of GnRH on the proliferation of prostate cancer cells. Urol. Res. 1998, 26, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Tieva, A.; Stattin, P.; Wikstrom, P.; Bergh, A.; Damber, J.E. Gonadotropin-releasing hormone receptor expression in the human prostate. Prostate 2001, 47, 276–284. [Google Scholar] [CrossRef]
- Eidne, K.A.; Flanagan, C.A.; Millar, R.P. Gonadotropin-releasing hormone binding sites in human breast carcinoma. Science 1985, 229, 989–991. [Google Scholar] [CrossRef] [PubMed]
- Kottler, M.L.; Starzec, A.; Carre, M.C.; Lagarde, J.P.; Martin, A.; Counis, R. The genes for gonadotropin-releasing hormone and its receptor are expressed in human breast with fibrocystic disease and cancer. Int. J. Cancer 1997, 71, 595–599. [Google Scholar] [CrossRef]
- Moriya, T.; Suzuki, T.; Pilichowska, M.; Ariga, N.; Kimura, N.; Ouchi, N.; Nagura, H.; Sasano, H. Immunohistochemical expression of gonadotropin releasing hormone receptor in human breast carcinoma. Pathol. Int. 2001, 51, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Jeung, E.B.; Stephenson, M.; Leung, P.C. Human peripheral blood mononuclear cells express gonadotropin-releasing hormone (GnRH), GnRH receptor, and interleukin-2 receptor gamma-chain messenger ribonucleic acids that are regulated by GnRH in vitro. J. Clin. Endocrinol. Metab. 1999, 84, 743–750. [Google Scholar] [CrossRef]
- Moretti, R.M.; Montagnani Marelli, M.; Van Groeninghen, J.C.; Limonta, P. Locally expressed LHRH receptors mediate the oncostatic and antimetastatic activity of LHRH agonists on melanoma cells. J. Clin. Endocrinol. Metab. 2002, 87, 3791–3797. [Google Scholar] [CrossRef]
- de Roux, N.; Young, J.; Misrahi, M.; Genet, R.; Chanson, P.; Schaison, G.; Milgrom, E. A family with hypogonadotropic hypogonadism and mutations in the gonadotropin-releasing hormone receptor. N. Engl. J. Med. 1997, 337, 1597–1602. [Google Scholar] [CrossRef]
- Goncalves, C.I.; Aragues, J.M.; Bastos, M.; Barros, L.; Vicente, N.; Carvalho, D.; Lemos, M.C. GNRHR biallelic and digenic mutations in patients with normosmic congenital hypogonadotropic hypogonadism. Endocr. Connect 2017, 6, 360–366. [Google Scholar] [CrossRef]
- Pitteloud, N.; Quinton, R.; Pearce, S.; Raivio, T.; Acierno, J.; Dwyer, A.; Plummer, L.; Hughes, V.; Seminara, S.; Cheng, Y.Z.; et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Investig. 2007, 117, 457–463. [Google Scholar] [CrossRef]
- Mendez, J.P.; Zenteno, J.C.; Coronel, A.; Soriano-Ursua, M.A.; Valencia-Villalvazo, E.Y.; Soderlund, D.; Coral-Vazquez, R.M.; Canto, P. Triallelic digenic mutation in the prokineticin 2 and GNRH receptor genes in two brothers with normosmic congenital hypogonadotropic hypogonadism. Endocr. Res. 2015, 40, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Neocleous, V.; Fanis, P.; Toumba, M.; Tanteles, G.A.; Schiza, M.; Cinarli, F.; Nicolaides, N.C.; Oulas, A.; Spyrou, G.M.; Mantzoros, C.S.; et al. GnRH Deficient Patients With Congenital Hypogonadotropic Hypogonadism: Novel Genetic Findings in ANOS1, RNF216, WDR11, FGFR1, CHD7, and POLR3A Genes in a Case Series and Review of the Literature. Front. Endocrinol. 2020, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Bianco, S.D.; Kaiser, U.B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 2009, 5, 569–576. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, F.; Kotan, L.D.; Mengen, E.; Siklar, Z.; Berberoglu, M.; Dokmetas, S.; Kilicli, M.F.; Guven, A.; Kirel, B.; Saka, N.; et al. Distribution of gene mutations associated with familial normosmic idiopathic hypogonadotropic hypogonadism. J. Clin. Res. Pediatr. Endocrinol. 2012, 4, 121–126. [Google Scholar] [CrossRef]
- Kottler, M.L.; Chauvin, S.; Lahlou, N.; Harris, C.E.; Johnston, C.J.; Lagarde, J.P.; Bouchard, P.; Farid, N.R.; Counis, R. A new compound heterozygous mutation of the gonadotropin-releasing hormone receptor (L314X, Q106R) in a woman with complete hypogonadotropic hypogonadism: Chronic estrogen administration amplifies the gonadotropin defect. J. Clin. Endocrinol. Metab. 2000, 85, 3002–3008. [Google Scholar] [CrossRef]
- Meysing, A.U.; Kanasaki, H.; Bedecarrats, G.Y.; Acierno, J.S., Jr.; Conn, P.M.; Martin, K.A.; Seminara, S.B.; Hall, J.E.; Crowley, W.F., Jr.; Kaiser, U.B. GNRHR mutations in a woman with idiopathic hypogonadotropic hypogonadism highlight the differential sensitivity of luteinizing hormone and follicle-stimulating hormone to gonadotropin-releasing hormone. J. Clin. Endocrinol. Metab. 2004, 89, 3189–3198. [Google Scholar] [CrossRef]
- Tello, J.A.; Newton, C.L.; Bouligand, J.; Guiochon-Mantel, A.; Millar, R.P.; Young, J. Congenital hypogonadotropic hypogonadism due to GnRH receptor mutations in three brothers reveal sites affecting conformation and coupling. PLoS ONE 2012, 7, e38456. [Google Scholar] [CrossRef]
- Vaaralahti, K.; Wehkalampi, K.; Tommiska, J.; Laitinen, E.M.; Dunkel, L.; Raivio, T. The role of gene defects underlying isolated hypogonadotropic hypogonadism in patients with constitutional delay of growth and puberty. Fertil. Steril. 2011, 95, 2756–2758. [Google Scholar] [CrossRef]
- Francou, B.; Bouligand, J.; Voican, A.; Amazit, L.; Trabado, S.; Fagart, J.; Meduri, G.; Brailly-Tabard, S.; Chanson, P.; Lecomte, P.; et al. Normosmic congenital hypogonadotropic hypogonadism due to TAC3/TACR3 mutations: Characterization of neuroendocrine phenotypes and novel mutations. PLoS ONE 2011, 6, e25614. [Google Scholar] [CrossRef]
- Layman, L.C.; Cohen, D.P.; Jin, M.; Xie, J.; Li, Z.; Reindollar, R.H.; Bolbolan, S.; Bick, D.P.; Sherins, R.R.; Duck, L.W.; et al. Mutations in gonadotropin-releasing hormone receptor gene cause hypogonadotropic hypogonadism. Nat. Genet. 1998, 18, 14–15. [Google Scholar] [CrossRef]
- Beneduzzi, D.; Trarbach, E.B.; Min, L.; Jorge, A.A.; Garmes, H.M.; Renk, A.C.; Fichna, M.; Fichna, P.; Arantes, K.A.; Costa, E.M.; et al. Role of gonadotropin-releasing hormone receptor mutations in patients with a wide spectrum of pubertal delay. Fertil. Steril. 2014, 102, 838–846.e832. [Google Scholar] [CrossRef] [PubMed]
- Gianetti, E.; Hall, J.E.; Au, M.G.; Kaiser, U.B.; Quinton, R.; Stewart, J.A.; Metzger, D.L.; Pitteloud, N.; Mericq, V.; Merino, P.M.; et al. When genetic load does not correlate with phenotypic spectrum: Lessons from the GnRH receptor (GNRHR). J. Clin. Endocrinol. Metab. 2012, 97, E1798–E1807. [Google Scholar] [CrossRef] [PubMed]
- Beranova, M.; Oliveira, L.M.; Bedecarrats, G.Y.; Schipani, E.; Vallejo, M.; Ammini, A.C.; Quintos, J.B.; Hall, J.E.; Martin, K.A.; Hayes, F.J.; et al. Prevalence, phenotypic spectrum, and modes of inheritance of gonadotropin-releasing hormone receptor mutations in idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2001, 86, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Zernov, N.; Skoblov, M.; Baranova, A.; Boyarsky, K. Mutations in gonadotropin-releasing hormone signaling pathway in two nIHH patients with successful pregnancy outcomes. Reprod. Biol. Endocrinol. 2016, 14, 48. [Google Scholar] [CrossRef]
- Nair, S.; Jadhav, S.; Lila, A.; Jagtap, V.; Bukan, A.; Pandit, R.; Ekbote, A.; Dharmalingam, M.; Kumar, P.; Kalra, P.; et al. Spectrum of phenotype and genotype of congenital isolated hypogonadotropic hypogonadism in Asian Indians. Clin. Endocrinol. 2016, 85, 100–109. [Google Scholar] [CrossRef]
- Cassatella, D.; Howard, S.R.; Acierno, J.S.; Xu, C.; Papadakis, G.E.; Santoni, F.A.; Dwyer, A.A.; Santini, S.; Sykiotis, G.P.; Chambion, C.; et al. Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur. J. Endocrinol. 2018, 178, 377–388. [Google Scholar] [CrossRef]
- Sarfati, J.; Guiochon-Mantel, A.; Rondard, P.; Arnulf, I.; Garcia-Pinero, A.; Wolczynski, S.; Brailly-Tabard, S.; Bidet, M.; Ramos-Arroyo, M.; Mathieu, M.; et al. A comparative phenotypic study of kallmann syndrome patients carrying monoallelic and biallelic mutations in the prokineticin 2 or prokineticin receptor 2 genes. J. Clin. Endocrinol. Metab. 2010, 95, 659–669. [Google Scholar] [CrossRef]
- Quaynor, S.D.; Bosley, M.E.; Duckworth, C.G.; Porter, K.R.; Kim, S.H.; Kim, H.G.; Chorich, L.P.; Sullivan, M.E.; Choi, J.H.; Cameron, R.S.; et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Cell Endocrinol. 2016, 437, 86–96. [Google Scholar] [CrossRef]
- de Roux, N.; Young, J.; Brailly-Tabard, S.; Misrahi, M.; Milgrom, E.; Schaison, G. The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred. J. Clin. Endocrinol. Metab. 1999, 84, 567–572. [Google Scholar] [CrossRef]
- Silveira, L.F.; Stewart, P.M.; Thomas, M.; Clark, D.A.; Bouloux, P.M.; MacColl, G.S. Novel homozygous splice acceptor site GnRH receptor (GnRHR) mutation: Human GnRHR “knockout”. J. Clin. Endocrinol. Metab. 2002, 87, 2973–2977. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, X.; Wang, L.; Wang, R.; Huang, Z.; Sun, Y.; Yao, R.; Huang, X.; Ye, J.; Han, L.; et al. Diagnostic Application of Targeted Next-Generation Sequencing of 80 Genes Associated with Disorders of Sexual Development. Sci. Rep. 2017, 7, 44536. [Google Scholar] [CrossRef] [PubMed]
- Karges, B.; Karges, W.; Mine, M.; Ludwig, L.; Kuhne, R.; Milgrom, E.; de Roux, N. Mutation Ala(171)Thr stabilizes the gonadotropin-releasing hormone receptor in its inactive conformation, causing familial hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2003, 88, 1873–1879. [Google Scholar] [CrossRef] [PubMed]
- Pralong, F.P.; Gomez, F.; Castillo, E.; Cotecchia, S.; Abuin, L.; Aubert, M.L.; Portmann, L.; Gaillard, R.C. Complete hypogonadotropic hypogonadism associated with a novel inactivating mutation of the gonadotropin-releasing hormone receptor. J. Clin. Endocrinol. Metab. 1999, 84, 3811–3816. [Google Scholar] [CrossRef] [PubMed]
- Marcos, S.; Sarfati, J.; Leroy, C.; Fouveaut, C.; Parent, P.; Metz, C.; Wolczynski, S.; Gerard, M.; Bieth, E.; Kurtz, F.; et al. The prevalence of CHD7 missense versus truncating mutations is higher in patients with Kallmann syndrome than in typical CHARGE patients. J. Clin. Endocrinol. Metab. 2014, 99, E2138–E2143. [Google Scholar] [CrossRef] [PubMed]
- Vagenakis, G.A.; Sgourou, A.; Papachatzopoulou, A.; Kourounis, G.; Papavassiliou, A.G.; Georgopoulos, N.A. The gonadotropin-releasing hormone (GnRH)-1 gene, the GnRH receptor gene, and their promoters in patients with idiopathic hypogonadotropic hypogonadism with or without resistance to GnRH action. Fertil. Steril. 2005, 84, 1762–1765. [Google Scholar] [CrossRef]
- Costa, E.M.; Bedecarrats, G.Y.; Mendonca, B.B.; Arnhold, I.J.; Kaiser, U.B.; Latronico, A.C. Two novel mutations in the gonadotropin-releasing hormone receptor gene in Brazilian patients with hypogonadotropic hypogonadism and normal olfaction. J. Clin. Endocrinol. Metab. 2001, 86, 2680–2686. [Google Scholar] [CrossRef]
- Topaloglu, A.K.; Lu, Z.L.; Farooqi, I.S.; Mungan, N.O.; Yuksel, B.; O’Rahilly, S.; Millar, R.P. Molecular genetic analysis of normosmic hypogonadotropic hypogonadism in a Turkish population: Identification and detailed functional characterization of a novel mutation in the gonadotropin-releasing hormone receptor gene. Neuroendocrinology 2006, 84, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Caron, P.; Chauvin, S.; Christin-Maitre, S.; Bennet, A.; Lahlou, N.; Counis, R.; Bouchard, P.; Kottler, M.L. Resistance of hypogonadic patients with mutated GnRH receptor genes to pulsatile GnRH administration. J. Clin. Endocrinol. Metab. 1999, 84, 990–996. [Google Scholar] [CrossRef]
- Zhang, R.; Linpeng, S.; Li, Z.; Cao, Y.; Tan, H.; Liang, D.; Wu, L. Deficiency in GnRH receptor trafficking due to a novel homozygous mutation causes idiopathic hypogonadotropic hypogonadism in three prepubertal siblings. Gene 2018, 669, 42–46. [Google Scholar] [CrossRef]
- Antelli, A.; Baldazzi, L.; Balsamo, A.; Pirazzoli, P.; Nicoletti, A.; Gennari, M.; Cicognani, A. Two novel GnRHR gene mutations in two siblings with hypogonadotropic hypogonadism. Eur. J. Endocrinol. 2006, 155, 201–205. [Google Scholar] [CrossRef]
- Cioppi, F.; Riera-Escamilla, A.; Manilall, A.; Guarducci, E.; Todisco, T.; Corona, G.; Colombo, F.; Bonomi, M.; Flanagan, C.A.; Krausz, C. Genetics of ncHH: From a peculiar inheritance of a novel GNRHR mutation to a comprehensive review of the literature. Andrology 2019, 7, 88–101. [Google Scholar] [CrossRef]
- Francou, B.; Paul, C.; Amazit, L.; Cartes, A.; Bouvattier, C.; Albarel, F.; Maiter, D.; Chanson, P.; Trabado, S.; Brailly-Tabard, S.; et al. Prevalence of KISS1 Receptor mutations in a series of 603 patients with normosmic congenital hypogonadotrophic hypogonadism and characterization of novel mutations: A single-centre study. Hum. Reprod. 2016, 31, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430.e1426. [Google Scholar] [CrossRef] [PubMed]
- Soderlund, D.; Canto, P.; de la Chesnaye, E.; Ulloa-Aguirre, A.; Mendez, J.P. A novel homozygous mutation in the second transmembrane domain of the gonadotrophin releasing hormone receptor gene. Clin. Endocrinol. 2001, 54, 493–498. [Google Scholar] [CrossRef]
- Raivio, T.; Sidis, Y.; Plummer, L.; Chen, H.; Ma, J.; Mukherjee, A.; Jacobson-Dickman, E.; Quinton, R.; Van Vliet, G.; Lavoie, H.; et al. Impaired fibroblast growth factor receptor 1 signaling as a cause of normosmic idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 2009, 94, 4380–4390. [Google Scholar] [CrossRef]
- Hussain, H.M.J.; Murtaza, G.; Jiang, X.; Khan, R.; Khan, M.; Kakakhel, M.B.S.; Khan, T.; Wahab, F.; Zhang, H.; Zhang, Y.; et al. Whole Exome Sequencing Revealed a Novel Nonsense Variant in the GNRHR Gene Causing Normosmic Hypogonadotropic Hypogonadism in a Pakistani Family. Horm. Res. Paediatr. 2019, 91, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Shaw, N.D.; Seminara, S.B.; Welt, C.K.; Au, M.G.; Plummer, L.; Hughes, V.A.; Dwyer, A.A.; Martin, K.A.; Quinton, R.; Mericq, V.; et al. Expanding the phenotype and genotype of female GnRH deficiency. J. Clin. Endocrinol. Metab. 2011, 96, E566–E576. [Google Scholar] [CrossRef]
- Basaran, Y.; Bolu, E.; Unal, H.U.; Sagkan, R.I.; Taslipinar, A.; Ozgurtas, T.; Musabak, U. Multiplex ligation dependent probe amplification analysis of KAL1, GNRH1, GNRHR, PROK2 and PROKR2 in male patients with idiopathic hypogonadotropic hypogonadism. Endokrynol. Pol. 2013, 64, 285–292. [Google Scholar] [CrossRef]
- Kim, H.G.; Pedersen-White, J.; Bhagavath, B.; Layman, L.C. Genotype and phenotype of patients with gonadotropin-releasing hormone receptor mutations. Front. Horm. Res. 2010, 39, 94–110. [Google Scholar] [CrossRef]
- Choi, J.H.; Balasubramanian, R.; Lee, P.H.; Shaw, N.D.; Hall, J.E.; Plummer, L.; Buck, C.L.; Kottler, M.L.; Jarzabek, K.; Wolczynski, S.; et al. Expanding the Spectrum of Founder Mutations Causing Isolated Gonadotropin-Releasing Hormone Deficiency. J. Clin. Endocrinol. Metab. 2015, 100, E1378–E1385. [Google Scholar] [CrossRef]
- Ortmann, O.; Weiss, J.M.; Diedrich, K. Gonadotrophin-releasing hormone (GnRH) and GnRH agonists: Mechanisms of action. Reprod. Biomed. Online 2002, 5 (Suppl. S1), 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, O.; Diedrich, K. Pituitary and extrapituitary actions of gonadotrophin-releasing hormone and its analogues. Hum. Reprod. 1999, 14 (Suppl. S1), 194–206. [Google Scholar] [CrossRef] [PubMed]
- Conn, P.M.; Ulloa-Aguirre, A. Pharmacological chaperones for misfolded gonadotropin-releasing hormone receptors. Adv. Pharmacol. 2011, 62, 109–141. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Sharma, A. Gonadotropin-releasing hormone analogs: Understanding advantages and limitations. J. Hum. Reprod. Sci. 2014, 7, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Choi, Y.S. The role of gonadotropin-releasing hormone agonists in female fertility preservation. Clin. Exp. Reprod. Med. 2021, 48, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Resta, C.; Moustogiannis, A.; Chatzinikita, E.; Malligiannis Ntalianis, D.; Malligiannis Ntalianis, K.; Philippou, A.; Koutsilieris, M.; Vlahos, N. Gonadotropin-Releasing Hormone (GnRH)/GnRH Receptors and Their Role in the Treatment of Endometriosis. Cureus 2023, 15, e38136. [Google Scholar] [CrossRef] [PubMed]
- Golan, A. GnRH analogues in the treatment of uterine fibroids. Hum. Reprod. 1996, 11 (Suppl. S3), 33–41. [Google Scholar] [CrossRef]
- Eugster, E.A. Treatment of Central Precocious Puberty. J. Endocr. Soc. 2019, 3, 965–972. [Google Scholar] [CrossRef]
- Huerta-Reyes, M.; Maya-Nunez, G.; Perez-Solis, M.A.; Lopez-Munoz, E.; Guillen, N.; Olivo-Marin, J.C.; Aguilar-Rojas, A. Treatment of Breast Cancer With Gonadotropin-Releasing Hormone Analogs. Front. Oncol. 2019, 9, 943. [Google Scholar] [CrossRef]
- Choi, S.; Lee, A.K. Efficacy and safety of gonadotropin-releasing hormone agonists used in the treatment of prostate cancer. Drug Healthc. Patient Saf. 2011, 3, 107–119. [Google Scholar] [CrossRef]
- Surrey, E.S. GnRH agonists in the treatment of symptomatic endometriosis: A review. FS Rep. 2023, 4, 40–45. [Google Scholar] [CrossRef]
- Van Poppel, H.; Klotz, L. Gonadotropin-releasing hormone: An update review of the antagonists versus agonists. Int. J. Urol. 2012, 19, 594–601. [Google Scholar] [CrossRef]
- Weiss, J.M.; Diedrich, K.; Ludwig, M. Gonadotropin-releasing hormone antagonists: Pharmacology and clinical use in women. Treat. Endocrinol. 2002, 1, 281–291. [Google Scholar] [CrossRef]
- Weiss, J.M.; Ludwig, M.; Ortmann, O.; Diedrich, K. GnRH antagonists in the treatment of infertility. Ann. Med. 2003, 35, 512–522. [Google Scholar] [CrossRef]
- Janovick, J.A.; Patny, A.; Mosley, R.; Goulet, M.T.; Altman, M.D.; Rush, T.S., 3rd; Cornea, A.; Conn, P.M. Molecular mechanism of action of pharmacoperone rescue of misrouted GPCR mutants: The GnRH receptor. Mol. Endocrinol. 2009, 23, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Janovick, J.A.; Bannister, T.D.; Shumate, J.; Ganapathy, V.; Scampavia, L.; Spicer, T.P. Rescue of mutant gonadotropin-releasing hormone receptor function independent of cognate receptor activity. Sci. Rep. 2020, 10, 10579. [Google Scholar] [CrossRef] [PubMed]
- Janovick, J.A.; Pogozheva, I.D.; Mosberg, H.I.; Cornea, A.; Conn, P.M. Rescue of misrouted GnRHR mutants reveals its constitutive activity. Mol. Endocrinol. 2012, 26, 1179–1188. [Google Scholar] [CrossRef] [PubMed]
- Pitteloud, N.; Boepple, P.A.; DeCruz, S.; Valkenburgh, S.B.; Crowley, W.F., Jr.; Hayes, F.J. The fertile eunuch variant of idiopathic hypogonadotropic hypogonadism: Spontaneous reversal associated with a homozygous mutation in the gonadotropin-releasing hormone receptor. J. Clin. Endocrinol. Metab. 2001, 86, 2470–2475. [Google Scholar] [CrossRef] [PubMed]
- Seminara, S.B.; Beranova, M.; Oliveira, L.M.; Martin, K.A.; Crowley, W.F., Jr.; Hall, J.E. Successful use of pulsatile gonadotropin-releasing hormone (GnRH) for ovulation induction and pregnancy in a patient with GnRH receptor mutations. J. Clin. Endocrinol. Metab. 2000, 85, 556–562. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Whitcomb, R.W.; O’Dea, L.S.; Longcope, C.; Schoenfeld, D.A.; Crowley, W.F., Jr. Sex steroid control of gonadotropin secretion in the human male. I. Effects of testosterone administration in normal and gonadotropin-releasing hormone-deficient men. J. Clin. Endocrinol. Metab. 1991, 73, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Schwarting, G.A.; Wierman, M.E.; Tobet, S.A. Gonadotropin-releasing hormone neuronal migration. Semin. Reprod. Med. 2007, 25, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ferris, H.A.; Shupnik, M.A. Mechanisms for pulsatile regulation of the gonadotropin subunit genes by GNRH1. Biol. Reprod. 2006, 74, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, A.M.; Karpas, A.E.; Bremner, W.J. Chronic human chorionic gonadotropin administration in normal men: Evidence that follicle-stimulating hormone is necessary for the maintenance of quantitatively normal spermatogenesis in man. J. Clin. Endocrinol. Metab. 1986, 62, 1184–1192. [Google Scholar] [CrossRef]
- Layman, L.C.; Cohen, D.P.; Xie, J.; Smith, G.D. Clinical phenotype and infertility treatment in a male with hypogonadotropic hypogonadism due to mutations Ala129Asp/Arg262Gln of the gonadotropin-releasing hormone receptor. Fertil. Steril. 2002, 78, 1317–1320. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Boucher, A.; Decanter, C.; Lagarde, J.P.; Counis, R.; Kottler, M.L. Spontaneous pregnancy in a patient who was homozygous for the Q106R mutation in the gonadotropin-releasing hormone receptor gene. Fertil. Steril. 2002, 77, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Layman, L.C. Hypogonadotropic hypogonadism. Endocrinol. Metab. Clin. North. Am. 2007, 36, 283–296. [Google Scholar] [CrossRef]
- Bouligand, J.; Ghervan, C.; Tello, J.A.; Brailly-Tabard, S.; Salenave, S.; Chanson, P.; Lombes, M.; Millar, R.P.; Guiochon-Mantel, A.; Young, J. Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N. Engl. J. Med. 2009, 360, 2742–2748. [Google Scholar] [CrossRef]
- Fraietta, R.; Zylberstejn, D.S.; Esteves, S.C. Hypogonadotropic hypogonadism revisited. Clinics 2013, 68 (Suppl. S1), 81–88. [Google Scholar] [CrossRef]
- Karges, B.; Karges, W.; de Roux, N. Clinical and molecular genetics of the human GnRH receptor. Hum. Reprod. Update 2003, 9, 523–530. [Google Scholar] [CrossRef]
- Han, T.S.; Bouloux, P.M. What is the optimal therapy for young males with hypogonadotropic hypogonadism? Clin. Endocrinol. 2010, 72, 731–737. [Google Scholar] [CrossRef]
- Burris, A.S.; Rodbard, H.W.; Winters, S.J.; Sherins, R.J. Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism: The response to human chorionic gonadotropin is predicted by initial testicular size. J. Clin. Endocrinol. Metab. 1988, 66, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
cDNA (NM_000406.3) | Protein (NP_000397.1) | Molecular Consequence | Region Affected | Phenotype | Classification | Reference |
---|---|---|---|---|---|---|
c.2T>C | p.Met1Thr | Missense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [103] |
c.30T>A | p.Asn10Lys | Missense | NH2 tail | Hypogonadotropic hypogonadism | Likely Pathogenic | [117] |
c.30_31delinsAA | p.Asn10_Gln11delinsLysLys | Missense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [117] |
c.31C>A | p.Gln11Lys | Missense | NH2 tail | Hypogonadotropic hypogonadism. | Likely Pathogenic | [97] |
c.32delA | p.Gln11fsX23 | Frameshift | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [103] |
c.35delA | p.Asn12Ilefs*12 | Frameshift | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [128] |
c.53A>G | p.Asn18Ser | Missense | NH2 tail | Hypogonadotropic hypogonadism | Likely Pathogenic | [115] |
c.94A>G | p.Thr32Ala | Missense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [106] |
c.95 C>T | p.Thr32Ile | Missense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [103] |
c.110T>G | p.Ile37Ser | Missense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [115] |
c.112C>T | p.Arg38* | nonsense | NH2 tail | Hypogonadotropic hypogonadism | Pathogenic | [127] |
c.113_114insG | p.Arg38Argfs*15 | Frameshift | NH2 tail | hypogonadotropic hypogonadism | Pathogenic | [115] |
c.247C>T | p.Leu83Val | Missense | TM2 | Hypogonadotropic hypogonadism | Pathogenic | [126] |
c.266T>A | p.Leu89* | nonsense | TM2 | Hypogonadotropic hypogonadism | Pathogenic | [107] |
c.268G>A | p.Glu90Lys | Missense | TM2 | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [125] |
c.270G>C | p.Glu90Asp | Missense | TM2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [115] |
c.275T>C | p.Leu92Pro | Missense | TM2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [124] |
c.281T>C | p.Val94Ala | Missense | TM2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [123] |
c.286C>T | p.Pro96Ser | Missense | TM2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [103] |
c.296G>A | p.Gly99Glu | Missense | TM2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [122] |
c.311C>T | p.Thr104Ile | Missense | EL1 | Hypogonadotropic hypogonadism | Likely Pathogenic | [121] |
c.317A>G | p.Gln106Arg | Missense | EL1 | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [89] |
c.323 A>G | p.Tyr108Cys | Missense | EL1 | Hypogonadotropic hypogonadism | Likely Pathogenic | [121] |
c.350T>C | p.Leu117Pro | Missense | TM3 | Delayed Puberty | Likely Pathogenic | [103] |
c.350T>G | p.Leu117Arg | Missense | TM3 | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [95] |
c.364C>T | p.Leu122Phe | Missense | TM3 | Hypogonadotropic hypogonadism | Pathogenic | [120] |
c.386C>A | p.Ala129Asp | Missense | TM3 | Hypogonadotropic hypogonadism | Pathogenic | [119] |
c.392T>C | p.Met131Thr | Missense | TM3 | Hypogonadotropic hypogonadism | Pathogenic | [95] |
c.401T>G | p.Val134Gly | Missense | TM3 | Hypogonadotropic hypogonadism | Pathogenic | [102] |
c.415C>T | p.Arg139Cys | Missense | IL2 | Hypogonadotropic hypogonadism | Pathogenic | [118] |
c.416G>A | p.Arg139His | Missense | IL2 | Hypogonadotropic hypogonadism | Pathogenic | [117] |
c.436C>T | p.Pro146Ser | Missense | IL2 | Hypogonadotropic hypogonadism | Likely Pathogenic | [116] |
c.487G>T | p.Ala163Ser | Missense | TM4 | Kallman syndrome | Likely Pathogenic | [115] |
c.497T>C | p.Leu166Pro | Missense | TM4 | Hypogonadotropic hypogonadism | Likely Pathogenic | [103] |
c.504T>A | p.Ser168Arg | Missense | TM4 | Hypogonadotropic hypogonadism | Pathogenic | [114] |
c.511G>A | p.Ala171Thr | Missense | TM4 | Hypogonadotropic hypogonadism | Pathogenic | [113] |
c.521A>G | p.Gln174Arg | Missense | TM4 | DSD | Likely Pathogenic | [112] |
c.523-1G>A | - | Splice acceptor | - | Hypogonadotropic hypogonadism | Pathogenic | [111] |
c.599G>A | p.Cys200Tyr | Missense | EL2 | Hypogonadotropic hypogonadism | Pathogenic | [104] |
c.651C>A | p.Ser217Arg | Missense | TM5 | Hypogonadotropic hypogonadism | Pathogenic | [110] |
c.662T>A | p.Ile221Asn | Missense | TM5 | Hypogonadotropic hypogonadism | Hypogonadotropic hypogonadism | [109] |
c.719G>A | p.Arg240Gln | Missense | IL3 | Kallmann syndrome | Likely Pathogenic | [108] |
c.784C>T | p.Arg262Trp | Missense | IL3 | Hypogonadotropic hypogonadism | Likely Pathogenic | [107] |
c.785G>A | p.Arg262Gln | Missense | IL3 | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [89] |
c.797T>G | p.Leu266Arg | Missense | IL3 | Hypogonadotropic hypogonadism | Pathogenic/Likely Pathogenic | [104] |
c.806C>T | p.Thr269Met | Missense | IL3 | Hypogonadotropic hypogonadism | Pathogenic | [105,106] |
c.836G>A | p.Cys279Tyr | Missense | TM6 | Hypogonadotropic hypogonadism | Pathogenic | [104] |
c.842C>T | p.Thr281Ile | Missense | TM6 | Hypogonadotropic hypogonadism | Pathogenic | [103] |
c.845C>G | p.Pro282Arg | Missense | TM6 | Hypogonadotropic hypogonadism | Likely Pathogenic | [98] |
c.847T>C | p.Tyr283His | Missense | TM6 | Hypogonadotropic hypogonadism | Pathogenic | [102] |
c.851A>G | p.Tyr284Cys | Missense | TM6 | Hypogonadotropic hypogonadism | Likely Pathogenic | [101] |
c.869A>T | p.Tyr290Phe | Missense | TM6 | Hypogonadotropic hypogonadism | Likely Pathogenic | [100] |
c.924_926delCTT | p.Phe309del | In frame deletion | TM7 | Delayed Puberty | Likely Pathogenic | [99] |
c.937_947del | p.Phe313Metfs*3 | Frameshift | TM7 | hypogonadotropic hypogonadism | Pathogenic | [90] |
c.941T>A | p.Leu314* | nonsense | TM7 | Hypogonadotropic hypogonadism | Pathogenic | [96] |
c.959C>T | p.Pro320Leu | Missense | TM7 | Hypogonadotropic hypogonadism | Pathogenic | [97] |
c.968A>G | p.Tyr323Cys | Missense | TM7 | Hypogonadotropic Hypogonadism | Pathogenic | [98] |
c.987A>G | p.X329WextX22 | Frameshift | COOH tail | Hypogonadotropic hypogonadism | Likely Pathogenic | [95] |
Dup of Exon 1 | - | Exon Duplication | - | Hypogonadotropic hypogonadism | Pathogenic | [129] |
Del of Exon 2 | - | Exon Deletion | - | Hypogonadotropic hypogonadism | Pathogenic | [129] |
Name | Brand Name | PubChem CID | Medical Applications |
---|---|---|---|
GnRH | - | Natural ligand of GnRHR | |
Buserelin | Suprefact | 50225 | Breast cancer, Endometrial hyperplasia, Endometriosis, Female infertility, Prostate cancer, Uterine fibroids |
Goserelin | Zoladex | 5311128 | Breast cancer, Endometriosis, Female infertility, Prostate cancer, Uterine fibroids, Uterine hemorrhage |
Histrelin | Vantas, Supprelin | 25077993 | Precocious puberty, Prostate cancer |
Leuprorelin | Lupron | 657181 | Breast cancer, Endometriosis, Menorrhagia, Precocious puberty, Prostate cancer, Uterine fibroids |
Nafarelin | Synarel | 25077405 | Precocious puberty, Endometriosis |
Triptorelin | Decapeptyl | 25074470 | Breast cancer, Endometriosis, Female infertility, Precocious puberty, Prostate cancer, Uterine fibroids |
Gonadorelin | Factrel | 638793 | Cryptorchidism, Delayed puberty, Hypogonadotropic hypogonadism, Veterinary medicine (assisted reproduction) |
Lecirelin | Dalmarelin | 66577115 | Veterinary medicine (assisted reproduction) |
Peforelin | Maprelin | 16197823 | Veterinary medicine (assisted reproduction) |
Azagly-nafarelin | Gonazon | 156613532 | Veterinary medicine (assisted reproduction) |
Deslorelin | Ovuplant, Suprelorin | 25077495 | Veterinary medicine (assisted reproduction) |
Fertirelin | Ovalyse | 188304 | Veterinary medicine (assisted reproduction) |
Name | Brand Name | Molecule Status | PubChem CID | Medical Applications |
---|---|---|---|---|
Abarelix | Plenaxis | Peptide | 16131215 | Prostate cancer |
Cetrorelix | Cetrotide | Peptide | 25074887 | Female infertility |
Degarelix | Firmagon | Peptide | 6136245 | Prostate cancer |
Ganirelix | Orgalutran | Peptide | 16130957 | Female infertility |
Linzagolix | KLH-2109, OBE-2109 | Non-peptide | 16656889 | Endometriosis, Uterine fibroids |
Relugolix | Relumina | Non-peptide | 10348973 | Uterine fibroids, Prostate cancer |
Elagolix | Orilissa | Non-peptide | 11250647 | Endometriosis, Uterine fibroids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanis, P.; Neocleous, V.; Papapetrou, I.; Phylactou, L.A.; Skordis, N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism. Int. J. Mol. Sci. 2023, 24, 15965. https://doi.org/10.3390/ijms242115965
Fanis P, Neocleous V, Papapetrou I, Phylactou LA, Skordis N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism. International Journal of Molecular Sciences. 2023; 24(21):15965. https://doi.org/10.3390/ijms242115965
Chicago/Turabian StyleFanis, Pavlos, Vassos Neocleous, Irene Papapetrou, Leonidas A. Phylactou, and Nicos Skordis. 2023. "Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism" International Journal of Molecular Sciences 24, no. 21: 15965. https://doi.org/10.3390/ijms242115965
APA StyleFanis, P., Neocleous, V., Papapetrou, I., Phylactou, L. A., & Skordis, N. (2023). Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism. International Journal of Molecular Sciences, 24(21), 15965. https://doi.org/10.3390/ijms242115965