Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds
Abstract
:1. Introduction
2. Results
2.1. Cvill Primary Structure
2.2. Crystal Structure
Cvill-Binding Sites
2.3. Carbohydrate-Binding Analysis
2.4. Cell Viability Assays
2.5. Internalization of Cvill in HeLa Cells
3. Discussion
4. Materials and Methods
4.1. Lectin Purification
4.2. Sequence Determination
4.2.1. Electrospray Ionization Mass Spectrometry (ESI-MS/MS)
4.2.2. Gene Sequencing
4.3. Crystal Structure
4.3.1. Lectin Crystallization
4.3.2. Data Acquisition
4.3.3. Data Processing
4.3.4. Glycan Microarrays
4.4. Molecular Docking
4.5. Antiproliferative Assays
4.5.1. Cell Culture
4.5.2. Cell Viability Assays
4.5.3. Reactive Oxygen Species (ROS) Production
4.5.4. Analysis of Caspase Activation
4.6. Expression Level of Apoptosis and Autophagy-Related Genes
4.7. Subcellular Localization of Cvill
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gabius, H.J. The Sugar Code: Why Glycans Are so Important. Biosystems 2018, 164, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Wisnovsky, S.; Bertozzi, C.R. Reading the Glyco-Code: New Approaches to Studying Protein-Carbohydrate Interactions. Curr. Opin. Struct. Biol. 2022, 75, 102395. [Google Scholar] [CrossRef] [PubMed]
- Gabius, H.J.; Roth, J. An Introduction to the Sugar Code. Histochem. Cell Biol. 2017, 147, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Tuccillo, F.M.; de Laurentiis, A.; Palmieri, C.; Fiume, G.; Bonelli, P.; Borrelli, A.; Tassone, P.; Scala, I.; Buonaguro, F.M.; Quinto, I.; et al. Aberrant Glycosylation as Biomarker for Cancer: Focus on CD43. BioMed Res. Int. 2014, 2014, 742831. [Google Scholar] [CrossRef] [PubMed]
- Hennet, T.; Cabalzar, J. Congenital Disorders of Glycosylation: A Concise Chart of Glycocalyx Dysfunction. Trends Biochem. Sci. 2015, 40, 377–384. [Google Scholar] [CrossRef]
- Thomas, D.; Rathinavel, A.K.; Radhakrishnan, P. Altered Glycosylation in Cancer: A Promising Target for Biomarkers and Therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188464. [Google Scholar] [CrossRef]
- Chin-Hun Kuo, J.; Gandhi, J.G.; Zia, R.N.; Paszek, M.J. Physical Biology of the Cancer Cell Glycocalyx. Nat. Phys. 2018, 14, 658–669. [Google Scholar]
- Pinho, S.S.; Reis, C.A. Glycosylation in Cancer: Mechanisms and Clinical Implications. Nat. Rev. Cancer 2015, 15, 540–555. [Google Scholar] [CrossRef]
- Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front. Oncol. 2019, 9, 380. [Google Scholar] [CrossRef]
- Peumans, W.J.; Van Damme, E.J.M. Lectins as Plant Defense Proteins. Plant Physiol. 1995, 109, 347–352. [Google Scholar] [CrossRef]
- Naithani, S.; Komath, S.S.; Nonomura, A.; Govindjee, G. Plant Lectins and Their Many Roles: Carbohydrate-Binding and beyond. J. Plant Physiol. 2021, 266, 153531. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, A.; Chellapandian, H.; Ramasamy, P.; Jeyachandran, S. Back2Basics: Animal Lectins: An Insight into a Highly Versatile Recognition Protein. J. Proteins Proteom. 2023, 14, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shu, J.; Li, Z. Lectin Microarrays for Glycoproteomics: An Overview of Their Use and Potential. Expert Rev. Proteom. 2020, 17, 27–39. [Google Scholar] [CrossRef]
- Hirabayashi, J.; Yamada, M.; Kuno, A.; Tateno, H. Lectin Microarrays: Concept, Principle and Applications. Chem. Soc. Rev. 2013, 42, 4443–4458. [Google Scholar] [CrossRef] [PubMed]
- Aub, J.C.; Sanford, B.H.; Cote, M.N. Studies on Reactivity of Tumor and Normal Cells to a Wheat Germ Agglutinin. Proc. Natl. Acad. Sci. USA 1965, 54, 396–399. [Google Scholar] [CrossRef]
- Faheina-Martins, G.V.; da Silveira, A.L.; Cavalcanti, B.C.; Ramos, M.V.; Moraes, M.O.; Pessoa, C.; Araújo, D.A.M. Antiproliferative Effects of Lectins from Canavalia ensiformis and Canavalia brasiliensis in Human Leukemia Cell Lines. Toxicol. In Vitro 2012, 26, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Beltrão, E.I.; Correia, M.T.; Figueredo-Silva, J.; Coelho, L.C. Binding Evaluation of Isoform 1 from Cratylia mollis Lectin to Human Mammary Tissues. Appl. Biochem. Biotechnol. 1998, 74, 125–134. [Google Scholar] [CrossRef]
- Osterne, V.J.S.; Verduijn, J.; Lossio, C.F.; Parakhonskiy, B.; Oliveira, M.V.; Pinto-Junior, V.R.; Nascimento, K.S.; Skirtach, A.G.; Van Damme, E.J.M.; Cavada, B.S. Antiproliferative Activity of Dioclea violacea Lectin in CaCO3 Particles on Cancer Cells after Controlled Release. J. Mater. Sci. 2022, 57, 8854–8868. [Google Scholar] [CrossRef]
- Bhutia, S.K.; Panda, P.K.; Sinha, N.; Praharaj, P.P.; Bhol, C.S.; Panigrahi, D.P.; Mahapatra, K.K.; Saha, S.; Patra, S.; Mishra, S.R.; et al. Plant Lectins in Cancer Therapeutics: Targeting Apoptosis and Autophagy-Dependent Cell Death. Pharmacol. Res. 2019, 144, 8–18. [Google Scholar] [CrossRef]
- Mazalovska, M.; Kouokam, J.C. Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. BioMed Res. Int. 2020, 2020, 1631394. [Google Scholar] [CrossRef]
- Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy Fights Disease through Cellular Self-Digestion. Nature 2008, 451, 1069–1075. [Google Scholar] [CrossRef]
- Radogna, F.; Dicato, M.; Diederich, M. Cancer-Type-Specific Crosstalk between Autophagy, Necroptosis and Apoptosis as a Pharmacological Target. Biochem. Pharmacol. 2015, 94, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Lossio, C.F.; Moreira, C.G.; Amorim, R.M.F.; Nobre, C.S.; Silva, M.T.L.; Neto, C.C.; Pinto-Junior, V.R.; Silva, I.B.; Campos, J.; Assreuy, A.M.S.; et al. Lectin from Canavalia villosa Seeds: A Glucose/mannose-Specific Protein and a New Tool for Inflammation Studies. Int. J. Biol. Macromol. 2017, 105, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Huldani, H.; Rashid, A.I.; Turaev, K.N.; Opulencia, M.J.C.; Abdelbasset, W.K.; Bokov, D.O.; Mustafa, Y.F.; Al-Gazally, M.E.; Hammid, A.T.; Kadhim, M.M.; et al. Concanavalin A as a Promising Lectin-Based Anti-Cancer Agent: The Molecular Mechanisms and Therapeutic Potential. Cell Commun. Signal. 2022, 20, 167. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.L.; Zhang, S.; Tian, M.; Zhang, S.Y.; Xie, T.; Chen, D.Y.; Chen, Y.J.; He, J.; Liu, J.; Ouyang, L.; et al. Plant Lectins, from Ancient Sugar-Binding Proteins to Emerging Anti-Cancer Drugs in Apoptosis and Autophagy. Cell Prolif. 2015, 48, 17–28. [Google Scholar] [CrossRef]
- Cavada, B.S.; Pinto-Junior, V.R.; Osterne, V.J.S.; Nascimento, K.S. ConA-like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Int. J. Mol. Sci. 2018, 20, 30. [Google Scholar] [CrossRef]
- Loris, R.; Hamelryck, T.; Bouckaert, J.; Wyns, L. Legume Lectin Structure. Biochim. Biophys. Acta 1998, 1383, 9–36. [Google Scholar] [CrossRef]
- El-Baba, T.J.; Clemmer, D.E. Solution Thermochemistry of Concanavalin A Tetramer Conformers Measured by Variable-Temperature ESI-IMS-MS. Int. J. Mass Spectrom. 2019, 443, 93–100. [Google Scholar] [CrossRef]
- Bouckaert, J.; Dewallef, Y.; Poortmans, F.; Wyns, L.; Loris, R. The Structural Features of Concanavalin A Governing Non-Proline Peptide Isomerization. J. Biol. Chem. 2000, 275, 19778–19787. [Google Scholar] [CrossRef]
- Turiák, L.; Sugár, S.; Ács, A.; Tóth, G.; Gömöry, Á.; Telekes, A.; Vékey, K.; Drahos, L. Site-Specific N-Glycosylation of HeLa Cell Glycoproteins. Sci. Rep. 2019, 9, 14822. [Google Scholar] [CrossRef]
- Nonis, S.G.; Haywood, J.; Schmidberger, J.W.; Mackie, E.R.R.; Soares da Costa, T.P.; Bond, C.S.; Mylne, J.S. Structural and Biochemical Analyses of Concanavalin A Circular Permutation by Jack Bean Asparaginyl Endopeptidase. Plant Cell 2021, 33, 2794–2811. [Google Scholar] [CrossRef] [PubMed]
- Horvat, T.; Deželjin, M.; Redžić, I.; Barišić, D.; Herak Bosnar, M.; Lauc, G.; Zoldoš, V. Reversibility of Membrane N-Glycome of HeLa Cells upon Treatment with Epigenetic Inhibitors. PLoS ONE 2013, 8, e54672. [Google Scholar] [CrossRef] [PubMed]
- Horvat, T.; Mužinić, A.; Barišić, D.; Bosnar, M.H.; Zoldoš, V. Epigenetic Modulation of the HeLa Cell Membrane N-Glycome. Biochim. Biophys. Acta 2012, 1820, 1412–1419. [Google Scholar] [CrossRef] [PubMed]
- Maupin, K.A.; Liden, D.; Haab, B.B. The Fine Specificity of Mannose-Binding and Galactose-Binding Lectins Revealed Using Outlier Motif Analysis of Glycan Array Data. Glycobiology 2012, 22, 160–169. [Google Scholar] [CrossRef]
- Li, L.; Guan, W.; Zhang, G.; Wu, Z.; Yu, H.; Chen, X.; Wang, P.G. Microarray Analyses of Closely Related Glycoforms Reveal Different Accessibilities of Glycan Determinants on N-Glycan Branches. Glycobiology 2020, 30, 334–345. [Google Scholar] [CrossRef]
- Srinivas, B.K.; Shivamadhu, M.C.; Jayarama, S. Musa acuminata Lectin Exerts Anti-Cancer Effects on HeLa and EAC Cells via Activation of Caspase and Inhibitions of Akt, Erk, and Jnk Pathway Expression and Suppresses the Neoangiogenesis in in-Vivo Models. Int. J. Biol. Macromol. 2021, 166, 1173–1187. [Google Scholar] [CrossRef]
- Ho, W.L.; Hsu, W.M.; Huang, M.C.; Kadomatsu, K.; Nakagawara, A. Protein Glycosylation in Cancers and Its Potential Therapeutic Applications in Neuroblastoma. J. Hematol. Oncol. 2016, 9, 100. [Google Scholar] [CrossRef]
- Shi, Z.; Chen, J.; Li, C.Y.; An, N.; Wang, Z.J.; Yang, S.L.; Huang, K.F.; Bao, J.K. Antitumor Effects of Concanavalin A and Sophora flavescens Lectin in Vitro and in Vivo. Acta Pharmacol. Sin. 2014, 35, 248–256. [Google Scholar] [CrossRef]
- Lei, H.Y.; Chang, C.P. Lectin of Concanavalin A as an Anti-Hepatoma Therapeutic Agent. J. Biomed. Sci. 2009, 16, 10. [Google Scholar] [CrossRef]
- Roy, B.; Pattanaik, A.K.; Das, J.; Bhutia, S.K.; Behera, B.; Singh, P.; Maiti, T.K. Role of PI3K/Akt/mTOR and MEK/ERK Pathway in Concanavalin A Induced Autophagy in HeLa Cells. Chem. Biol. Interact. 2014, 210, 96–102. [Google Scholar] [CrossRef]
- Osterne, V.J.S.; Silva-Filho, J.C.; Santiago, M.Q.; Pinto-Junior, V.R.; Almeida, A.C.; Barreto, A.A.G.C.; Wolin, I.A.V.; Nascimento, A.P.M.; Amorim, R.M.F.; Rocha, B.A.M.; et al. Structural Characterization of a Lectin from Canavalia virosa Seeds with Inflammatory and Cytotoxic Activities. Int. J. Biol. Macromol. 2017, 94, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, J.; Welgus, H.G.; Flizar, C.A.; Kalkkinen, N.; Helin, J. N-Glycan Structures of Matrix Metalloproteinase-1 Derived from Human Fibroblasts and from HT-1080 Fibrosarcoma Cells. Eur. J. Biochem. 1999, 259, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q. Mass Spectrometric Investigation of Biomedically Important Glycosylation. Ph.D. Thesis, Imperial College London, London, UK, 2015. [Google Scholar] [CrossRef]
- Shi, Y. Caspase Activation, Inhibition, and Reactivation: A Mechanistic View. Protein Sci. 2004, 13, 1979–1987. [Google Scholar] [CrossRef]
- Jin, Z.; El-Deiry, W.S. Overview of Cell Death Signaling Pathways. Cancer Biol. Ther. 2005, 4, 139–163. [Google Scholar] [CrossRef] [PubMed]
- Da Mota, M.F.; Benfica, P.L.; Batista, A.C.; Martins, F.S.; de Paula, J.R.; Valadares, M.C. Investigation of Ehrlich Ascites Tumor Cell Death Mechanisms Induced by Synadenium Umbellatum Pax. J. Ethnopharmacol. 2012, 139, 319–329. [Google Scholar] [CrossRef]
- Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death Differ. 2011, 18, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.S.; Wilkinson, S.; James, J.; Ryan, K.M.; Vousden, K.H. PUMA- and Bax-Induced Autophagy Contributes to Apoptosis. Cell Death Differ. 2009, 16, 1135–1145. [Google Scholar] [CrossRef]
- Lei, H.Y.; Chang, C.P. Induction of Autophagy by Concanavalin A and Its Application in Anti-Tumor Therapy. Autophagy 2007, 3, 402–404. [Google Scholar] [CrossRef]
- Pratt, J.; Roy, R.; Annabi, B. Concanavalin-A-Induced Autophagy Biomarkers Requires Membrane Type-1 Matrix Metalloproteinase Intracellular Signaling in Glioblastoma Cells. Glycobiology 2012, 22, 1245–1255. [Google Scholar] [CrossRef]
- Harper, N.; Hughes, M.; MacFarlane, M.; Cohen, G.M. Fas-Associated Death Domain Protein and Caspase-8 Are Not Recruited to the Tumor Necrosis Factor Receptor 1 Signaling Complex during Tumor Necrosis Factor-Induced Apoptosis. J. Biol. Chem. 2003, 278, 25534–25541. [Google Scholar] [CrossRef]
- Fukumori, T.; Takenaka, Y.; Oka, N.; Yoshii, T.; Hogan, V.; Inohara, H.; Kanayama, H.O.; Kim, H.R.C.; Raz, A. Endogenous Galectin-3 Determines the Routing of CD95 Apoptotic Signaling Pathways. Cancer Res. 2004, 64, 3376–3379. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Nguyen, A.H.T.; Brockhausen, I. Requirement of N-Glycosylation for the Secretion of Recombinant Extracellular Domain of Human Fas in HeLa Cells. Int. J. Biochem. Cell Biol. 2007, 39, 1625–1636. [Google Scholar] [CrossRef]
- Bantel, H.; Engels, I.H.; Voelter, W.; Schulze-Osthoff, K.; Wesselborg, S. Mistletoe Lectin Activates Caspase-8/FLICE Independently of Death Receptor Signaling and Enhances Anticancer Drug-Induced Apoptosis. Cancer Res. 1999, 59, 2083–2090. [Google Scholar] [PubMed]
- Wang, J.; Qi, X.; Wang, Q.; Wu, G. The Role and Therapeutic Significance of the Anoikis Pathway in Renal Clear Cell Carcinoma. Front. Oncol. 2022, 12, 1009984. [Google Scholar] [CrossRef] [PubMed]
- Saranya, J.; Shilpa, G.; Raghu, K.G.; Priya, S. Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P MAPK. Front. Pharmacol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Nicolau, A.; Teixeira, J.A.; Domingues, L. Cytotoxic Effects of Native and Recombinant Frutalin, a Plant Galactose-Binding Lectin, on HeLa Cervical Cancer Cells. J. Biomed. Biotechnol. 2011, 2011, 568932. [Google Scholar] [CrossRef]
- Bozzo, C.; Sabbatini, M.; Tiberio, R.; Piffanelli, V.; Santoro, C.; Cannas, M. Activation of Caspase-8 Triggers Anoikis in Human Neuroblastoma Cells. Neurosci. Res. 2006, 56, 145–153. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, B.; Zhang, Z.T.; Zhou, T.T.; Bian, H.J.; Min, M.W.; Liu, Y.H.; Chen, J.; Bao, J.-K. A Mannose-Binding Lectin from Sophora flavescens Induces Apoptosis in HeLa Cells. Phytomedicine 2008, 15, 867–875. [Google Scholar] [CrossRef]
- Benoist, H.; Culerrier, R.; Poiroux, G.; Ségui, B.; Jauneau, A.; Van Damme, E.J.M.; Peumans, W.J.; Barre, A.; Rougé, P. Two Structurally Identical Mannose-Specific Jacalin-Related Lectins Display Different Effects on Human T Lymphocyte Activation and Cell Death. J. Leukoc. Biol. 2009, 86, 103–114. [Google Scholar] [CrossRef]
- Chang, C.P.; Yang, M.C.; Liu, H.S.; Lin, Y.S.; Lei, H.Y. Concanavalin A Induces Autophagy in Hepatoma Cells and Has a Therapeutic Effect in a Murine in Situ Hepatoma Model. Hepatology 2007, 45, 286–296. [Google Scholar] [CrossRef]
- Falconer, R.A.; Loadman, P.M. Membrane-Type Matrix Metalloproteinases: Expression, Roles in Metastatic Prostate Cancer Progression and Opportunities for Drug Targeting. J. Cancer Metastasis Treat. 2017, 3, 315. [Google Scholar] [CrossRef]
- Zhao, R.; Guerrah, A.; Tang, H.; Zhao, Z.J. Cell Surface Glycoprotein PZR Is a Major Mediator of Concanavalin A-Induced Cell Signaling. J. Biol. Chem. 2002, 277, 7882–7888. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, T.; Hu, Y.; Zhang, L.; Zheng, J.; Wei, X. The Molecular Mechanism of Acute Liver Injury and Inflammatory Response Induced by Concanavalin A. Mol. Biomed. 2021, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xie, X.J.; Ye, Y.F.; Zhou, L.; Xie, H.Y.; Xie, Q.F.; Tian, J.; Zheng, S.S. Kupffer Cells Contribute to Concanavalin A-Induced Hepatic Injury through a Th1 but Not Th17 Type Response-Dependent Pathway in Mice. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 171–178. [Google Scholar] [CrossRef]
- Samanta, A.; Stuart, M.C.A.; Ravoo, B.J. Photoresponsive Capture and Release of Lectins in Multilamellar Complexes. J. Am. Chem. Soc. 2012, 134, 19909–19914. [Google Scholar] [CrossRef]
- Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Lectin-Conjugated pH-Responsive Mesoporous Silica Nanoparticles for Targeted Bone Cancer Treatment. Acta Biomater. 2018, 65, 393–404. [Google Scholar] [CrossRef]
- Gavrovic-Jankulovic, M.; Prodanovic, R. Drug Delivery: Plant Lectins as Bioadhesive Drug Delivery Systems. J. Biomater. Nanobiotechnol. 2011, 2, 614–621. [Google Scholar] [CrossRef]
- Islam, M.K.; Khan, M.; Gidwani, K.; Witwer, K.W.; Lamminmäki, U.; Leivo, J. Lectins as Potential Tools for Cancer Biomarker Discovery from Extracellular Vesicles. Biomark. Res. 2023, 11, 85. [Google Scholar] [CrossRef]
- Hashim, O.H.; Jayapalan, J.J.; Lee, C.S. Lectins: An Effective Tool for Screening of Potential Cancer Biomarkers. PeerJ 2017, 5, e3784. [Google Scholar] [CrossRef]
- McDowell, C.T.; Klamer, Z.; Hall, J.; West, C.A.; Wisniewski, L.; Powers, T.W.; Angel, P.M.; Mehta, A.S.; Lewin, D.N.; Haab, B.B.; et al. Imaging Mass Spectrometry and Lectin Analysis of N-Linked Glycans in Carbohydrate Antigen-Defined Pancreatic Cancer Tissues. Mol. Cell. Proteom. 2021, 20, 100012. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.V.; Mann, M. In-Gel Digestion for Mass Spectrometric Characterization of Proteins and Proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef] [PubMed]
- Ferrige, A.G.; Seddon, M.J.; Green, B.N.; Jarvis, S.A.; Skilling, J.; Staunton, J. Disentangling Electrospray Spectra with Maximum Entropy. Rapid Commun. Mass Spectrom. 1992, 6, 707–711. [Google Scholar] [CrossRef]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating Masking of Template Sequence with Primer Design Software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef]
- Fu, Z.Y.; Song, J.C.; Jameson, P.E. A Rapid and Cost Effective Protocol for Plant Genomic DNA Isolation Using Regenerated Silica Columns in Combination with CTAB Extraction. J. Integr. Agric. 2017, 16, 1682–1688. [Google Scholar] [CrossRef]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-Calling of Automated Sequencer Traces Using Phred. I. Accuracy Assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.W.; McCoy, A.; et al. Overview of the CCP4 Suite and Current Developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef]
- Vagin, A.; Teplyakov, A. Molecular Replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 22–25. [Google Scholar] [CrossRef]
- Adams, P.D.; Afonine, P.V.; Bunkóczi, G.; Chen, V.B.; Davis, I.W.; Echols, N.; Headd, J.J.; Hung, L.W.; Kapral, G.J.; Grosse-Kunstleve, R.W.; et al. PHENIX: A Comprehensive Python-Based System for Macromolecular Structure Solution. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 213–221. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Read, R.J.; Adams, P.D.; Arendall, W.B., 3rd; Brunger, A.T.; Emsley, P.; Joosten, R.P.; Kleywegt, G.J.; Krissinel, E.B.; Lütteke, T.; Otwinowski, Z.; et al. A New Generation of Crystallographic Validation Tools for the Protein Data Bank. Structure 2011, 19, 1395–1412. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A Program to Generate Schematic Diagrams of Protein-Ligand Interactions. Protein Eng. 1995, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.H.B.; Dar, A.C.; Schlessinger, A. PyVOL: A PyMOL Plugin for Visualization, Comparison, and Volume Calculation of Drug-Binding Sites. bioRxiv 2019. [Google Scholar] [CrossRef]
- Brzezicka, K.; Echeverria, B.; Serna, S.; van Diepen, A.; Hokke, C.H.; Reichardt, N.C. Synthesis and Microarray-Assisted Binding Studies of Core Xylose and Fucose Containing N-Glycans. ACS Chem. Biol. 2015, 10, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved Protein-Ligand Docking Using GOLD. Proteins 2003, 52, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef]
- Eldridge, M.D.; Murray, C.W.; Auton, T.R.; Paolini, G.V.; Mee, R.P. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes. J. Comput. Aided Mol. Des. 1997, 11, 425–445. [Google Scholar] [CrossRef]
- Oparka, M.; Walczak, J.; Malinska, D.; van Oppen, L.M.P.E.; Szczepanowska, J.; Koopman, W.J.H.; Wieckowski, M.R. Quantifying ROS Levels Using CM-HDCFDA and HyPer. Methods 2016, 109, 3–11. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative Expression Software Tool (REST) for Group-Wise Comparison and Statistical Analysis of Relative Expression Results in Real-Time PCR. Nucleic Acids Res. 2002, 30, e36. [Google Scholar] [CrossRef]
PDB ID 8SZO | |
---|---|
Parameters | Values |
Data collection | |
Space group | I222 |
Unit cell parameters | 61.49 Å; 84.44 Å; 89.07 Å |
90.00°; 90.00°; 90.00° | |
Number of reflections | 40,674 (5399) d |
Number of unique reflections | 8301 (1200) d |
Molecules per asymmetric unit | 1 |
Resolution limits | 27.48–2.50 (2.64–2.50) d |
Rmerge a (%) | 11.2 (43.3) d |
Completeness (%) | 99.6 (99.7) d |
Multiplicity | 4.9 (4.5) d |
Average I/6(I) | 8.9 (3.0) d |
Wilson B-factor (Å2) | 43.9 |
Molecular replacement | |
wRfactor | 0.431 |
Score | 0.6826 |
Refinement | |
Resolution range | 27.48–2.50 |
Rfactor b (%) | 19.80 (25.28) d |
Rfree c (%) | 26.70 (35.84) d |
Number of reflections | 8295 (808) d |
Reflections used in Rfree | 408 (34) d |
Number of residues in asymmetric unit | 231 |
Number of water molecules | 88 |
Variations of RMS Optimal Values | |
Bond length (Å) | 0.009 |
Bond angles (degree) | 1.055 |
Temperature factors | |
Average B value for whole protein chain | 46.0 |
Ligand | 50.3 |
Solvent | 49.9 |
Rotamers and Ramachandran Plot | |
Rotamer outliers (%) | 0.50 |
Residues in most favored regions (%) | 96.51 |
Residues in additional allowed regions (%) | 3.49 |
Residues in generously allowed regions (%) | 0 |
Cvill Residues and Atoms | Ligand Atom | Distance (Å) |
---|---|---|
Polar interactions | ||
Asn14/ND2 | α-mm/O4 | 2.50 |
Gly98/N | α-mm/O6 | 3.39 |
Leu99/N | α-mm/O5 | 3.28 |
Asp208/OD1 | α-mm/O6 | 3.39 |
Asp208/OD1 | α-mm/O4 | 2.85 |
Asp208/OD2 | α-mm/O6 | 2.39 |
Met228/N | α-mm/O3 | 2.78 |
Van der Waals interactions | ||
Gly98/CA | α-mm/O6 | 3.25 |
Ala207/CB | α-mm/O6 | 3.21 |
Asp208/CG | α-mm/O6 | 3.20 |
Asp208/OD2 | α-mm/C4 | 3.40 |
Gly227/CA | α-mm/O3 | 3.33 |
Met228/CG | α-mm/O3 | 3.37 |
Met228/CE | α-mm/C3 | 3.10 |
Met228/CE | α-mm/O3 | 2.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lossio, C.F.; Osterne, V.J.S.; Pinto-Junior, V.R.; Chen, S.; Oliveira, M.V.; Verduijn, J.; Verbeke, I.; Serna, S.; Reichardt, N.C.; Skirtach, A.; et al. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. Int. J. Mol. Sci. 2023, 24, 15966. https://doi.org/10.3390/ijms242115966
Lossio CF, Osterne VJS, Pinto-Junior VR, Chen S, Oliveira MV, Verduijn J, Verbeke I, Serna S, Reichardt NC, Skirtach A, et al. Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. International Journal of Molecular Sciences. 2023; 24(21):15966. https://doi.org/10.3390/ijms242115966
Chicago/Turabian StyleLossio, Claudia F., Vinicius J. S. Osterne, Vanir R. Pinto-Junior, Simin Chen, Messias V. Oliveira, Joost Verduijn, Isabel Verbeke, Sonia Serna, Niels C. Reichardt, Andre Skirtach, and et al. 2023. "Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds" International Journal of Molecular Sciences 24, no. 21: 15966. https://doi.org/10.3390/ijms242115966
APA StyleLossio, C. F., Osterne, V. J. S., Pinto-Junior, V. R., Chen, S., Oliveira, M. V., Verduijn, J., Verbeke, I., Serna, S., Reichardt, N. C., Skirtach, A., Cavada, B. S., Van Damme, E. J. M., & Nascimento, K. S. (2023). Structural Analysis and Characterization of an Antiproliferative Lectin from Canavalia villosa Seeds. International Journal of Molecular Sciences, 24(21), 15966. https://doi.org/10.3390/ijms242115966