Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding
Abstract
:1. Introduction
2. Results
2.1. Generation of PB1509-NILs Carrying BB and Blast Resistance Genes
2.2. Background Analysis of NILs
2.3. Agronomic, Grain and Cooking Quality Parameters of NILs
2.4. Multi-Location Evaluation
2.5. Combining Genes Governing Multiple Disease Resistance
2.6. Screening for BB and Blast Resistance
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Breeding Strategy
4.3. DNA Extraction and PCR
4.4. Foreground Selection
4.5. Recurrent Parent Genome Recovery Using SSR and SNP Markers
4.6. Screening for Disease Resistance
4.7. Multi-Environment Agro-Morphological Evaluation of Developed NILs
4.8. Grain and Cooking Quality Evaluation of Developed NILs
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- APEDA. India Export of Agro Food Products—Basmati Rice. Available online: https://agriexchange.apeda.gov.in/indexp/Product_description_32headChart.aspx?gcode=0601 (accessed on 26 October 2022).
- Ellur, R.K.; Khanna, A.; Yadav, A.; Pathania, S.; Rajashekara, H.; Singh, V.K.; Gopala Krishnan, S.; Bhowmick, P.K.; Nagarajan, M.; Vinod, K.K.; et al. Improvement of Basmati Rice Varieties for Resistance to Blast and Bacterial Blight Diseases Using Marker Assisted Backcross Breeding. Plant. Sci. 2016, 242, 330–341. [Google Scholar] [CrossRef]
- Khanna, A.; Sharma, V.; Ellur, R.K.; Shikari, A.B.; Gopala Krishnan, S.; Singh, U.D.; Prakash, G.; Sharma, T.R.; Rathour, R.; Variar, M.; et al. Development and Evaluation of Near-Isogenic Lines for Major Blast Resistance Gene(s) in Basmati Rice. Theor. Appl. Genet. 2015, 128, 1243–1259. [Google Scholar] [CrossRef]
- Singh, A.; Krishnan, S.; Nagarajan, M.; Kurungara, V.; Bhowmick, P.; Atwal, S.; Seth, R.; Chopra, N.; Chander, S.; Singh, V.; et al. Variety Pusa Basmati 1509. Indian J. Genet. Plant Breed. 2014, 74, 123. [Google Scholar]
- Kim, S.-M.; Reinke, R.F. A Novel Resistance Gene for Bacterial Blight in Rice, Xa43(t) Identified by GWAS, Confirmed by QTL Mapping Using a Bi-Parental Population. PLoS ONE 2019, 14, e0211775. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Yang, J.; Chen, B.; Wang, W.; Su, J.; Feng, A.; Zeng, L.; Zhu, X. Identification of the Novel Bacterial Blight Resistance Gene Xa46(t) by Mapping and Expression Analysis of the Rice Mutant H120. Sci. Rep. 2020, 10, 12642. [Google Scholar] [CrossRef]
- Neelam, K.; Mahajan, R.; Gupta, V.; Bhatia, D.; Gill, B.K.; Komal, R.; Lore, J.S.; Mangat, G.S.; Singh, K. High-Resolution Genetic Mapping of a Novel Bacterial Blight Resistance Gene Xa-45(t) Identified from Oryza Glaberrima and Transferred to Oryza sativa. Theor. Appl. Genet. 2020, 133, 689–705. [Google Scholar] [CrossRef]
- Iyer, A.S.; McCouch, S.R. The Rice Bacterial Blight Resistance Gene Xa5 Encodes a Novel Form of Disease Resistance. Mol. Plant Microbe Interact. 2004, 17, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Fu, B.; Yang, H.; Xu, C.; Li, Z.; Sanchez, A.; Park, Y.J.; Bennetzen, J.L.; Zhang, Q.; Wang, S. Targeting xa13, a Recessive Gene for Bacterial Blight Resistance in Rice. Theor. Appl. Genet. 2006, 112, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhuo, D.-L.; Zhang, F.; Huang, L.-Y.; Wang, W.-S.; Xu, J.-L.; Vera Cruz, C.; Li, Z.-K.; Zhou, Y.-L. Xa39, a Novel Dominant Gene Conferring Broad-Spectrum Resistance to Xanthomonas Oryzae Pv. Oryzae in Rice. Plant Pathol. 2015, 64, 568–575. [Google Scholar] [CrossRef]
- Liang, L.Q.; Wang, C.Y.; Zeng, L.X.; Wang, W.J.; Feng, J.Q.; Chen, B.; Su, J.; Chen, S.; Shang, F.D.; Zhu, X.Y.; et al. The Rice Cultivar Baixiangzhan Harbours a Recessive Gene Xa42(t) Determining Resistance against Xanthomonas oryzae pv. oryzae. Plant Breed. 2017, 136, 603–609. [Google Scholar] [CrossRef]
- Kim, S.-M. Identification of Novel Recessive Gene Xa44(t) Conferring Resistance to Bacterial Blight Races in Rice by QTL Linkage Analysis Using an SNP Chip. Theor. Appl. Genet. 2018, 131, 2733–2743. [Google Scholar] [CrossRef]
- Ellur, R.K.; Khanna, A.; Bhowmick, P.K.; Vinod, K.K.; Nagarajan, M.; Mondal, K.K.; Singh, N.K.; Singh, K.; Prabhu, K.V.; Singh, A.K. Marker-Aided Incorporation of Xa38, a Novel Bacterial Blight Resistance Gene, in PB1121 and Comparison of Its Resistance Spectrum with xa13 + Xa21. Sci. Rep. 2016, 6, 29188. [Google Scholar] [CrossRef]
- Hsu, Y.-C.; Chiu, C.-H.; Yap, R.; Tseng, Y.-C.; Wu, Y.-P. Pyramiding Bacterial Blight Resistance Genes in Tainung82 for Broad-Spectrum Resistance Using Marker-Assisted Selection. Int. J. Mol. Sci. 2020, 21, 1281. [Google Scholar] [CrossRef]
- Zhang, G.; Angeles, E.R.; Abenes, M.L.P.; Khush, G.S.; Huang, N. RAPD and RFLP Mapping of the Bacterial Blight Resistance Gene Xa-13 in Rice. Theor. Appl. Genet. 1996, 93, 65–70. [Google Scholar] [CrossRef]
- Li, Z.K.; Sanchez, A.; Angeles, E.; Singh, S.; Domingo, J.; Huang, N.; Khush, G.S. Are the Dominant and Recessive Plant Disease Resistance Genes Similar? A Case Study of Rice R Genes and Xanthomonas Oryzae Pv. Oryzae Races. Genetics 2001, 159, 757–765. [Google Scholar] [CrossRef]
- Chu, Z.; Ouyang, Y.; Zhang, J.; Yang, H.; Wang, S. Genome-Wide Analysis of Defense-Responsive Genes in Bacterial Blight Resistance of Rice Mediated by the Recessive R Gene Xa13. Mol. Genet. Genomics 2004, 271, 111–120. [Google Scholar] [CrossRef]
- Ronald, P.C.; Albano, B.; Tabien, R.; Abenes, L.; Wu, K.; McCouch, S.; Tanksley, S.D. Genetic and Physical Analysis of the Rice Bacterial Blight Disease Resistance Locus, Xa21. Mol. Gen. Genet. 1992, 236, 113–120. [Google Scholar] [CrossRef]
- Cheema, K.K.; Grewal, N.K.; Vikal, Y.; Sharma, R.; Lore, J.S.; Das, A.; Bhatia, D.; Mahajan, R.; Gupta, V.; Bharaj, T.S.; et al. A Novel Bacterial Blight Resistance Gene from Oryza Nivara Mapped to 38 Kb Region on Chromosome 4L and Transferred to Oryza sativa L. Genet. Res. 2008, 90, 397–407. [Google Scholar] [CrossRef]
- Bhasin, H.; Bhatia, D.; Raghuvanshi, S.; Lore, J.S.; Sahi, G.K.; Kaur, B.; Vikal, Y.; Singh, K. New PCR-Based Sequence-Tagged Site Marker for Bacterial Blight Resistance Gene Xa38 of Rice. Mol. Breed. 2012, 30, 607–611. [Google Scholar] [CrossRef]
- Singh, A.; Krishnan, S.; Ellur, R.K.; Bhowmick, P.K.; Nagarajan, M.; Vinod, K.K.; Haritha, B.; Prabhu, K.V.; Khanna, A.; Yadav, A.; et al. Notification of Basmati Rice Variety, Pusa Basmati 1728. Indian J. Genet. Plant Breed. 2017, 77, 584. [Google Scholar]
- Singh, A.K.; Ellur, R.K.; Krishnan, S.; Bhowmick, P.K.; Nagarajan, M.; Vinod, K.K.; Haritha, B.; Singh, V.K.; Khanna, A.; Pathania, S.; et al. Basmati Rice Variety Pusa Basmati 1718. Indian J. Genet. Plant Breed. 2018, 78, 151. [Google Scholar]
- Yugander, A.; Sundaram, R.M.; Singh, K.; Ladhalakshmi, D.; Rao, L.V.S.; Madhav, M.S.; Badri, J.; Prasad, M.S.; Laha, G.S. Incorporation of the Novel Bacterial Blight Resistance Gene Xa38 into the Genetic Background of Elite Rice Variety Improved Samba Mahsuri. PLoS ONE 2018, 13, e0198260. [Google Scholar] [CrossRef] [PubMed]
- Agbowuro, G.; Michael, A.; Olamiriki, E.; Awoyemi, S. Rice Blast Disease (Magnaporthe oryzae): A Menace to Rice Production and Humanity. Int. J. Pathog. Res. 2020, 4, 32–39. [Google Scholar] [CrossRef]
- Sharma, T.; Rai, A.; Gupta, S.; Vijayan, J.; Devanna, B.N.; Ray, S. Rice Blast Management Through Host-Plant Resistance: Retrospect and Prospects. Agric. Res. 2012, 1, 37–52. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Yuan, M. An Update on Molecular Mechanism of Disease Resistance Genes and Their Application for Genetic Improvement of Rice. Mol. Breed. 2019, 39, 154. [Google Scholar] [CrossRef]
- Singh, A.K.; Gopalakrishnan, S.; Singh, V.P.; Prabhu, K.V.; Mohapatra, T.; Singh, N.K.; Sharma, T.R.; Nagarajan, M.; Vinod, K.K.; Singh, D.; et al. Marker Assisted Selection: A Paradigm Shift in Basmati Breeding. Indian J. Genet. Plant Breed. 2011, 71, 120. [Google Scholar]
- Qu, S.; Liu, G.; Zhou, B.; Bellizzi, M.; Zeng, L.; Dai, L.; Han, B.; Wang, G.-L. The Broad-Spectrum Blast Resistance Gene Pi9 Encodes a Nucleotide-Binding Site-Leucine-Rich Repeat Protein and Is a Member of a Multigene Family in Rice. Genetics 2006, 172, 1901–1914. [Google Scholar] [CrossRef]
- Roychowdhury, M.; Jia, Y.; Jia, M.H.; Fjellstrom, R.; Cartwright, R.D. Identification of the Rice Blast Resistance Gene Pib in the National Small Grains Collection. Phytopathology 2012, 102, 700–706. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Z.; Fjellstrom, R.G.; Moldenhauer, K.A.K.; Azam, M.A.; Correll, J.; Lee, F.N.; Xia, Y.; Rutger, J.N. Rice Pi-Ta Gene Confers Resistance to the Major Pathotypes of the Rice Blast Fungus in the United States. Phytopathology® 2004, 94, 296–301. [Google Scholar] [CrossRef]
- Bryan, G.T.; Wu, K.-S.; Farrall, L.; Jia, Y.; Hershey, H.P.; McAdams, S.A.; Faulk, K.N.; Donaldson, G.K.; Tarchini, R.; Valent, B. TA Single Amino Acid Difference Distinguishes Resistant and Susceptible Alleles of the Rice Blast Resistance Gene Pi-Ta. Plant Cell 2000, 12, 2033–2045. [Google Scholar] [CrossRef]
- Jia, Y.; Bryan, G.T.; Farrall, L.; Valent, B. Natural Variation at the Pi-Ta Rice Blast Resistance Locus. Phytopathology® 2003, 93, 1452–1459. [Google Scholar] [CrossRef]
- Hittalmani, S.; Parco, A.; Mew, T.V.; Zeigler, R.S.; Huang, N. Fine Mapping and DNA Marker-Assisted Pyramiding of the Three Major Genes for Blast Resistance in Rice. Theor. Appl. Genet. 2000, 100, 1121–1128. [Google Scholar] [CrossRef]
- Khanna, A.; Sharma, V.; Ellur, R.; Shikari, A.; Krishnan, S.; Singh, U.; Ganesan, P.; Sharma, T.; Rathour, R.; Variar, M.; et al. Marker Assisted Pyramiding of Major Blast Resistance Genes Pi9 and Pita in the Genetic Background of an Elite Basmati Rice Variety, Pusa Basmati 1. Indian J. Genet. Plant Breed. 2015, 75, 417. [Google Scholar] [CrossRef]
- Ramalingam, J.; Raveendra, C.; Savitha, P.; Vidya, V.; Chaithra, T.L.; Velprabakaran, S.; Saraswathi, R.; Ramanathan, A.; Arumugam Pillai, M.P.; Arumugachamy, S.; et al. Gene Pyramiding for Achieving Enhanced Resistance to Bacterial Blight, Blast, and Sheath Blight Diseases in Rice. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Luu, D.D.; Rim, E.Y.; Shigenaga, A.; Teixeira de Araujo, A.; Chern, M.; Jain, R.; Ruan, R.; Joe, A.; Stewart, V.; et al. Plant Immunity: Rice XA21-Mediated Resistance to Bacterial Infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2121568119. [Google Scholar] [CrossRef]
- Shanti, M.L.; Shenoy, V.V.; Devi, G.L.; Kumar, V.M.; Premalatha, P.; Kumar, G.N.; Shashidhar, H.E.; Zehr, U.B.; Freeman, W.H. Marker-Assisted Breeding for Resistance to Bacterial Leaf Blight in Popular Cultivar and Parental Lines of Hybrid Rice. J. Plant Pathol. 2010, 92, 495–501. [Google Scholar]
- Raina, M.; Salgotra, R.K.; Pandotra, P.; Rathour, R.; Singh, K. Genetic Enhancement for Semi-Dwarf and Bacterial Blight Resistance with Enhanced Grain Quality Characteristics in Traditional Basmati Rice through Marker-Assisted Selection. Comptes Rendus Biol. 2019, 342, 142–153. [Google Scholar] [CrossRef]
- Mishra, D.; Vishnupriya, M.R.; Anil, M.G.; Konda, K.; Raj, Y.; Sonti, R.V. Pathotype and Genetic Diversity amongst Indian Isolates of Xanthomonas oryzae pv. oryzae. PLoS ONE 2013, 8, e81996. [Google Scholar] [CrossRef]
- Babar, A.D.; Zaka, A.; Naveed, S.A.; Ahmad, N.; Aslam, K.; Asif, M.; Maqsood, U.; Vera Cruz, C.M.; Arif, M. Development of Basmati Lines by the Introgression of Three Bacterial Blight Resistant Genes through Marker-Assisted Breeding. Euphytica 2022, 218, 59. [Google Scholar] [CrossRef]
- Samal, P.; Pote, T.D.; Krishnan, S.G.; Singh, A.K.; Salgotra, R.K.; Rathour, R. Integrating Marker-Assisted Selection and Doubled Haploidy for Rapid Introgression of Semi-Dwarfing and Blast Resistance Genes into a Basmati Rice Variety ‘Ranbir Basmati’. Euphytica 2019, 215, 149. [Google Scholar] [CrossRef]
- Dixit, S.; Singh, U.M.; Singh, A.K.; Alam, S.; Venkateshwarlu, C.; Nachimuthu, V.V.; Yadav, S.; Abbai, R.; Selvaraj, R.; Devi, M.N.; et al. Marker Assisted Forward Breeding to Combine Multiple Biotic-Abiotic Stress Resistance/Tolerance in Rice. Rice 2020, 13, 29. [Google Scholar] [CrossRef]
- Singh, U.M.; Dixit, S.; Alam, S.; Yadav, S.; Prasanth, V.V.; Singh, A.K.; Venkateshwarlu, C.; Abbai, R.; Vipparla, A.K.; Badri, J.; et al. Marker-Assisted Forward Breeding to Develop a Drought-, Bacterial-Leaf-Blight-, and Blast-Resistant Rice Cultivar. Plant Genome 2022, 15, e20170. [Google Scholar] [CrossRef]
- Sagar, V.; Krishnan, S.G.; Dwivedi, P.; Mondal, K.K.; Prakash, G.; Nagarajan, M.; Singh, A.K. Development of Basmati Rice Genotypes with Resistance to Both Bacterial Blight and Blast Diseases Using Marker Assisted Restricted Backcross Breeding. Indian J. Genet. Plant Breed. 2017, 78, 36. [Google Scholar] [CrossRef]
- Reinke, R.; Kim, S.-M.; Kim, B.-K. Developing Japonica Rice Introgression Lines with Multiple Resistance Genes for Brown Planthopper, Bacterial Blight, Rice Blast, and Rice Stripe Virus Using Molecular Breeding. Mol. Genet Genom. 2018, 293, 1565–1575. [Google Scholar] [CrossRef]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Kolapo, K.; Musa, I.; Halidu, J.; Muhammad, I.; Ahmed, M. Marker-Assisted Introgression of Multiple Resistance Genes Confers Broad Spectrum Resistance against Bacterial Leaf Blight and Blast Diseases in PUTRA-1 Rice Variety. Agronomy 2020, 10, 42. [Google Scholar] [CrossRef]
- Biswas, P.L.; Nath, U.K.; Ghosal, S.; Goswami, G.; Uddin, M.S.; Ali, O.M.; Latef, A.A.H.A.; Laing, A.M.; Gao, Y.-M.; Hossain, A. Introgression of Bacterial Blight Resistance Genes in the Rice Cultivar Ciherang: Response against Xanthomonas Oryzae Pv. Oryzae in the F6 Generation. Plants 2021, 10, 2048. [Google Scholar] [CrossRef] [PubMed]
- Miah, G.; Rafii, M.Y.; Ismail, M.R.; Puteh, A.B.; Rahim, H.A.; Islam, K.N.; Latif, M.A. A Review of Microsatellite Markers and Their Applications in Rice Breeding Programs to Improve Blast Disease Resistance. Int. J. Mol. Sci. 2013, 14, 22499–22528. [Google Scholar] [CrossRef]
- Khan, G.H.; Shikari, A.B.; Vaishnavi, R.; Najeeb, S.; Padder, B.A.; Bhat, Z.A.; Parray, G.A.; Bhat, M.A.; Kumar, R.; Singh, N.K. Marker-Assisted Introgression of Three Dominant Blast Resistance Genes into an Aromatic Rice Cultivar Mushk Budji. Sci. Rep. 2018, 8, 4091. [Google Scholar] [CrossRef] [PubMed]
- Esan, V.I.; Oke, G.O.; Ogunbode, T.O.; Obisesan, I.A. AMMI and GGE Biplot Analyses of Bambara Groundnut [Vigna Subterranea (L.) Verdc.] for Agronomic Performances under Three Environmental Conditions. Front. Plant Sci. 2023, 13. [Google Scholar] [CrossRef]
- Okello-Anyanga, W.; Rubaihayo, P.; Gibson, P.; Okori, P. Genotype by Environment Interaction in Sesame (Sesamum Indicum L.) Cultivars in Uganda. Afr. J. Plant Sci. 2016, 10, 189–202. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Ghazvini, H.; Jasemi, S.; Mohammadi, S.; Razavi, S.; Chaichi, M.; Kalkhoran, M.; Monirifar, H.; Tajali, H.; Fathihafshejani, A.; et al. Selection of High-Yielding and Stable Genotypes of Barley for the Cold Climate in Iran. Plants 2023, 12, 2410. [Google Scholar] [CrossRef]
- Jamaloddin, M.; Durga Rani, C.V.; Swathi, G.; Anuradha, C.; Vanisri, S.; Rajan, C.P.D.; Krishnam Raju, S.; Bhuvaneshwari, V.; Jagadeeswar, R.; Laha, G.S.; et al. Marker Assisted Gene Pyramiding (MAGP) for Bacterial Blight and Blast Resistance into Mega Rice Variety “Tellahamsa”. PLoS ONE 2020, 15, e0234088. [Google Scholar] [CrossRef]
- Murray, M.G.; Thompson, W.F. Rapid Isolation of High Molecular Weight Plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef]
- Daware, A.; Malik, A.; Srivastava, R.; Das, D.; Ellur, R.K.; Singh, A.K.; Tyagi, A.K.; Parida, S.K. Rice Pan-Genome Array (RPGA): An Efficient Genotyping Solution for Pan-Genome-Based Accelerated Crop Improvement in Rice. Plant J. 2022, 113, 26–46. [Google Scholar] [CrossRef]
- Kauffman, H.E.; Reddy, A.P.K.; Hsieh, S.P.Y.; Merca, S.D. Improved Technique for Evaluating Resistance of Rice Varieties to Xanthomonas Oryzae. Plant Dis. Rep. 1973, 57, 537–541. [Google Scholar]
- Mondal, K.K.; Meena, B.R.; Junaid, A.; Verma, G.; Mani, C.; Majumder, D.; Khicher, M.; Kumar, S.; Banik, S. Pathotyping and Genetic Screening of Type III Effectors in Indian Strains of Xanthomonas Oryzae Pv. Oryzae Causing Bacterial Leaf Blight of Rice. Physiol. Mol. Plant Pathol. 2014, 86, 98–106. [Google Scholar] [CrossRef]
- Bonman, J.M. Physiologic Specialization of Pyricularia Oryzae in the Philippines. Plant Dis. 1986, 70, 767. [Google Scholar] [CrossRef]
- Star, I. CropStat. In Biometrics and Breeding Informatics; PBGB Division, International Rice Research Institute: Los Baños, CA, USA, 2014. [Google Scholar]
- Olivoto, T.; Lúcio, A.D. Metan: An R Package for Multi-Environment Trial Analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
Genotype | RPG Recovery (%) | ||
---|---|---|---|
BC1F1 | BC2F1 | BC3F1 | |
Pusa 3037 | 64.8–84.2 | 83.3–93.3 | 86.1–99.6 |
Pusa 3054 | 73.8–88.6 | 91.7–94.4 | 91.3–99.4 |
Pusa 3060 | 70.7–81.0 | 81.8–86.4 | 91.7–98.3 |
Pusa 3066 | 57.3–87.5 | 86.5–91.9 | 92.4–97.8 |
NIL | Genotype | Genes | DF | PH (cm) | NT (cm) | PL (cm) | FG | SF (%) | TW (g) | Similarity (%) |
---|---|---|---|---|---|---|---|---|---|---|
G1 | Pusa 3060-3-55-17-157-4-124-1 | Pi9 + Pib | 83.6 | 102.4 * | 13.3 | 28.2 | 64.0 * | 75.8 * | 30.2 | 96.83 |
G2 | Pusa 3060-3-55-17-157-4-124-6 | Pi9 + Pib | 84.6 | 104.4 * | 13.3 | 28.4 | 62.3 * | 79.3 | 33.0 | 96.13 |
G3 | Pusa 3060-3-55-17-157-4-138-1 | Pi9 + Pib | 83.3 * | 101.1 | 12.4 | 29.4 | 50.9 * | 61.9 * | 32.3 | 96.65 |
G4 | Pusa 3060-3-55-17-157-4-138-2 | Pi9 + Pib | 83.0 * | 102.6 * | 13 | 28.9 | 64.2 * | 70.3 * | 33.3 * | 96.60 |
G5 | Pusa 3060-3-55-17-157-4-138-3 | Pi9 + Pib | 83.6 | 98.2 | 13.1 | 29 | 60.5* | 72.8* | 32.3 | 97.38 |
G6 | Pusa 3066-4-56-20-158-7-170-2 | Pita | 85.6 | 97.8 | 13.2 | 29.4 | 71.8 | 78.9 | 31.8 | 97.69 |
G7 | Pusa 3066-4-56-20-158-7-171-4 | Pita | 86.3 | 102.4 * | 12.7 | 30.3 * | 77.6 | 83.2 | 32.6 | 96.87 |
G8 | Pusa 3066-4-56-20-158-7-172-1 | Pita | 85.0 | 101.6 | 13.1 | 28.7 | 75.3 | 80.1 | 29.8 | 97.35 |
G9 | Pusa 3066-4-56-20-158-7-172-2 | Pita | 84.6 | 103.4 * | 12.4 | 29.1 | 78.2 | 82.6 | 31.4 | 97.23 |
G10 | Pusa 3066-4-56-20-159-8-174-1 | Pita | 81.0 * | 98.9 | 11.6 | 28.0 * | 66.9 * | 74.7 * | 30.6 | 86.38 |
G11 | Pusa 3037-1-44-3-164-20-249-2 | xa13 + Xa21 | 85.6 | 100.8 | 11.7 | 28.1 | 81.2 | 88.1 | 31.6 | 97.79 |
G12 | Pusa 3037-1-44-3-164-21-255-1 | xa13 + Xa21 | 84.3 | 97.5 | 13.5 | 27.9 | 80.9 | 89.3 | 31.3 | 98.25 |
G13 | Pusa 3037-1-44-3-164-21-256-4 | xa13 + Xa21 | 85.0 | 97.1 | 13 | 28.3 | 70.6 * | 81.9 | 30.5 | - |
G14 | Pusa 3037-1-45-5-165-22-259-4 | xa13 + Xa21 | 84.6 | 98.2 | 13.0 | 27.4 * | 71.8 | 86.8 | 32.5 | - |
G15 | Pusa 3054-2-47-7-166-24-261-1 | Xa38 | 84.3 | 102.6 * | 13.0 | 29 | 74.8 | 85.4 | 31.7 | 98.77 |
G16 | Pusa 3054-2-47-7-166-24-261-2 | Xa38 | 84.0 | 101.3 | 12.8 | 28.6 | 79.2 | 88.7 | 33.4 * | 98.92 |
G17 | Pusa 3054-2-47-7-166-24-261-3 | Xa38 | 83.0 | 100.7 | 12.3 | 28.2 | 83.0 | 84.3 | 31.2 | 98.90 |
G18 | Pusa 3054-2-47-7-166-24-262-2 | Xa38 | 84.3 | 102.7 * | 11.6 | 29.1 | 75.4 | 86.5 | 31.3 | - |
G19 | Pusa 3054-2-47-7-166-24-262-3 | Xa38 | 84.3 | 103 * | 12.0 | 28.9 | 75.3 | 83.3 | 31.9 | 98.11 |
PB1509 | - | 85.0 | 98.8 | 12.8 | 29.1 | 78.8 | 83.2 | 31.3 | - | |
LSD (0.05) | - | 1.49 | 3.18 | 2.10 | 0.99 | 7.74 | 6.82 | 1.86 | - |
NIL | Genotype | HR | MR | HRR | KLBC | KBBC | KLAC | KBAC | ER | Aroma |
---|---|---|---|---|---|---|---|---|---|---|
G1 | Pusa 3060-3-55-17-157-4-124-1 | 78 | 69.3 | 51.0 | 8.14 | 1.66 | 17.95 | 2.26 | 2.20 | 2 |
G2 | Pusa 3060-3-55-17-157-4-124-6 | 78.3 | 70.3 | 51.3 | 8.38 | 1.66 | 17.53 | 2.33 | 2.09 | 2 |
G3 | Pusa 3060-3-55-17-157-4-138-1 | 78.5 | 70 | 48.3 | 8.36 | 1.66 | 17.97 | 2.33 | 2.14 | 2 |
G4 | Pusa 3060-3-55-17-157-4-138-2 | 79.6 | 70.6 | 50.0 | 8.38 | 1.66 | 16.64 | 2.33 | 1.98 | 2 |
G5 | Pusa 3060-3-55-17-157-4-138-3 | 80.3 | 71.3 | 51.3 | 8.34 | 1.66 | 17.17 | 2.24 | 2.05 | 2 |
G6 | Pusa 3066-4-56-20-158-7-170-2 | 80.3 | 71.6 | 54.0 | 8.23 | 1.66 | 16.95 | 2.33 | 2.05 | 2 |
G7 | Pusa 3066-4-56-20-158-7-171-4 | 80.3 | 72.0 * | 55.6 | 8.31 | 1.66 | 16.80 | 2.31 | 2.02 | 2 |
G8 | Pusa 3066-4-56-20-158-7-172-1 | 80.6 * | 71.6 | 50.6 | 8.25 | 1.66 | 16.57 | 2.33 | 2.00 | 2 |
G9 | Pusa 3066-4-56-20-158-7-172-2 | 79.3 | 70.6 | 49.3 | 8.17 | 1.66 | 17.04 | 2.31 | 2.08 | 2 |
G10 | Pusa 3066-4-56-20-159-8-174-1 | 80.0 | 70.3 | 43.6 | 8.03 | 1.66 | 16.37 * | 2.28 | 2.03 | 2 |
G11 | Pusa 3037-1-44-3-164-20-249-2 | 79.3 | 71.3 | 55.3 | 8.38 | 1.66 | 17.48 | 2.33 | 2.08 | 2 |
G12 | Pusa 3037-1-44-3-164-21-255-1 | 79.6 | 72.0 * | 54.0 | 8.28 | 1.66 | 18.06 | 2.31 | 2.17 | 2 |
G13 | Pusa 3037-1-44-3-164-21-256-4 | 80.3 | 72.3 * | 53.6 | 8.30 | 1.66 | 17.31 | 2.31 | 2.08 | 2 |
G14 | Pusa 3037-1-45-5-165-22-259-4 | 80.3 | 72.0 * | 52.0 | 8.42 * | 1.66 | 18.04 | 2.33 | 2.14 | 2 |
G15 | Pusa 3054-2-47-7-166-24-261-1 | 80.0 | 72.0 * | 54.6 | 8.42 * | 1.66 | 16.91 | 2.33 | 2.00 | 2 |
G16 | Pusa 3054-2-47-7-166-24-261-2 | 77.6 | 70.0 | 54.0 | 8.28 | 1.66 | 17.71 | 2.31 | 2.13 | 2 |
G17 | Pusa 3054-2-47-7-166-24-261-3 | 79.3 | 71.6 | 52.6 | 8.25 | 1.66 | 17.75 | 2.28 | 2.15 | 2 |
G18 | Pusa 3054-2-47-7-166-24-262-2 | 78.3 | 70.3 | 52.6 | 8.37 | 1.66 | 18.57 * | 2.31 | 2.21 | 2 |
G19 | Pusa 3054-2-47-7-166-24-262-3 | 79.6 | 72.3 * | 54.3 | 8.46 * | 1.66 | 17.68 | 2.28 | 2.09 | 2 |
PB1509 | - | 78.6 | 69.8 | 51.1 | 8.21 | 1.66 | 17.56 | 2.31 | 2.14 | 2 |
LSD (0.05) | - | 1.99 | 1.86 | 5.67 | 0.18 | 0.00 | 0.65 | 0.67 | 0.93 | - |
NILs | Genotype | Grain Yield (Kg/ha) | ||
---|---|---|---|---|
New Delhi | Karnal | Urlana | ||
G1 | Pusa 3060-3-55-17-157-4-124-1 | 5008 | 5185 | 9461 |
G2 | Pusa 3060-3-55-17-157-4-124-6 | 5295 | 5329 | 8245 |
G3 | Pusa 3060-3-55-17-157-4-138-1 | 4322 * | 4514 | 7410 * |
G4 | Pusa 3060-3-55-17-157-4-138-2 | 4841 | 3423 * | 8143 * |
G5 | Pusa 3060-3-55-17-157-4-138-3 | 4914 | 4648 | 8238 * |
G6 | Pusa 3066-4-56-20-158-7-170-2 | 5221 | 4522 | 8126 * |
G7 | Pusa 3066-4-56-20-158-7-171-4 | 5559 * | 4554 | 8514 |
G8 | Pusa 3066-4-56-20-158-7-172-1 | 5524 | 4490 | 8728 |
G9 | Pusa 3066-4-56-20-158-7-172-2 | 5544 * | 4565 | 8580 |
G10 | Pusa 3066-4-56-20-159-8-174-1 | 5451 | 4454 | 8893 |
G11 | Pusa 3037-1-44-3-164-20-249-2 | 5712 * | 5099 | 9709 |
G12 | Pusa 3037-1-44-3-164-21-255-1 | 6267 * | 4871 | 9744 |
G13 | Pusa 3037-1-44-3-164-21-256-4 | 5749 * | 4804 | 9021 |
G14 | Pusa 3037-1-45-5-165-22-259-4 | 5513 | 4469 | 9171 |
G15 | Pusa 3054-2-47-7-166-24-261-1 | 5606 * | 4767 | 8585 |
G16 | Pusa 3054-2-47-7-166-24-261-2 | 5712 * | 4818 | 9763 |
G17 | Pusa 3054-2-47-7-166-24-261-3 | 5468 | 5126 | 9415 |
G18 | Pusa 3054-2-47-7-166-24-262-2 | 5781 * | 4830 | 9131 |
G19 | Pusa 3054-2-47-7-166-24-262-3 | 5372 | 4445 | 8072 * |
PB1509 | 4995 | 5154 | 9239 | |
LSD (0.05) | 545 | 863 | 959 |
NIL | Genotype | Genes | DF | PH | NT | PL (cm) | TG | SF (%) | Yield (Kg/ha) |
---|---|---|---|---|---|---|---|---|---|
G20 | Pusa 3122-27-15-165-2 | xa13 + Xa21 + Xa38 | 84.5 | 103.5 | 12.5 | 28.0 | 81.5 | 74.1 * | 8272 |
G21 | Pusa 3122-27-16-166-1 | xa13 + Xa21 + Xa38 | 85.5 | 106.5 | 14.5 | 27.0 | 75.0 | 75.9 * | 7573 |
G22 | Pusa 3124-37-17-168-4 | Xa38 + Pi9 + Pib | 84.5 | 110.5 | 13.5 | 28.0 | 91.0 | 88.6 | 7865 |
G23 | Pusa 3124-37-18-175-1 | Xa38 + Pi9 + Pib | 85.0 | 104.0 | 15.5 | 25.0 | 89.0 | 88.3 | 7914 |
G24 | Pusa 3124-38-19-176-5 | Xa38 + Pi9 + Pib | 86.5 | 109.5 | 20.5 * | 31.5 | 92.5 | 93.9 | 8406 |
G25 | Pusa 3124-40-21-179-4 | Xa38 + Pi9 + Pib | 88.5 * | 114.5 | 13.5 | 30.0 | 97.5 | 94.8 | 8260 |
G26 | Pusa 3124-40-22-180-2 | Xa38 + Pi9 + Pib | 85.5 | 113.0 | 14.0 | 26.5 | 101.0 | 89.0 | 8640 |
G27 | Pusa 3123-33-13-312-13 | Pi9 + Pib + Pita | 84.0 | 113.0 | 14.0 | 29.5 | 91.0 | 84.7 | 8391 |
G28 | Pusa 3123-33-13-312-22 | Pi9 + Pib + Pita | 84.0 | 116.0 | 15.5 | 28.5 | 78.5 | 78.8 * | 7862 |
G29 | Pusa 3123-33-13-312-25 | Pi9 + Pib + Pita | 82.5 * | 110.0 | 12.5 | 27.0 | 89.0 | 93.8 | 8598 |
PB1509 | - | 85.5 | 105.5 | 14.5 | 28.0 | 89.5 | 90.9 | 8568 | |
LSD (0.05) | 1.64 | 10.50 | 5.10 | 4.19 | 18.95 | 8.46 | 1039.62 |
NIL | Genotype | KLBC | KBBC | KLAC | KBAC | ER | Aroma |
---|---|---|---|---|---|---|---|
G20 | Pusa 3122-27-15-165-2 | 8.48 | 1.66 | 17.24 | 2.27 | 2.03 | 2+ |
G21 | Pusa 3122-27-16-166-1 | 8.08 | 1.66 | 17.76 | 2.33 | 2.19 | 2+ |
G22 | Pusa 3124-37-17-168-4 | 8.38 | 1.66 | 17.89 | 2.27 | 2.13 | 2+ |
G23 | Pusa 3124-37-18-175-1 | 8.63 | 1.66 | 17.89 | 2.33 | 2.07 | 2+ |
G24 | Pusa 3124-38-19-176-5 | 8.30 | 1.66 | 17.27 | 2.33 | 2.08 | 2+ |
G25 | Pusa 3124-40-21-179-4 | 8.66 | 1.66 | 17.29 | 2.33 | 1.99 | 2+ |
G26 | Pusa 3124-40-22-180-2 | 8.88 | 1.66 | 17.51 | 2.33 | 1.97 | 2+ |
G27 | Pusa 3123-33-13-312-13 | 8.61 | 1.66 | 17.51 | 2.33 | 2.03 | 2+ |
G28 | Pusa 3123-33-13-312-22 | 8.48 | 1.66 | 17.57 | 2.27 | 2.07 | 2+ |
G29 | Pusa 3123-33-13-312-25 | 8.41 | 1.66 | 17.87 | 2.33 | 2.12 | 2+ |
PB1509 | - | 8.45 | 1.66 | 17.66 | 2.29 | 2.09 | 2+ |
LSD (0.05) | 0.69 | 0.00 | 0.42 | 0.64 | 0.21 | - |
NIL | Genotype | Genes | New Delhi | Palampur |
---|---|---|---|---|
G1 | Pusa 3060-3-55-17-157-4-124-1 | Pi9 + Pib | 1 | 1 |
G2 | Pusa 3060-3-55-17-157-4-124-6 | Pi9 + Pib | 1 | 1 |
G3 | Pusa 3060-3-55-17-157-4-138-1 | Pi9 + Pib | 1 | 1 |
G4 | Pusa 3060-3-55-17-157-4-138-2 | Pi9 + Pib | 2 | 1 |
G5 | Pusa 3060-3-55-17-157-4-138-3 | Pi9 + Pib | 1 | 1 |
G6 | Pusa 3066-4-56-20-158-7-170-2 | Pita | 2 | 1 |
G7 | Pusa 3066-4-56-20-158-7-171-4 | Pita | 1 | 1 |
G8 | Pusa 3066-4-56-20-158-7-172-1 | Pita | 2 | 1 |
G9 | Pusa 3066-4-56-20-158-7-172-2 | Pita | 1 | 1 |
G10 | Pusa 3066-4-56-20-159-8-174-1 | Pita | 2 | 1 |
G22 | Pusa 3124-37-17-168-4 | Xa38 + Pi9 + Pib | 2 | 2 |
G23 | Pusa 3124-37-18-175-1 | Xa38 + Pi9 + Pib | 2 | 2 |
G24 | Pusa 3124-38-19-176-5 | Xa38 + Pi9 + Pib | 1 | 1 |
G25 | Pusa 3124-40-21-179-4 | Xa38 + Pi9 + Pib | 2 | 2 |
G26 | Pusa 3124-40-22-180-2 | Xa38 + Pi9 + Pib | 1 | 1 |
G27 | Pusa 3123-33-13-312-13 | Pi9 + Pib + Pita | 0 | 1 |
G28 | Pusa 3123-33-13-312-22 | Pi9 + Pib + Pita | 0 | 1 |
G29 | Pusa 3123-33-13-312-25 | Pi9 + Pib + Pita | 0 | 1 |
PB 1509 | - | - | 5 | 4 |
P1929 | - | Pi9 + Pib | 1 | 1 |
Tetep | - | Pita | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, G.; Singh, N.; Ellur, R.K.; Balamurugan, A.; Prakash, G.; Rathour, R.; Mondal, K.K.; Bhowmick, P.K.; Gopala Krishnan, S.; Nagarajan, M.; et al. Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding. Int. J. Mol. Sci. 2023, 24, 16081. https://doi.org/10.3390/ijms242216081
Singh G, Singh N, Ellur RK, Balamurugan A, Prakash G, Rathour R, Mondal KK, Bhowmick PK, Gopala Krishnan S, Nagarajan M, et al. Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding. International Journal of Molecular Sciences. 2023; 24(22):16081. https://doi.org/10.3390/ijms242216081
Chicago/Turabian StyleSingh, Gagandeep, Niraj Singh, Ranjith Kumar Ellur, Alexander Balamurugan, G. Prakash, Rajeev Rathour, Kalyan Kumar Mondal, Prolay Kumar Bhowmick, S. Gopala Krishnan, Mariappan Nagarajan, and et al. 2023. "Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding" International Journal of Molecular Sciences 24, no. 22: 16081. https://doi.org/10.3390/ijms242216081
APA StyleSingh, G., Singh, N., Ellur, R. K., Balamurugan, A., Prakash, G., Rathour, R., Mondal, K. K., Bhowmick, P. K., Gopala Krishnan, S., Nagarajan, M., Seth, R., Vinod, K. K., Singh, V., Bollinedi, H., & Singh, A. K. (2023). Genetic Enhancement for Biotic Stress Resistance in Basmati Rice through Marker-Assisted Backcross Breeding. International Journal of Molecular Sciences, 24(22), 16081. https://doi.org/10.3390/ijms242216081