Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances
Abstract
:1. Introduction
2. Diversity of GRX Genes in Rice
3. GRX Proteins Participate in Rice Development Regulation and Response to Stresses
3.1. GRX Proteins Are Involved in Rice Seed Development
3.2. GRX Proteins Are Involved in Rice Flower Development
3.3. GRX Proteins Are Involved in Rice Root Development
3.4. GRX Proteins Are Involved in Rice Pre-Harvest Sprouting (PHS)
3.5. GRX Proteins in Rice Responses to Abiotic Stress
3.5.1. GRX Proteins in Rice Responses to Drought Stress
3.5.2. GRX Proteins in Rice Responses to Salinity Stress
3.5.3. GRX Proteins in Rice Responses to Metal Stress
3.6. GRX Proteins in Rice Responses to Biotic Stress
4. GRX Proteins Cross-Talk with Hormones in Rice Development and Stress Responses
5. Perspectives
5.1. Prospects for Application of GRX Genes in Hybrid Rice Breeding
5.2. Prospects for Application of GRX Genes to Improve Rice Yields
5.3. Prospects for Application of GRX Genes in Alleviating Abiotic and Biotic Stresses
5.4. Prospects for Application of GRX Genes in Molecular Farming
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sen, S.; Chakraborty, R.; Kalita, P. Rice-not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci. Technol. 2020, 97, 265–285. [Google Scholar] [CrossRef]
- Chaudhary, A.; Venkatramanan, V.; Kumar–Mishra, A.; Sharma, S. Agronomic and environmental determinants of direct seeded rice in South Asia. Circ. Econ. Sustain. 2023, 3, 253–290. [Google Scholar] [CrossRef]
- Eckardt, N.A.; Ainsworth, E.A.; Bahuguna, R.N.; Broadley, M.R.; Busch, W.; Carpita, N.C.; Castrillo, G.; Chory, J.; DeHaan, L.R.; Duarte, C.M.; et al. Climate change challenges, plant science solutions. Plant Cell. 2023, 35, 24–66. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Qi, F.; Liang, Y. Fuels for ROS signaling in plant immunity. Trends Plant Sci. 2023, 28, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Morita, S.; Yamashita, Y.; Fujiki, M.; Todaka, R.; Nishikawa, Y.; Hosoki, A.; Yabe, C.; Nakamura, J.; Kawamura, K.; Suwastika, I.N.; et al. Expression of a rice glutaredoxin in aleurone layers of developing and mature seeds: Subcellular localization and possible functions in antioxidant defense. Planta 2015, 242, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, G.; Tian, Y.; Song, Y.; Liang, W.; Zhang, D. A rice glutamyl-tRNA synthetase modulates early anther cell division and patterning. Plant Physiol. 2018, 177, 728–744. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Zhang, D. Molecular control of redox homoeostasis in specifying the cell identity of tapetal and microsporocyte cells in rice. Rice 2019, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Yang, J.; Cheng, N.; Hirschi, K.D.; White, F.F.; Park, S. Glutaredoxins in plant development, abiotic stress response, and iron homeostasis: From model organisms to crops. Environ. Exp. Bot. 2017, 139, 91–98. [Google Scholar] [CrossRef]
- Considine, M.J.; Foyer, C.H. Oxygen and reactive oxygen species-dependent regulation of plant growth and development. Plant Physiol. 2021, 186, 79–92. [Google Scholar] [CrossRef]
- Seco-Cervera, M.; González-Cabo, P.; Pallardó, F.V.; Romá-Mateo, C.; García-Giménez, J.L. Thioredoxin and glutaredoxin systems as potential targets for the development of new treatments in Friedreich’s Aataxia. Antioxidants 2020, 9, 1257. [Google Scholar] [CrossRef]
- Xing, S.; Lauri, A.; Zachgo, S. Redox regulation and flower development: A novel function for glutaredoxins. Plant Biol. 2006, 8, 547–555. [Google Scholar] [CrossRef]
- Holmgren, A. Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. Proc. Natl. Acad. Sci. USA 1976, 73, 2275–2279. [Google Scholar] [CrossRef]
- Verma, P.K.; Verma, S.; Tripathi, R.D.; Chakrabarty, D. A rice glutaredoxin regulate the expression of aquaporin genes and modulate root responses to provide arsenic tolerance. Ecotoxicol. Environ. Saf. 2020, 195, 110471. [Google Scholar] [CrossRef]
- Ehrary, A.; Rosas, M.; Carpinelli, S.; Davalos, O.; Cowling, C.; Fernandez, F.; Escobar, M. Glutaredoxin AtGRXS8 represses transcriptional and developmental responses to nitrate in Arabidopsis thaliana roots. Plant Direct. 2020, 4, e00227. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Y.; Zhou, X.; Wang, X.; Ji, Y. Host GRXC6 restricts tomato yellow leaf curl virus infection by inhibiting the nuclear export of the V2 protein. PLoS Pathog. 2021, 17, e1009844. [Google Scholar] [CrossRef]
- Alloing, G.; Mandon, K.; Boncompagni, E.; Montrichard, F.; Frendo, P. Involvement of glutaredoxin and thioredoxin systems in the nitrogen-fixing symbiosis between legumes and rhizobia. Antioxidants 2018, 7, 182. [Google Scholar] [CrossRef]
- Li, S. Redox modulation matters: Emerging functions for glutaredoxins in plant development and stress responses. Plants 2014, 3, 559–582. [Google Scholar] [CrossRef]
- Rey, P.; Taupin-Broggini, M.; Couturier, J.; Vignols, F.; Rouhier, N. Is there a role for glutaredoxins and BOLAs in the perception of the cellular iron status in plants? Front. Plant Sci. 2019, 10, 712. [Google Scholar] [CrossRef]
- Rouhier, N.; Couturier, J.; Jacquot, J.P. Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 2006, 57, 1685–1696. [Google Scholar] [CrossRef]
- Garg, R.; Jhanwar, S.; Tyagi, A.K.; Jain, M. Genome-wide survey and expression analysis suggest diverse roles of glutaredoxin gene family members during development and response to various stimuli in rice. DNA Res. 2010, 17, 353–367. [Google Scholar] [CrossRef]
- Hong, W.J.; Kim, Y.J.; Kim, E.J.; Kumar Nalini Chandran, A.; Moon, S.; Gho, Y.S.; Yoou, M.H.; Kim, S.T.; Jung, K.H. CAFRI-Rice: CRISPR applicable functional redundancy inspector to accelerate functional genomics in rice. Plant J. 2020, 104, 532–545. [Google Scholar] [CrossRef]
- Lemaire, S.D. The glutaredoxin family in oxygenic photosynthetic organisms. Photosynth. Res. 2004, 79, 305–318. [Google Scholar] [CrossRef]
- Ziemann, M.; Bhave, M.; Zachgo, S. Origin and diversification of land plant CC-type glutaredoxins. Genome Biol. Evol. 2009, 1, 265–277. [Google Scholar] [CrossRef]
- Li, T.; Li, M.; Jiang, Y.; Duan, X. Genome-wide identification, characterization and expression profile of glutaredoxin gene family in relation to fruit ripening and response to abiotic and biotic stresses in banana (Musa acuminata). Int. J. Biol. Macromol. 2021, 170, 636–651. [Google Scholar] [CrossRef]
- Malik, W.; Wang, X.; Wang, X.; Shu, N.; Cui, R.; Chen, X.; Wang, D.; Lu, X.; Yin, Z.; Wang, J.; et al. Genome-wide expression analysis suggests glutaredoxin genes response to various stresses in cotton. Int. J. Biol. Macromol. 2020, 153, 470–491. [Google Scholar] [CrossRef]
- Lurin, C.; Andrés, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyère, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004, 16, 2089–2103. [Google Scholar] [CrossRef]
- Sha, S.; Minakuchi, K.; Higaki, N.; Sato, K.; Ohtsuki, K.; Kurata, A.; Yoshikawa, H.; Kotaru, M.; Masumura, T.; Ichihara, K.; et al. Purification and characterization of glutaredoxin (thioltransferase) from rice (Oryza sativa L.). J. Biochem. 1997, 121, 842–848. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Morita, S.; Hirano, E.; Yokoi, H.; Masumura, T.; Tanaka, K. A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol. 2005, 137, 317–327. [Google Scholar] [CrossRef]
- Xu, F.; Tang, J.; Gao, S.; Cheng, X.; Du, L.; Chu, C. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling. Plant J. 2019, 100, 1036–1051. [Google Scholar] [CrossRef]
- Verma, P.K.; Verma, S.; Meher, A.K.; Pande, V.; Mallick, S.; Bansiwal, A.K.; Tripathi, R.D.; Dhankher, O.P.; Chakrabarty, D. Overexpression of rice glutaredoxins (OsGrxs) significantly reduces arsenite accumulation by maintaining glutathione pool and modulating aquaporins in yeast. Plant Physiol. Biochem. 2016, 106, 208–217. [Google Scholar] [CrossRef]
- Verma, P.K.; Verma, S.; Pande, V.; Mallick, S.; Deo Tripathi, R.; Dhankher, O.P.; Chakrabarty, D. Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intracellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front. Plant Sci. 2016, 7, 740. [Google Scholar]
- Verma, P.K.; Verma, S.; Tripathi, R.D.; Pandey, N.; Chakrabarty, D. CC-type glutaredoxin, OsGrx_C7 plays a crucial role in enhancing protection against salt stress in rice. J. Biotechnol. 2021, 329, 192–203. [Google Scholar] [CrossRef]
- Kumar, A.; Dubey, A.K.; Kumar, V.; Ansari, M.A.; Narayan, S.; Meenakshi; Kumar, S.; Pandey, V.; Shirke, P.A.; Pande, V.; et al. Overexpression of rice glutaredoxin genes LOC_Os02g40500 and LOC_Os01g27140 regulate plant responses to drought stress. Ecotoxicol. Environ. Saf. 2020, 200, 110721. [Google Scholar] [CrossRef]
- El-Kereamy, A.; Bi, Y.M.; Mahmood, K.; Ranathunge, K.; Yaish, M.W.; Nambara, E.; Rothstein, S.J. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants. Front. Plant Sci. 2015, 6, 934. [Google Scholar] [CrossRef]
- Yang, L.; Qian, X.; Chen, M.; Fei, Q.; Meyers, B.C.; Liang, W.; Zhang, D. Regulatory role of a receptor-like kinase in specifying anther cell identity. Plant Physiol. 2016, 171, 2085–2100. [Google Scholar] [CrossRef]
- Wang, Z.; Xing, S.; Birkenbihl, R.P.; Zachgo, S. Conserved functions of Arabidopsis and rice CC-type glutaredoxins in flower development and pathogen response. Mol. Plant. 2009, 2, 323–335. [Google Scholar] [CrossRef]
- Hao, J.; Wang, D.; Wu, Y.; Huang, K.; Duan, P.; Li, N.; Xu, R.; Zeng, D.; Dong, G.; Zhang, B.; et al. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol. Plant. 2021, 14, 1266–1280. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Zheng, C.; Zheng, E.; Liang, W.; Tan, X.; Xu, R.; Yan, C.; Yang, Y.; Yi, K.; et al. OsTGAL1 suppresses the resistance of rice to bacterial blight disease by regulating the expression of salicylic acid glucosyltransferase OsSGT1. Plant Cell Environ. 2022, 45, 1584–1602. [Google Scholar] [CrossRef]
- Hong, L.; Tang, D.; Zhu, K.; Wang, K.; Li, M.; Cheng, Z. Somatic and reproductive cell development in rice anther is regulated by a putative glutaredoxin. Plant Cell. 2012, 24, 577–588. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Yang, C. Effect of over-expressing OsGRXC12 on lateral root elongation in rice. Plant Physiol. J. 2018, 54, 1205–1212. [Google Scholar]
- Son, S.; Kim, H.; Lee, K.S.; Kim, S.; Park, S.R. Rice glutaredoxin GRXS15 confers broad-spectrum resistance to Xanthomonas oryzae pv. oryzae and Fusarium fujikuroi. Biochem. Biophys. Res. Commun. 2020, 533, 1385–1392. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, Q.; Peng, Z.; Sprague, S.A.; Wang, W.; Park, J.; Akhunov, E.; Jagadish, K.S.V.; Nakata, P.A.; Cheng, N.; et al. Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure. Sci. Rep. 2017, 7, 15950. [Google Scholar] [CrossRef]
- Liu, S.; Fu, H.; Jiang, J.; Chen, Z.; Gao, J.; Shu, H.; Zhang, S.; Yang, C.; Liu, J. Overexpression of a CPYC-type glutaredoxin, OsGrxC2. 2, causes abnormal embryos and an increased grain weight in rice. Front. Plant Sci. 2019, 10, 848. [Google Scholar] [CrossRef]
- Ning, X.; Sun, Y.; Wang, C.; Zhang, W.; Sun, M.; Hu, H.; Liu, J.; Yang, L. A rice CPYC-type glutaredoxin OsGRX20 in protection against bacterial blight, methyl viologen and salt stresses. Front. Plant Sci. 2018, 9, 111. [Google Scholar] [CrossRef]
- Wang, A.; Shu, X.; Jing, X.; Jiao, C.; Chen, L.; Zhang, J.; Ma, L.; Jiang, Y.; Yamamoto, N.; Li, S.; et al. Identification of rice (Oryza sativa L.) genes involved in sheath blight resistance via a genome-wide association study. Plant Biotechnol. J. 2021, 19, 1553–1566. [Google Scholar] [CrossRef]
- Li, N.; Xu, R.; Li, Y. Molecular networks of seed size control in plants. Annu. Rev. Plant Biol. 2019, 70, 435–463. [Google Scholar] [CrossRef]
- Song, X.J.; Huang, W.; Shi, M.; Zhu, M.Z.; Lin, H.X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat. Genet. 2007, 39, 623–630. [Google Scholar] [CrossRef]
- Yang, R.S.; Xu, F.; Wang, Y.M.; Zhong, W.S.; Dong, L.; Shi, Y.N.; Tang, T.J.; Sheng, H.J.; Jackson, D.; Yang, F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. Nat. Plants. 2021, 7, 1589–1601. [Google Scholar] [CrossRef]
- Kelliher, T.; Walbot, V. Hypoxia triggers meiotic fate acquisition in maize. Science 2012, 337, 345–348. [Google Scholar] [CrossRef]
- Yang, F.; Bui, H.T.; Pautler, M.; Llaca, V.; Johnston, R.; Lee, B.H.; Kolbe, A.; Sakai, H.; Jackson, D. A maize glutaredoxin gene, abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell. 2015, 27, 121–131. [Google Scholar] [CrossRef]
- Murmu, J.; Bush, M.J.; DeLong, C.; Li, S.; Xu, M.; Khan, M.; Malcolmson, C.; Fobert, P.R.; Zachgo, S.; Hepworth, S.R. Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 2010, 154, 1492–1504. [Google Scholar] [CrossRef]
- Li, S.; Zachgo, S. Glutaredoxins in development and stress responses of plants. Adv. Bot. Res. 2009, 52, 333–361. [Google Scholar]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes Rendus Biol. 2008, 331, 806–814. [Google Scholar] [CrossRef]
- Ishibashi, Y.; Aoki, N.; Kasa, S.; Sakamoto, M.; Kai, K.; Tomokiyo, R.; Watabe, G.; Yuasa, T.; Iwaya-Inoue, M. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front. Plant Sci. 2017, 8, 275. [Google Scholar] [CrossRef]
- Lefebvre, V.; North, H.; Frey, A.; Sotta, B.; Seo, M.; Okamoto, M.; Nambara, E.; Marion-Poll, A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 2006, 45, 309–319. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Iimplications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2021, 242, 126626. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Yao, Y.; Zhang, S. H2O2, Ca2+, and K+ in subsidiary cells of maize leaves are involved in regulatory signaling of stomatal movement. Plant Physiol. Biochem. 2020, 152, 243–251. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Song, J.; Huang, M.; Cai, J.; Zhou, Q.; Dai, T.; Jiang, D. Abscisic acid and hydrogen peroxide are involved in drought priming-induced drought tolerance in wheat (Triticumaestivum L.). Plant Biol. 2020, 22, 1113–1122. [Google Scholar] [CrossRef]
- Mukami, A.; Ng’etich, A.; Syombua, E.; Oduor, R.; Mbinda, W. Varietal differences in physiological and biochemical responses to salinity stress in six finger millet plants. Physiol. Mol. Biol. Plants. 2020, 26, 1569. [Google Scholar] [CrossRef]
- Raj, S.R.G.; Nadarajah, K. QTL and candidate genes: Techniques and advancement in abiotic stress resistance breeding of major cereals. Int. J. Mol. Sci. 2022, 24, 6. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Huang, H.; Chen, Z.; Zhu, Y.G. Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ. Sci. Technol. 2014, 48, 1001–1007. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, V.; Dubey, A.K.; Ansari, M.A.; Narayan, S.; Meenakshi; Kumar, S.; Pandey, V.; Pande, V.; Sanyal, I. Chickpea glutaredoxin (CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms. Physiol. Mol. Biol. Plants. 2021, 27, 923–944. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Xu, X.Y.; Su, Y.H.; McGrath, S.P.; Zhao, F.J. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc. Natl. Acad. Sci. USA 2008, 105, 9931–9935. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y. Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection. Biol. Rev. Camb. Philos. Soc. 1997, 72, 381–422. [Google Scholar] [CrossRef]
- Greenboim-Wainberg, Y.; Maymon, I.; Borochov, R.; Alvarez, J.; Olszewski, N.; Ori, N.; Eshed, Y.; Weiss, D. Cross talk between gibberellin and cytokinin: The Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell. 2005, 17, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Criado, M.V.; Caputo, C.; Roberts, I.N.; Castro, M.A.; Barneix, A.J. Cytokinin-induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). J. Plant Physiol. 2009, 166, 1775–1785. [Google Scholar] [CrossRef]
- Jain, M.; Khurana, J.P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J. 2009, 276, 3148–3162. [Google Scholar] [CrossRef]
- Sharma, R.; Priya, P.; Jain, M. Modified expression of an auxin-responsive rice CC-type glutaredoxin gene affects multiple abiotic stress responses. Planta 2013, 238, 871–884. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, Z.; Wang, N.; Xie, G.; Lu, J.; Yan, W.; Zhou, J.; Tang, X.; Deng, X.W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc. Natl. Acad. Sci. USA 2016, 113, 14145–14150. [Google Scholar] [CrossRef]
- Song, S.; Wang, T.; Li, Y.; Hu, J.; Kan, R.; Qiu, M.; Deng, Y.; Liu, P.; Zhang, L.; Dong, H.; et al. A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene. Plant Biotechnol. J. 2021, 19, 251–260. [Google Scholar] [CrossRef]
- Ren, D.; Ding, C.; Qian, Q. Molecular bases of rice grain size and quality for optimized productivity. Sci. Bull. 2023, 68, 314–350. [Google Scholar] [CrossRef]
- Tai, L.; Wang, H.; Xu, X.; Sun, W.; Ju, L.; Liu, W.; Li, W.; Sun, J.; Chen, K. Pre-harvest sprouting in cereals: Genetic and biochemical mechanisms. J. Exp. Bot. 2021, 72, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Han, C.M.; Shin, J.H.; Kwon, J.B.; Kim, J.S.; Won, J.G.; Kim, J.S. Comparison of morphological and physicochemical properties of a foury rice variety upon pre-harvest sprouting. Foods 2021, 10, 746. [Google Scholar] [CrossRef]
- Hu, W.; Ma, H.; Fan, L.; Ruan, S. Characteristics of pre-harvest sprouting in sterile lines in hybrid rice seeds production. Acta Agron. Sin. 2003, 29, 441–446. [Google Scholar]
- Liu, D.; Zeng, M.; Wu, Y.; Du, Y.; Liu, J.; Luo, S.; Zeng, Y. Comparative transcriptomic analysis provides insights into the molecular basis underlying pre-harvest sprouting in rice. BMC Genom. 2022, 23, 771. [Google Scholar] [CrossRef] [PubMed]
- Maharajan, T.; Krishna, T.P.A.; Rakkammal, K.; Ceasar, S.A.; Ramesh, M. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance. Planta 2022, 256, 106. [Google Scholar] [CrossRef] [PubMed]
- Akram, R.; Fahad, S.; Masood, N.; Rasool, A.; Ijaz, M.; Ihsan, M.Z.; Maqbool, M.M.; Ahmad, S.; Hussain, S.; Ahmed, M.; et al. Plant growth and morphological changes in rice under abiotic stress. In Advances in Rice Research for Abiotic Stress Tolerance; Elsevier: Amsterdam, The Netherlands, 2019; pp. 69–85. [Google Scholar]
- Hasan, M.M.; Rafii, M.Y.; Ismail, M.R.; Mahmood, M.; Rahim, H.A.; Alam, M.A.; Ashkani, S.; Malek, M.A.; Latif, M.A. Marker-assisted backcrossing: A useful method for rice improvement. Biotechnol. Biotechnol. Equip. 2015, 29, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Fiyaz, R.A.; Shivani, D.; Chaithanya, K.; Mounika, K.; Chiranjeevi, M.; Laha, G.S.; Sundaram, R.M. Genetic improvement of rice for bacterial blight resistance: Present status and future prospects. Rice Sci. 2022, 29, 118–132. [Google Scholar] [CrossRef]
- Li, Y.; Liang, J.; Deng, B.; Jiang, Y.; Zhu, J.; Chen, L.; Li, M.; Li, J. Applications and prospects of CRISPR/Cas9-mediated base editing in plant breeding. Curr. Issues Mol. Biol. 2023, 45, 918–935. [Google Scholar] [CrossRef]
- Zhu, Q.; Tan, J.; Liu, Y.G. Molecular farming using transgenic rice endosperm. Trends Biotechnol. 2022, 40, 1248–1260. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ning, T.; Xie, T.; Qiu, Q.; Zhang, L.; Sun, Y.; Jiang, D.; Fu, K.; Yin, F.; Zhang, W.; et al. Large-scale production of functional human serum albumin from transgenic rice seeds. Proc. Natl. Acad. Sci. USA 2011, 108, 19078–19083. [Google Scholar] [CrossRef] [PubMed]
- Patti, T.; Bembi, B.; Cristin, P.; Mazzarol, F.; Secco, E.; Pappalardo, C.; Musetti, R.; Martinuzzi, M.; Versolatto, S.; Cariati, R.; et al. Endosperm-specific expression of human acid beta-glucosidase in a waxy rice. Rice 2012, 5, 34. [Google Scholar] [CrossRef] [PubMed]
Class | Chr. | Locus | Gene Name | Active Site | Functions | References |
---|---|---|---|---|---|---|
CC | 1 | LOC_Os01g09830 | OsGrx_A2/OsGRX2 | CYMA | ||
1 | LOC_Os01g13950 | OsGrx_A1/OsGRX3/PHS9 | CCMA | Pre-harvest sprouting | [29] | |
1 | LOC_Os01g27140 | OsGrx_C7/OsGRX4 | CCMC | Tolerance to arsenic, salinity, and drought stress | [13,30,31,32,33] | |
1 | LOC_Os01g47760 | OsGrx_I1/OsGRX6 | CCLI | Hormone and nitrogen status; flower development, grain weight | [34,35] | |
1 | LOC_Os01g70990 | OsGrx_C6/OsGRX7 | CFMC | |||
2 | LOC_Os02g30850 | OsGrx_C8/OsGRX8/ OsROXY2/WG1 | CCMC | Flower development and pathogen response; grain size and weight | [36,37] | |
4 | LOC_Os04g32300 | OsGrx_C9/OsGRX13/OsROXY1 | CCMC | Flower development; response to pathogens | [36] | |
5 | LOC_Os05g05730 | OsGrx_S1/OsGRX15 | CGMS | |||
5 | LOC_Os05g10930 | OsGrx_C15/OsGRX16 | CCMC | |||
5 | LOC_Os05g48930 | OsGrx_S2/OsGRX17 | CCLS | Disease resistance to Xoo | [38] | |
7 | LOC_Os07g05630 | OsGrx_C10/OsGRX19/MIL1 | CCMC | Anther development and microspore formation | [39] | |
11 | LOC_Os11g43520 | OsGrx_C17/OsGRX23 | CGMC | |||
11 | LOC_Os11g43530 | OsGrx_C13/OsGRX24 | CCMC | |||
11 | LOC_Os11g43550 | OsGrx_C14/OsGRX25 | CCMC | |||
11 | LOC_Os11g43580 | OsGrx_C16/OsGRX26 | CCMC | |||
12 | LOC_Os12g35330 | OsGrx_C12/OsGRX28 | CCMC | Lateral root elongation | [40] | |
12 | LOC_Os12g35340 | OsGrx_C11/OsGRX29 | CPMC | |||
CGFS | 1 | LOC_Os01g07950 | OsGrx_S15/OsGRX1 | CGFS | ||
1 | LOC_Os01g34620 | OsGrx_S15.1/OsGRX5/OsGRXS15 | CGFS | Disease resistance to Xoo and Fusariumfujikuroi | [41] | |
3 | LOC_Os03g63420 | OsGrx_S14/OsGRX11 | CGFS | |||
10 | LOC_Os10g35720 | OsGrx_S17/OsGRX22/OsGRXS17 | CGFS | Tolerance to drought stress | [42] | |
12 | LOC_Os12g07650 | OsGrx_S16/OsGRX27 | CGFS | |||
CPYC | 2 | LOC_Os02g40500 | OsGrx_C2.1/OsGRX9 | CPFC | Tolerance to arsenic and drought stress | [31,33] |
2 | LOC_Os02g43180 | OsGrx_C3/OsGRX10 | CPYS | |||
4 | LOC_Os04g17050 | OsGRX12 | CPFC | |||
4 | LOC_Os04g42930 | OsGrx_C2.2/OsGRX14 | CPFC | Embryo development and grain weight; oxidative stress in developing and mature seeds | [5,43] | |
6 | LOC_Os06g44910 | OsGrx_C4/OsGRX18 | CPYC | |||
LOC_Os08g44400 | OsGRX20 | CPFC | Tolerance to salt, cold, and heat stresses; resistance to sheath blight | [44,45] | ||
8 | LOC_Os08g45140 | OsGrx_S12/OsGRX21 | CSYS | |||
GRL | 1 | LOC_Os01g13480 | OsGRL1 | |||
1 | LOC_Os01g61350 | OsGRL2 | ||||
2 | LOC_Os02g01200 | OsGRL3 | ||||
2 | LOC_Os02g51370 | OsGRL4 | ||||
3 | LOC_Os03g07470 | OsGRL5 | ||||
3 | LOC_Os03g24030 | OsGRL6 | ||||
3 | LOC_Os03g44650 | OsGRL7 | ||||
3 | LOC_Os04g33680 | OsGRL8 | ||||
4 | LOC_Os04g54860 | OsGRL9 | ||||
4 | LOC_Os05g28530 | OsGRL10 | ||||
5 | LOC_Os05g39450 | OsGRL11 | ||||
5 | LOC_Os06g12030 | OsGRL12 | ||||
6 | LOC_Os06g12190 | OsGRL13 | ||||
6 | LOC_Os07g06600 | OsGRL14 | ||||
7 | LOC_Os07g46410 | OsGRL15 | ||||
7 | LOC_Os07g46570 | OsGRL16 | ||||
8 | LOC_Os08g07450 | OsGRL17 | ||||
10 | LOC_Os08g44070 | OsGRL18 | ||||
12 | LOC_Os10g34170 | OsGRL19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, R.; Ye, S.; Ye, J.; Wu, M.; Zhu, G.; Yu, F.; Wang, X.; Feng, Y.; Zhang, X. Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances. Int. J. Mol. Sci. 2023, 24, 16968. https://doi.org/10.3390/ijms242316968
Zhai R, Ye S, Ye J, Wu M, Zhu G, Yu F, Wang X, Feng Y, Zhang X. Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances. International Journal of Molecular Sciences. 2023; 24(23):16968. https://doi.org/10.3390/ijms242316968
Chicago/Turabian StyleZhai, Rongrong, Shenghai Ye, Jing Ye, Mingming Wu, Guofu Zhu, Faming Yu, Xingyu Wang, Yue Feng, and Xiaoming Zhang. 2023. "Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances" International Journal of Molecular Sciences 24, no. 23: 16968. https://doi.org/10.3390/ijms242316968
APA StyleZhai, R., Ye, S., Ye, J., Wu, M., Zhu, G., Yu, F., Wang, X., Feng, Y., & Zhang, X. (2023). Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances. International Journal of Molecular Sciences, 24(23), 16968. https://doi.org/10.3390/ijms242316968