Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson’s Disease
Abstract
:1. Introduction
2. Results
2.1. Estimation of the Number of Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Mice When Modeling Parkinson’s Disease and in the Control
2.2. Colocalization of Green Fluorescent Protein, Tyrosine Hydroxylase, and Aromatic L-amino Acid Decarboxylase
2.3. Assessment of Cooperative Dopamine Synthesis in the Striatum of Transgenic Mice When Modeling Parkinson’s Disease
2.4. Gene Expression of Functionally Significant Proteins in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in the Control and When Modeling Parkinson’s Disease
2.4.1. Isolation of Striatal Neurons Expressing the Tyrosine Hydroxylase Gene
2.4.2. Assessment of the Gene Expression of Functionally Significant Proteins in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in the Control and When Modeling Parkinson’s Disease
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Procedures
4.2. Obtaining a Cell Suspension from the Striatum of Transgenic Mice
4.3. Fluorescence-Activated Cell Sorting
4.4. Immunohistochemistry
4.5. Microscopy
4.5.1. Fluorescence Microscopy of the Striatum of Transgenic Mice
4.5.2. Counting the Bodies of Neurons Expressing the Tyrosine Hydroxylase Gene in the Striatum
4.5.3. Confocal Microscopy of the Striatum of Transgenic Mice
4.6. Flow Incubation of Striatum Sections
4.7. High-Performance Liquid Chromatography with Electrochemical Detection
- CDA IMbch- is the DA content in the incubation medium after incubation without BCH;
- CDA Tbch+ is the DA content in the striatum sections (tissue) after incubation with the addition of BCH;
- CDA IMbch+ is the DA content in the incubation medium after incubation with the addition of BCH.
4.8. RNA Isolation and Quantitative Polymerase Chain Reaction
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AADC | aromatic L-amino acid decarboxylase |
BCH | 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid |
DA | dopamine |
GFP | green fluorescent protein |
LAT1 | large amino acid transporter 1 |
L-DOPA | L-3,4-dihydroxyphenylalanine |
MPTP | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine |
PI | propidium iodide |
qPCR | quantitative polymerase chain reaction |
TH | tyrosine hydroxylase |
VMAT2 | vesicular monoamine transporter 2 |
References
- Agid, Y. Parkinson’s Disease: Pathophysiology. Lancet 1991, 337, 1321–1324. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Tredici, K.D.; Rüb, U.; de Vos, R.A.; Steur, E.N.H.J.; Braak, E. Staging of Brain Pathology Related to Sporadic Parkinson’s Disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef]
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 328 Diseases and Injuries for 195 Countries, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [CrossRef]
- Cacabelos, R. Parkinson’s Disease: From Pathogenesis to Pharmacogenomics. Int. J. Mol. Sci. 2017, 18, 551. [Google Scholar] [CrossRef]
- Chotibut, T.; Fields, V.; Salvatore, M.F. Norepinephrine Transporter Inhibition with Desipramine Exacerbates L-DOPA-induced Dyskinesia: Role for Synaptic Dopamine Regulation in Denervated Nigrostriatal Terminals. Mol. Pharmacol. 2014, 86, 675–685. [Google Scholar] [CrossRef]
- Kwon, D.K.; Kwatra, M.; Wang, J.; Ko, H.S. Levodopa-Induced Dyskinesia in Parkinson’s Disease: Pathogenesis and Emerging Treatment Strategies. Cells 2022, 11, 3736. [Google Scholar] [CrossRef]
- Dubach, M.; Schmidt, R.; Kunkel, D.; Bowden, D.M.; Martin, R.; German, D.C. Primate Neostriatal Neurons Containing Tyrosine Hydroxylase: Immunohistochemical Evidence. Neurosci. Lett. 1987, 75, 205–210. [Google Scholar] [CrossRef]
- Tashiro, Y.; Kaneko, T.; Sugimoto, T.; Nagatsu, I.; Kikuchi, H.; Mizuno, N. Striatal Neurons with Aromatic L-amino Acid Decarboxylase-Like Immunoreactivity in the Rat. Neurosci. Lett. 1989, 100, 29–34. [Google Scholar] [CrossRef]
- Lopez-Real, A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Localization and Functional Significance of Striatal Neurons Immunoreactive to Aromatic L-Amino Acid Decarboxylase or Tyrosine Hydroxylase in Rat Parkinsonian Models. Brain Res. 2003, 969, 135–146. [Google Scholar] [CrossRef]
- Cossette, M.; Lecomte, F.; Parent, A. Morphology and Distribution of Dopaminergic Neurons Intrinsic to the Human Striatum. J. Chem. Neuroanat. 2005, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cossette, M.; Lévesque, D.; Parent, A. Neurochemical Characterization of Dopaminergic Neurons in Human Striatum. Park. Relat. Disord. 2005, 11, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Tandé, D.; Höglinger, G.; Debeir, T.; Freundlieb, N.; Hirsch, E.C.; François, C. New Striatal Dopamine Neurons in MPTP-Treated Macaques Result from a Phenotypic Shift and Not Neurogenesis. Brain 2006, 129, 1194–1200. [Google Scholar] [CrossRef]
- Weihe, E.; Depboylu, C.; Schütz, B.; Schäfer, M.K.-H.; Eiden, L.E. Three Types of Tyrosine Hydroxylase-Positive CNS Neurons Distinguished by Dopa Decarboxylase and VMAT2 Co-Expression. Cell. Mol. Neurobiol. 2006, 26, 657–676. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Sugimoto, T.; Hattori, T.; Uemura, Y.; Nagatsu, I.; Kikuchi, H.; Mizuno, N. Tyrosine Hydroxylase-Like Immunoreactive Neurons in the Striatum of the Rat. Neurosci. Lett. 1989, 97, 6–10. [Google Scholar] [CrossRef]
- Betarbet, R.; Turner, R.; Chockkan, V.; DeLong, M.R.; Allers, K.A.; Walters, J.; Levey, A.I.; Greenamyre, J.T. Dopaminergic Neurons Intrinsic to the Primate Striatum. J. Neurosci. 1997, 17, 6761–6768. [Google Scholar] [CrossRef]
- Porritt, M.J.; Batchelor, P.E.; Hughes, A.J.; Kalnins, R.; Donnan, G.A.; Howells, D.W. New Dopaminergic Neurons in Parkinson’s Disease Striatum. Lancet 2000, 356, 44–45. [Google Scholar] [CrossRef]
- Masuda, M.; Miura, M.; Inoue, R.; Imanishi, M.; Saino-Saito, S.; Takada, M.; Kobayashi, K.; Aosaki, T. Postnatal Development of Tyrosine Hydroxylase MRNA-Expressing Neurons in Mouse Neostriatum. Eur. J. Neurosci. 2011, 34, 1355–1367. [Google Scholar] [CrossRef]
- Depboylu, C.; Klietz, M.; Maurer, L.; Oertel, W.H.; Kobayashi, K.; Weihe, E.; Höglinger, G.U.; Schäfer, M.K.-H. Transcriptional and Structural Plasticity of Tyrosine Hydroxylase Expressing Neurons in Both Striatum and Nucleus Accumbens Following Dopaminergic Denervation. J. Chem. Neuroanat. 2014, 61–62, 169–175. [Google Scholar] [CrossRef]
- Ünal, B.; Shah, F.; Kothari, J.; Tepper, J.M. Anatomical and Electrophysiological Changes in Striatal TH Interneurons after Loss of the Nigrostriatal Dopaminergic Pathway. Brain Struct. Funct. 2015, 220, 331–349. [Google Scholar] [CrossRef]
- Troshev, D.; Bannikova, A.; Blokhin, V.; Kolacheva, A.; Pronina, T.; Ugrumov, M. Striatal Neurons Partially Expressing a Dopaminergic Phenotype: Functional Significance and Regulation. Int. J. Mol. Sci. 2022, 23, 11054. [Google Scholar] [CrossRef] [PubMed]
- Darmopil, S.; Muñetón-Gómez, V.C.; de Ceballos, M.L.; Bernson, M.; Moratalla, R. Tyrosine Hydroxylase Cells Appearing in the Mouse Striatum after Dopamine Denervation Are Likely to Be Projection Neurones Regulated by L-DOPA. Eur. J. Neurosci. 2008, 27, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Kozina, E.A.; Kim, A.R.; Kurina, A.Y.; Ugrumov, M.V. Cooperative Synthesis of Dopamine by Non-Dopaminergic Neurons as a Compensatory Mechanism in the Striatum of Mice with MPTP-Induced Parkinsonism. Neurobiol. Dis. 2017, 98, 108–121. [Google Scholar] [CrossRef]
- Xenias, H.S.; Ibanez-Sandoval, O.; Koos, T.; Tepper, J.M. Are Striatal Tyrosine Hydroxylase Interneurons Dopaminergic? J. Neurosci. 2015, 35, 6584–6599. [Google Scholar] [CrossRef]
- Ugrumov, M.V.; Khaindrava, V.G.; Kozina, E.A.; Kucheryanu, V.G.; Bocharov, E.V.; Kryzhanovsky, G.N.; Kudrin, V.S.; Narkevich, V.B.; Klodt, P.M.; Rayevsky, K.S.; et al. Modeling of Presymptomatic and Symptomatic Stages of Parkinsonism in Mice. Neuroscience 2011, 181, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Varin, C.; Cornil, A.; Houtteman, D.; Bonnavion, P.; de Kerchove d’Exaerde, A. The Respective Activation and Silencing of Striatal Direct and Indirect Pathway Neurons Support Behavior Encoding. Nat. Commun. 2023, 14, 4982. [Google Scholar] [CrossRef]
- Goldberg, N.R.; Hampton, T.; McCue, S.; Kale, A.; Meshul, C.K. Profiling Changes in Gait Dynamics Resulting from Progressive 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Nigrostriatal Lesioning. J. Neurosci. Res. 2011, 89, 1698–1706. [Google Scholar] [CrossRef]
- Abramova, M.; Marsais, F.; Calas, A.; Thibault, J.; Ugrumov, M. Dynamical Study of Tyrosine Hydroxylase Expression and its Correlation with Vasopressin Turnover in the Magnocellular Neurons of the Supraoptico-Posthypophysial System under Long-term Salt Loading of Adult Rats. Brain Res. 2002, 925, 67–75. [Google Scholar] [CrossRef]
- Ershov, P.V.; Ugrumov, M.V.; Calas, A.; Krieger, M.; Thibault, J. Differentiation of Tyrosine Hydroxylase-Synthesizing and/or Aromatic L-amino Acid Decarboxylase-Synthesizing Neurons in the Rat Mediobasal Hypothalamus: Quantitative Double-immunofluorescence Study. J. Comp. Neurol. 2002, 446, 114–122. [Google Scholar] [CrossRef]
- Iwawaki, T.; Kohno, K.; Kobayashi, K. Identification of a Potential Nurr1 Response Element That Activates the Tyrosine Hydroxylase Gene Promoter in Cultured Cells. Biochem. Biophys. Res. Commun. 2000, 274, 590–595. [Google Scholar] [CrossRef]
- Kim, K.S.; Kim, C.H.; Hwang, D.Y.; Seo, H.; Chung, S.; Hong, S.J.; Lim, J.K.; Anderson, T.; Isacson, O. Orphan Nuclear Receptor Nurr1 Directly Transactivates the Promoter Activity of the Tyrosine Hydroxylase Gene in a Cell-Specific Manner. J. Neurochem. 2003, 85, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, V.; Fuentealba, J.A.; Galleguillos, D.; Andrés, M.E. Rapid Increase of Nurr1 Expression in the Substantia Nigra after 6-Hydroxydopamine Lesion in the Striatum of the Rat. J. Neurosci. Res. 2003, 73, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Kitahama, K.; Geffard, M.; Okamura, H.; Nagatsu, I.; Mons, N.; Jouvet, M. Dopamine- and DOPA-Immunoreactive Neurons in the Cat Forebrain with Reference to Tyrosine Hydroxylase-Immunohistochemistry. Brain Res. 1990, 518, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Goshima, Y.; Misu, Y.; Arai, N.; Misugi, K. Nanomolar L-DOPA Facilitates Release of Dopamine via Presynaptic. BETA.-Adrenoceptors: Comparative Studies on the Actions in Striatal Slices from Control and 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine(MPTP)-Treated C57 Black Mice, an Animal Model for Parkinson’s Disease. Jpn. J. Pharmacol. 1991, 55, 93–100. [Google Scholar] [CrossRef]
- Espadas, I.; Darmopil, S.; Vergaño-Vera, E.; Ortiz, O.; Oliva, I.; Vicario-Abejón, C.; Martín, E.D.; Moratalla, R. L-DOPA-Induced Increase in TH-Immunoreactive Striatal Neurons in Parkinsonian Mice: Insights into Regulation and Function. Neurobiol. Dis. 2012, 48, 271–281. [Google Scholar] [CrossRef]
- Goshima, Y.; Masukawa, D.; Kasahara, Y.; Hashimoto, T.; Aladeokin, A.C. l-DOPA and Its Receptor GPR143: Implications for Pathogenesis and Therapy in Parkinson’s Disease. Front Pharmacol. 2019, 10, 1119. [Google Scholar] [CrossRef]
- Viaro, R.; Longo, F.; Vincenzi, F.; Varani, K.; Morari, M. L-DOPA Promotes Striatal Dopamine Release through D1 Receptors and Reversal of Dopamine Transporter. Brain Res. 2021, 1768, 147583. [Google Scholar] [CrossRef]
- Ugrumov, M.V.; Melnikova, V.I.; Lavrentyeva, A.V.; Kudrin, V.S.; Rayevsky, K.S. Dopamine Synthesis by Non-Dopaminergic Neurons Expressing Individual Complementary Enzymes of the Dopamine Synthetic Pathway in the Arcuate Nucleus of Fetal Rats. Neuroscience 2004, 124, 629–635. [Google Scholar] [CrossRef]
- Singh, N.; Ecker, G. Insights into the Structure, Function, and Ligand Discovery of the Large Neutral Amino Acid Transporter 1, LAT1. Int. J. Mol. Sci. 2018, 19, 1278. [Google Scholar] [CrossRef]
- Matsushita, N.; Okada, H.; Yasoshima, Y.; Takahashi, K.; Kiuchi, K.; Kobayashi, K. Dynamics of Tyrosine Hydroxylase Promoter Activity During Midbrain Dopaminergic Neuron Development. J. Neurochem. 2002, 82, 295–304. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates, Compact, 2nd ed.; Academic Press: Cambridge, UK, 2001. [Google Scholar]
- Yanagida, O.; Kanai, Y.; Chairoungdua, A.; Kim, D.K.; Segawa, H.; Nii, T.; Cha, S.H.; Matsuo, H.; Fukushima, J.; Fukasawa, Y.; et al. Human L-Type Amino Acid Transporter 1 (LAT1): Characterization of Function and Expression in Tumor Cell Lines. Biochim. Biophys. Acta-Biomembr. 2001, 1514, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Rydbirk, R.; Folke, J.; Winge, K.; Aznar, S.; Pakkenberg, B.; Brudek, T. Assessment of Brain Reference Genes for RT-qPCR Studies in Neurodegenerative Diseases. Sci. Rep. 2016, 6, 37116. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, M.; Ståhlberg, A.; Rorsman, P.; Kubista, M. Gene Expression Profiling in Single Cells from the Pancreatic Islets of Langerhans Reveals Lognormal Distribution of MRNA Levels. Genome Res. 2005, 15, 1388–1392. [Google Scholar] [CrossRef]
Gene Designation According to the NCBI Database | Protein | Forward Primer | Reverse Primer |
---|---|---|---|
Cyc1 | Cytochrome C1 | 5′-GCGGCCAGGGAAGTTGT-3′ | 5′-GCCAGTGAGCAGGGAAAATAC-3′ |
Th | Tyrosine hydroxylase | 5′-TCAGAGGAGCCCGAGGTC-3′ | 5′-GGGCGCTGGATACGAGAG-3′ |
Ddc | Aromatic L-amino acid decarboxylase | 5′-TCCCCACGGCTAGCTCATACCC-3′ | 5′-TTCCCCAGCCAGTCCATCATCA-3′ |
Nr4a2 | Transcription factor Nurr1 | 5′-CCGAAGAGCCCACAGGAT-3′ | 5′-CCATAGAGCCGGTCAGGAG-3′ |
Slc18a2 | Vesicular monoamine transporter 2 | 5′-ATTGGCTTTCCTTGGCTCAT-3′ | 5′-GGTACGGCTGGACATTATTCTG-3′ |
Slc7a5 | Large amino acid transporter 1 | 5′-CTCCCGGTGTTCTTTATCCTG-3′ | 5′-AGAATCCACTTGGGCTTGTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Troshev, D.; Bannikova, A.; Blokhin, V.; Pavlova, E.; Kolacheva, A.; Ugrumov, M. Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 16245. https://doi.org/10.3390/ijms242216245
Troshev D, Bannikova A, Blokhin V, Pavlova E, Kolacheva A, Ugrumov M. Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson’s Disease. International Journal of Molecular Sciences. 2023; 24(22):16245. https://doi.org/10.3390/ijms242216245
Chicago/Turabian StyleTroshev, Dmitry, Alyona Bannikova, Victor Blokhin, Ekaterina Pavlova, Anna Kolacheva, and Michael Ugrumov. 2023. "Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson’s Disease" International Journal of Molecular Sciences 24, no. 22: 16245. https://doi.org/10.3390/ijms242216245
APA StyleTroshev, D., Bannikova, A., Blokhin, V., Pavlova, E., Kolacheva, A., & Ugrumov, M. (2023). Compensatory Processes in Striatal Neurons Expressing the Tyrosine Hydroxylase Gene in Transgenic Mice in a Model of Parkinson’s Disease. International Journal of Molecular Sciences, 24(22), 16245. https://doi.org/10.3390/ijms242216245