Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction
Abstract
:1. Introduction
2. Results
2.1. Workflow of Interface Prediction and Analysis
2.2. CXCR2: Blocking Capability of Three Different Truncated Isoforms
2.3. CXCR7: Highly Stable CXCR7-CXCR7 and CXCR7-CXCR4, and Competitive Dimerization
2.4. CCR2: Competitive Dimerization and Blocking Capability of the Truncated Isoform
2.5. CCR7: Strong Blocking Capability of the Truncated Isoform
2.6. Possible Higher-Order Oligomerization Patterns of Chemokine Receptors
3. Discussion
3.1. Dynamic and Diverse Dimerization Patterns and Higher-Order Oligomerization of Chemokine Receptors
3.2. Competitive Dimerization of Chemokine Receptors
3.3. Predicted Inhibitory Effect of Truncated Isoforms on Dimerization
3.4. Combination of AlphaFold2 and Docking Enables More Comprehensive Interaction Pattern Exploration
3.5. Suggested Systematic Experimental Studies
4. Conclusions
5. Materials and Methods
5.1. Complex Structure Model Generation Using AlphaFold-Multimer and Structure Processing
5.2. Protein–Protein Docking Using ClusPro and Structure Processing
5.3. Molecular Dynamics Simulations
5.4. Binding Free Energy Calculation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef]
- Allen, S.J.; Crown, S.E.; Handel, T.M. Chemokine: Receptor structure, interactions, and antagonism. Annu. Rev. Immunol. 2007, 25, 787–820. [Google Scholar] [CrossRef]
- Stephens, B.; Handel, T.M. Chemokine receptor oligomerization and allostery. Prog. Mol. Biol. Transl. Sci. 2013, 115, 375–420. [Google Scholar] [CrossRef]
- Miao, M.; De Clercq, E.; Li, G. Clinical significance of chemokine receptor antagonists. Expert Opin. Drug Metab. Toxicol. 2020, 16, 11–30. [Google Scholar] [CrossRef]
- Stephenson, J. Researchers buoyed by novel HIV drugs: Will expand drug arsenal against resistant virus. JAMA 2007, 297, 1535–1536. [Google Scholar] [CrossRef]
- Cashen, A.F.; Nervi, B.; DiPersio, J. AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol. 2007, 3, 19–27. [Google Scholar] [CrossRef]
- Milligan, G.; Ward, R.J.; Marsango, S. GPCR homo-oligomerization. Curr. Opin. Cell Biol. 2019, 57, 40–47. [Google Scholar] [CrossRef]
- Panetta, R.; Greenwood, M.T. Physiological relevance of GPCR oligomerization and its impact on drug discovery. Drug Discov. Today 2008, 13, 1059–1066. [Google Scholar] [CrossRef]
- Milligan, G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. Curr. Opin. Pharmacol. 2010, 10, 23–29. [Google Scholar] [CrossRef]
- Muñoz, L.M.; Lucas, P.; Holgado, B.L.; Barroso, R.; Vega, B.; Rodríguez-Frade, J.M.; Mellado, M. Receptor oligomerization: A pivotal mechanism for regulating chemokine function. Pharmacol. Ther. 2011, 131, 351–358. [Google Scholar] [CrossRef]
- Kraemer, S.; Alampour-Rajabi, S.; El Bounkari, O.; Bernhagen, J. Hetero-oligomerization of chemokine receptors: Diversity and relevance for function. Curr. Med. Chem. 2013, 20, 2524–2536. [Google Scholar] [CrossRef]
- Hauser, M.A.; Schaeuble, K.; Kindinger, I.; Impellizzieri, D.; Krueger, W.A.; Hauck, C.R.; Boyman, O.; Legler, D.F. Inflammation-Induced CCR7 Oligomers Form Scaffolds to Integrate Distinct Signaling Pathways for Efficient Cell Migration. Immunity 2016, 44, 59–72. [Google Scholar] [CrossRef]
- Kobayashi, D.; Endo, M.; Ochi, H.; Hojo, H.; Miyasaka, M.; Hayasaka, H. Regulation of CCR7-dependent cell migration through CCR7 homodimer formation. Sci. Rep. 2017, 7, 8536. [Google Scholar] [CrossRef]
- Rodríguez-Frade, J.M.; del Real, G.; Serrano, A.; Hernanz-Falcón, P.; Soriano, S.F.; Vila-Coro, A.J.; de Ana, A.M.; Lucas, P.; Prieto, I.; Martínez, A.C.; et al. Blocking HIV-1 infection via CCR5 and CXCR4 receptors by acting in trans on the CCR2 chemokine receptor. EMBO J. 2004, 23, 66–76. [Google Scholar] [CrossRef]
- Sierro, F.; Biben, C.; Martínez-Muñoz, L.; Mellado, M.; Ransohoff, R.M.; Li, M.; Woehl, B.; Leung, H.; Groom, J.; Batten, M.; et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl. Acad. Sci. USA 2007, 104, 14759–14764. [Google Scholar] [CrossRef]
- Poltavets, V.; Faulkner, J.W.; Dhatrak, D.; Whitfield, R.J.; McColl, S.R.; Kochetkova, M. CXCR4-CCR7 Heterodimerization Is a Driver of Breast Cancer Progression. Life 2021, 11, 1049. [Google Scholar] [CrossRef]
- Qing, R.; Hao, S.; Smorodina, E.; Jin, D.; Zalevsky, A.; Zhang, S. Protein Design: From the Aspect of Water Solubility and Stability. Chem. Rev. 2022, 122, 14085–14179. [Google Scholar] [CrossRef]
- Sleno, R.; Hébert, T.E. The Dynamics of GPCR Oligomerization and Their Functional Consequences. Int. Rev. Cell Mol. Biol. 2018, 338, 141–171. [Google Scholar] [CrossRef]
- Martínez Muñoz, L.; Lucas, P.; Navarro, G.; Checa, A.I.; Franco, R.; Martínez, A.C.; Rodríguez-Frade, J.M.; Mellado, M. Dynamic regulation of CXCR1 and CXCR2 homo- and heterodimers. J. Immunol. 2009, 183, 7337–7346. [Google Scholar] [CrossRef]
- Rodríguez-Frade, J.M.; Vila-Coro, A.J.; de Ana, A.M.; Albar, J.P.; Martínez, A.C.; Mellado, M. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl. Acad. Sci. USA 1999, 96, 3628–3633. [Google Scholar] [CrossRef]
- Wang, J.; He, L.; Combs, C.A.; Roderiquez, G.; Norcross, M.A. Dimerization of CXCR4 in living malignant cells: Control of cell migration by a synthetic peptide that reduces homologous CXCR4 interactions. Mol. Cancer Ther. 2006, 5, 2474–2483. [Google Scholar] [CrossRef] [PubMed]
- Pluhackova, K.; Gahbauer, S.; Kranz, F.; Wassenaar, T.A.; Böckmann, R.A. Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput. Biol. 2016, 12, e1005169. [Google Scholar] [CrossRef]
- Walsh, S.M.; Mathiasen, S.; Christensen, S.M.; Fay, J.F.; King, C.; Provasi, D.; Borrero, E.; Rasmussen, S.G.F.; Fung, J.J.; Filizola, M.; et al. Single Proteoliposome High-Content Analysis Reveals Differences in the Homo-Oligomerization of GPCRs. Biophys. J. 2018, 115, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Altwaijry, N.A.; Baron, M.; Wright, D.W.; Coveney, P.V.; Townsend-Nicholson, A. An Ensemble-Based Protocol for the Computational Prediction of Helix-Helix Interactions in G Protein-Coupled Receptors using Coarse-Grained Molecular Dynamics. J. Chem. Theory Comput. 2017, 13, 2254–2270. [Google Scholar] [CrossRef] [PubMed]
- Periole, X.; Knepp, A.M.; Sakmar, T.P.; Marrink, S.J.; Huber, T. Structural determinants of the supramolecular organization of G protein-coupled receptors in bilayers. J. Am. Chem. Soc. 2012, 134, 10959–10965. [Google Scholar] [CrossRef]
- Mondal, S.; Johnston, J.M.; Wang, H.; Khelashvili, G.; Filizola, M.; Weinstein, H. Membrane driven spatial organization of GPCRs. Sci. Rep. 2013, 3, 2909. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Richard, E.; Michael, O.N.; Alexander, P.; Natasha, A.; Andrew, S.; Tim, G.; Augustin, Ž.; Russ, B.; Sam, B.; Jason, Y.; et al. Protein complex prediction with AlphaFold-Multimer. bioRxiv 2022. [Google Scholar] [CrossRef]
- Akdel, M.; Pires, D.E.V.; Pardo, E.P.; Jänes, J.; Zalevsky, A.O.; Mészáros, B.; Bryant, P.; Good, L.L.; Laskowski, R.A.; Pozzati, G.; et al. A structural biology community assessment of AlphaFold2 applications. Nat. Struct. Mol. Biol. 2022, 29, 1056–1067. [Google Scholar] [CrossRef]
- Zhu, W.; Shenoy, A.; Kundrotas, P.; Elofsson, A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 2023, 39, btad424. [Google Scholar] [CrossRef]
- Yin, R.; Feng, B.Y.; Varshney, A.; Pierce, B.G. Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants. Protein Sci. 2022, 31, e4379. [Google Scholar] [CrossRef] [PubMed]
- Buljan, M.; Chalancon, G.; Dunker, A.K.; Bateman, A.; Balaji, S.; Fuxreiter, M.; Babu, M.M. Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Curr. Opin. Struct. Biol. 2013, 23, 443–450. [Google Scholar] [CrossRef]
- Kilpatrick, G.J.; Dautzenberg, F.M.; Martin, G.R.; Eglen, R.M. 7TM receptors: The splicing on the cake. Trends Pharmacol. Sci. 1999, 20, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Markovic, D.; Challiss, R.A. Alternative splicing of G protein-coupled receptors: Physiology and pathophysiology. Cell Mol. Life Sci. 2009, 66, 3337–3352. [Google Scholar] [CrossRef] [PubMed]
- Cong, Z.; Liang, Y.L.; Zhou, Q.; Darbalaei, S.; Zhao, F.; Feng, W.; Zhao, L.; Xu, H.E.; Yang, D.; Wang, M.W. Structural perspective of class B1 GPCR signaling. Trends Pharmacol. Sci. 2022, 43, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Marti-Solano, M.; Crilly, S.E.; Malinverni, D.; Munk, C.; Harris, M.; Pearce, A.; Quon, T.; Mackenzie, A.E.; Wang, X.; Peng, J.; et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020, 587, 650–656. [Google Scholar] [CrossRef]
- Wise, H. The roles played by highly truncated splice variants of G protein-coupled receptors. J. Mol. Signal. 2012, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Grosse, R.; Schöneberg, T.; Schultz, G.; Gudermann, T. Inhibition of gonadotropin-releasing hormone receptor signaling by expression of a splice variant of the human receptor. Mol. Endocrinol. 1997, 11, 1305–1318. [Google Scholar] [CrossRef]
- Cogé, F.; Guenin, S.P.; Renouard-Try, A.; Rique, H.; Ouvry, C.; Fabry, N.; Beauverger, P.; Nicolas, J.P.; Galizzi, J.P.; Boutin, J.A.; et al. Truncated isoforms inhibit [3H]prazosin binding and cellular trafficking of native human alpha1A-adrenoceptors. Biochem. J. 1999, 343 Pt 1, 231–239. [Google Scholar] [CrossRef]
- Leung, P.K.; Chow, K.B.; Lau, P.N.; Chu, K.M.; Chan, C.B.; Cheng, C.H.; Wise, H. The truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative mutant of the ghrelin receptor. Cell Signal. 2007, 19, 1011–1022. [Google Scholar] [CrossRef]
- Gonzalez, A.; Borquez, M.; Trigo, C.A.; Brenet, M.; Sarmiento, J.M.; Figueroa, C.D.; Navarro, J.; Gonzalez, C.B. The splice variant of the V2 vasopressin receptor adopts alternative topologies. Biochemistry 2011, 50, 4981–4986. [Google Scholar] [CrossRef]
- Martin, C.B.; Ramond, F.; Farrington, D.T.; Aguiar, A.S., Jr.; Chevarin, C.; Berthiau, A.S.; Caussanel, S.; Lanfumey, L.; Herrick-Davis, K.; Hamon, M.; et al. RNA splicing and editing modulation of 5-HT(2C) receptor function: Relevance to anxiety and aggression in VGV mice. Mol. Psychiatry 2013, 18, 656–665. [Google Scholar] [CrossRef]
- Perron, A.; Sarret, P.; Gendron, L.; Stroh, T.; Beaudet, A. Identification and functional characterization of a 5-transmembrane domain variant isoform of the NTS2 neurotensin receptor in rat central nervous system. J. Biol. Chem. 2005, 280, 10219–10227. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.; Wang, P.; Zhao, J.; Wu, Y.L.; Cheng, Z.J.; Wu, G.X.; Hu, W.; Ma, L.; Pei, G. Five-transmembrane domains appear sufficient for a G protein-coupled receptor: Functional five-transmembrane domain chemokine receptors. Proc. Natl. Acad. Sci. USA 1999, 96, 7922–7927. [Google Scholar] [CrossRef] [PubMed]
- Qing, R.; Tao, F.; Chatterjee, P.; Yang, G.; Han, Q.; Chung, H.; Ni, J.; Suter, B.P.; Kubicek, J.; Maertens, B.; et al. Non-full-length Water-Soluble CXCR4(QTY) and CCR5(QTY) Chemokine Receptors: Implication for Overlooked Truncated but Functional Membrane Receptors. iScience 2020, 23, 101670. [Google Scholar] [CrossRef] [PubMed]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef]
- Valdés-Tresanco, M.S.; Valdés-Tresanco, M.E.; Valiente, P.A.; Moreno, E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J. Chem. Theory Comput. 2021, 17, 6281–6291. [Google Scholar] [CrossRef]
- Trettel, F.; Di Bartolomeo, S.; Lauro, C.; Catalano, M.; Ciotti, M.T.; Limatola, C. Ligand-independent CXCR2 dimerization. J. Biol. Chem. 2003, 278, 40980–40988. [Google Scholar] [CrossRef]
- Wilson, S.; Wilkinson, G.; Milligan, G. The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J. Biol. Chem. 2005, 280, 28663–28674. [Google Scholar] [CrossRef]
- Kalatskaya, I.; Berchiche, Y.A.; Gravel, S.; Limberg, B.J.; Rosenbaum, J.S.; Heveker, N. AMD3100 is a CXCR7 ligand with allosteric agonist properties. Mol. Pharmacol. 2009, 75, 1240–1247. [Google Scholar] [CrossRef]
- Luker, K.E.; Gupta, M.; Luker, G.D. Imaging chemokine receptor dimerization with firefly luciferase complementation. FASEB J. 2009, 23, 823–834. [Google Scholar] [CrossRef]
- Levoye, A.; Balabanian, K.; Baleux, F.; Bachelerie, F.; Lagane, B. CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 2009, 113, 6085–6093. [Google Scholar] [CrossRef] [PubMed]
- Mellado, M.; Rodríguez-Frade, J.M.; Vila-Coro, A.J.; de Ana, A.M.; Martínez, A.C. Chemokine control of HIV-1 infection. Nature 1999, 400, 723–724. [Google Scholar] [CrossRef]
- Mellado, M.; Rodríguez-Frade, J.M.; Vila-Coro, A.J.; Fernández, S.; Martín de Ana, A.; Jones, D.R.; Torán, J.L.; Martínez, A.C. Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. EMBO J. 2001, 20, 2497–2507. [Google Scholar] [CrossRef]
- Percherancier, Y.; Berchiche, Y.A.; Slight, I.; Volkmer-Engert, R.; Tamamura, H.; Fujii, N.; Bouvier, M.; Heveker, N. Bioluminescence resonance energy transfer reveals ligand-induced conformational changes in CXCR4 homo- and heterodimers. J. Biol. Chem. 2005, 280, 9895–9903. [Google Scholar] [CrossRef] [PubMed]
- Sohy, D.; Parmentier, M.; Springael, J.Y. Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J. Biol. Chem. 2007, 282, 30062–30069. [Google Scholar] [CrossRef] [PubMed]
- El-Asmar, L.; Springael, J.Y.; Ballet, S.; Andrieu, E.U.; Vassart, G.; Parmentier, M. Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol. Pharmacol. 2005, 67, 460–469. [Google Scholar] [CrossRef]
- Springael, J.Y.; Le Minh, P.N.; Urizar, E.; Costagliola, S.; Vassart, G.; Parmentier, M. Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol. Pharmacol. 2006, 69, 1652–1661. [Google Scholar] [CrossRef]
- Hayasaka, H.; Kobayashi, D.; Yoshimura, H.; Nakayama, E.E.; Shioda, T.; Miyasaka, M. The HIV-1 Gp120/CXCR4 axis promotes CCR7 ligand-dependent CD4 T cell migration: CCR7 homo- and CCR7/CXCR4 hetero-oligomer formation as a possible mechanism for up-regulation of functional CCR7. PLoS ONE 2015, 10, e0117454. [Google Scholar] [CrossRef]
- Sohy, D.; Yano, H.; de Nadai, P.; Urizar, E.; Guillabert, A.; Javitch, J.A.; Parmentier, M.; Springael, J.Y. Hetero-oligomerization of CCR2, CCR5, and CXCR4 and the protean effects of “selective” antagonists. J. Biol. Chem. 2009, 284, 31270–31279. [Google Scholar] [CrossRef]
- Hamatake, M.; Aoki, T.; Futahashi, Y.; Urano, E.; Yamamoto, N.; Komano, J. Ligand-independent higher-order multimerization of CXCR4, a G-protein-coupled chemokine receptor involved in targeted metastasis. Cancer Sci. 2009, 100, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Mathiesen, J.M.; Sunahara, R.K.; Pardo, L.; Weis, W.I.; Kobilka, B.K.; Granier, S. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 2012, 485, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Chen, S.; Zhang, J.J.; Huang, X.Y. Crystal structure of oligomeric β1-adrenergic G protein-coupled receptors in ligand-free basal state. Nat. Struct. Mol. Biol. 2013, 20, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chien, E.Y.; Mol, C.D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F.C.; et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 2010, 330, 1066–1071. [Google Scholar] [CrossRef]
- Jastrzebska, B.; Chen, Y.; Orban, T.; Jin, H.; Hofmann, L.; Palczewski, K. Disruption of Rhodopsin Dimerization with Synthetic Peptides Targeting an Interaction Interface. J. Biol. Chem. 2015, 290, 25728–25744. [Google Scholar] [CrossRef]
- McMillin, S.M.; Heusel, M.; Liu, T.; Costanzi, S.; Wess, J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J. Biol. Chem. 2011, 286, 28584–28598. [Google Scholar] [CrossRef]
- Jonas, K.C.; Fanelli, F.; Huhtaniemi, I.T.; Hanyaloglu, A.C. Single molecule analysis of functionally asymmetric G protein-coupled receptor (GPCR) oligomers reveals diverse spatial and structural assemblies. J. Biol. Chem. 2015, 290, 3875–3892. [Google Scholar] [CrossRef]
- Jin, J.; Momboisse, F.; Boncompain, G.; Koensgen, F.; Zhou, Z.; Cordeiro, N.; Arenzana-Seisdedos, F.; Perez, F.; Lagane, B.; Kellenberger, E.; et al. CCR5 adopts three homodimeric conformations that control cell surface delivery. Sci. Signal. 2018, 11, eaal2869. [Google Scholar] [CrossRef]
- Jones, K.A.; Borowsky, B.; Tamm, J.A.; Craig, D.A.; Durkin, M.M.; Dai, M.; Yao, W.J.; Johnson, M.; Gunwaldsen, C.; Huang, L.Y.; et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 1998, 396, 674–679. [Google Scholar] [CrossRef]
- White, J.H.; Wise, A.; Main, M.J.; Green, A.; Fraser, N.J.; Disney, G.H.; Barnes, A.A.; Emson, P.; Foord, S.M.; Marshall, F.H. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998, 396, 679–682. [Google Scholar] [CrossRef]
- Schiedel, A.C.; Kose, M.; Barreto, C.; Bueschbell, B.; Morra, G.; Sensoy, O.; Moreira, I.S. Prediction and Targeting of Interaction Interfaces in G-protein Coupled Receptor Oligomers. Curr. Top. Med. Chem. 2018, 18, 714–746. [Google Scholar] [CrossRef] [PubMed]
- Townsend-Nicholson, A.; Altwaijry, N.; Potterton, A.; Morao, I.; Heifetz, A. Computational prediction of GPCR oligomerization. Curr. Opin. Struct. Biol. 2019, 55, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, T.; Khandare, V.; Mirkin, F.G.; Tumtas, Y.; Bubeck, D.; Bozkurt, T.O. AlphaFold2-multimer guided high-accuracy prediction of typical and atypical ATG8-binding motifs. PLoS Biol. 2023, 21, e3001962. [Google Scholar] [CrossRef]
- Teufel, F.; Refsgaard, J.C.; Kasimova, M.A.; Deibler, K.; Madsen, C.T.; Stahlhut, C.; Grønborg, M.; Winther, O.; Madsen, D. Deorphanizing Peptides Using Structure Prediction. J. Chem. Inf. Model. 2023, 63, 2651–2655. [Google Scholar] [CrossRef]
- Ghani, U.; Desta, I.; Jindal, A.; Khan, O.; Jones, G.; Hashemi, N.; Kotelnikov, S.; Padhorny, D.; Vajda, S.; Kozakov, D. Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro. bioRxiv 2022. [Google Scholar] [CrossRef]
- Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and Chemokine Receptors: New Targets for Cancer Immunotherapy. Front. Immunol. 2019, 10, 379. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schutze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef]
- Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef]
- Janson, G.; Paiardini, A. PyMod 3: A complete suite for structural bioinformatics in PyMOL. Bioinformatics 2021, 37, 1471–1472. [Google Scholar] [CrossRef]
- Wu, E.L.; Cheng, X.; Jo, S.; Rui, H.; Song, K.C.; Dávila-Contreras, E.M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R.M.; et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 2014, 35, 1997–2004. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Lim, J.B.; Klauda, J.B.; Im, W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys. J. 2009, 97, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
- Lu, Q.; Luo, R. A Poisson–Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys. 2003, 119, 11035–11047. [Google Scholar] [CrossRef]
Complex (Subject–Partner) | Model | Interface Composition | Binding Free Energy (kcal/mol) | |
---|---|---|---|---|
Subject (Left) | Partner (Right) | |||
CXCR2-CXCR2 | AF-3 | TM4, TM5 | Identical | −70.52 ± 0.14 |
CP-12 | TM1, TM2, TM3 (E) | Identical | −69.82 ± 0.33 | |
CXCR2-CXCR1 | CP-H18 | TM7, TM6, TM1 | TM4, TM5 | −118.83 ± 0.19 |
CP-14 | TM1, TM2, TM3 (E) | TM7, TM1, TM6 | −110.32 ± 0.23 | |
CXCR2-Iso_2TM | CP-17 | TM6, TM7, TM1 | TM2, TM1 | −133.80 ± 0.18 |
CP-16 | TM4, TM5 | TM1, TM2 | −104.69 ± 0.29 | |
CXCR2-Iso_3TM | CP-10 | TM7, TM1, TM6 | TM2, TM1, TM3 (E) | −123.76 ± 0.22 |
CXCR2-Iso_4TM | AF-5 | TM6, TM7 (E) | TM1, TM2 (E), TM3 (E) | −105.62 ± 0.19 |
CP-28 | TM5, TM4, TM6 | TM1, TM2, TM3 | −96.96 ± 0.20 | |
CXCR7-CXCR7 | CP-H8 | TM6, TM7, TM1 (M) | Identical | −160.12 ± 0.41 |
CXCR7-CXCR4 | CP-19 | TM7, TM6, TM1 | TM5, TM4 | −150.17 ± 0.21 |
CXCR7-Iso_4TM | CP-H14 | TM2, TM1, TM3 (E), TM4 (M) | TM1, TM2, TM3 | −104.81 ± 0.16 |
CCR2-CCR2 | AF-1 | TM4, TM5, TM3 (I) | Identical | −44.84 ± 0.16 |
CP-11 | TM2, TM1, TM3 (E), TM4(I) | Identical | −39.61 ± 0.26 | |
CCR2-CXCR4 | AF-2 | TM6, TM7, TM5 | TM6, TM5 | −100.08 ± 0.29 |
AF-5 | TM5, TM4, TM3 (I) | Identical | −98.45 ± 0.14 | |
CCR2-CCR5 | CP-11 | TM2, TM1, TM3 (E), TM4 (I) | TM7, TM1, TM6 | −143.84 ± 0.24 |
AF-2 | TM5, TM4, TM3 (I) | Identical | −121.76 ± 0.14 | |
CCR2-Iso_2TM | CP-13 | TM2, TM1, TM3 (E), TM4 (I) | TM1, TM2 | −149.04 ± 0.35 |
CP-18 | TM7, TM6, TM1 | TM1, TM2 | −103.16 ± 0.22 | |
CCR7-CCR7 | AF-2 | TM7, TM1 | Identical | −118.45 ± 0.21 |
CCR7-CXCR4 | AF-2 | TM7, TM6 | TM6, TM7 | −127.24 ± 0.26 |
AF-4 | TM1, TM7 (I) | TM4, TM5 | −119.23 ± 0.36 | |
CP-19 | TM5, TM4, TM3 (I) | Identical | −117.10 ± 0.13 | |
CCR7-Iso_5TM | CP-H18 | TM1, TM7, TM2 | TM2, TM1, TM3, TM5 | −152.19 ± 0.29 |
CP-H10 | TM5, TM4, TM3(E) | TM5, TM4, TM1, TM2 | −140.47 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Qing, R.; Tao, F.; Xu, P.; Zhang, S. Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction. Int. J. Mol. Sci. 2023, 24, 16266. https://doi.org/10.3390/ijms242216266
Li M, Qing R, Tao F, Xu P, Zhang S. Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction. International Journal of Molecular Sciences. 2023; 24(22):16266. https://doi.org/10.3390/ijms242216266
Chicago/Turabian StyleLi, Mengke, Rui Qing, Fei Tao, Ping Xu, and Shuguang Zhang. 2023. "Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction" International Journal of Molecular Sciences 24, no. 22: 16266. https://doi.org/10.3390/ijms242216266
APA StyleLi, M., Qing, R., Tao, F., Xu, P., & Zhang, S. (2023). Dynamic Dimerization of Chemokine Receptors and Potential Inhibitory Role of Their Truncated Isoforms Revealed through Combinatorial Prediction. International Journal of Molecular Sciences, 24(22), 16266. https://doi.org/10.3390/ijms242216266