Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside
Abstract
:1. Introduction
2. Protein Biomarkers in Clinical TBI; Current Status and Unmet Needs
3. Biofluids Available for Protein Biomarker Analysis in the Clinical Setting
4. The Role of Protein Biomarkers in the Clinical Decision-Making Process for Various TBI Severities
5. Mild TBI and Concussions
Biofluid | Pros | Cons | Issues | Unmet Needs |
---|---|---|---|---|
Blood (serum, plasma) | Easy, minimally invasive, isolating serum/plasma well established | Intracranial origin of mechanistic biomarkers is unclear | Blood may be collected, and processed outside of clinical lab setting, affecting quality; cell lysis can occur during clothing contaminating serum with intracellular components forming white blood cells; the choice of anti-coagulant can affect assay; platelets can contaminate | Quality control of the input biofluid (plasma and/or serum) for intactness; reference ranges for normal values [164] |
Exosomes | Potential to improve brain specificity | Lengthy, not standardized isolation; requires ultra-sensitive and lengthy assays | Most studies use frozen blood as source, purity and brain specificity are issues | Well-established, easy, standardized isolation procedure; quality control; reference ranges for normal values |
6. Moderate/Severe TBI
Biofluid | Pros | Cons | Issues | Unmet Needs |
---|---|---|---|---|
Blood (serum, plasma) | Easy, minimally invasive, isolating plasma and serum well established | Except for the true damage markers (USCH-L1; GFAP; tau; NF-L), the intracranial origin of mechanistic biomarkers is unclear | Cell lysis can occur during clothing contaminating serum with intracellular components forming white blood cells; the choice of anti-coagulant can affect assay; platelets can contaminate | Quality control of plasma and/or serum for integrity; normal ranges not standardized |
CSF | Reflects intracranial fluid milieu; closeness to brain parenchyma | Lacks region specificity, low global damage and high level of focal damage can result in the same biomarker levels | Potential blood contamination reduces diagnostic value | Quality control for CSF integrity; normal ranges not standardized |
bEDF/cMD | Reflects intraparenchymal changes | Highly regional, very low volume, requires high-sensitivity assays | Limited number of clinical sites use it. Recovery affected by the size of proteins, charges | Quality control for CSF integrity; normal ranges not standardized |
7. Issues with Integrating Protein Biomarkers in the Clinical Decision-Making Process to Improve Diagnosis and Prognosis and to Guide Treatment
8. Unmet Needs
- (1)
- Standardization: The number one technical issue is a lack of standardized preanalytical and analytical procedures and clinical-grade standardized assay platforms. Studies have shown that preanalytical variables majorly affect the quality of the analyte—blood/plasm/serum, CSF, etc.—and consequently the output data. Preanalytical variables include the procedures of collecting, handling, processing, storage and transportation of biofluids. Combined, these factors can change the output data as much as an order of magnitude (!). These preanalytical variables must be of special concern for settings outside of a clinical lab—sport fields, military field environment—because patients with moderate and severe TBI are in a clinical setting with strict medical procedures [164]. In the absence of indicator(s) of sample quality, like the 28S-to-18S ratio for RNA work, employing strict preanalytical procedures outside of a clinical setting is essential toward establishing blood-based protein biomarkers. Measuring hemoglobin contamination is an important first step toward that goal. Protein degradation should especially be a serious concern because virtually all analytical platforms are antibody-based. Their accuracy (and specificity) relies on the intactness of epitope(s) specific for the protein biomarker of interest. Different antibody-based analytical systems utilize different antibodies, which are typically proprietary information. Not surprisingly, the biomarker values of identical input samples varied significantly between the different platforms used for an analysis [188]. Damaged or altered epitopes can especially be consequential for the high and/or ultra-high sensitivity analytical platforms. Mass spectroscopy can offer a potential solution but the current technology—while it is rapidly evolving—still cannot meet the sensitivity and speed required for clinical utility.
- (2)
- Specificity: Due to the cellular and molecular complexity of the brain—parenchyma and stroma—and the similarly complex pathobiological responses induced with TBI, there is no single biomarker—the “troponin of TBI” has emerged as having clinical utility. The six markers—UCH-L1, GFAP, S100B, tau/pTau, NF-L—are not only different in their cellular specificity and intracellular origin—e.g., soluble vs. cytoskeletal—but their biological half-lives, clearances from the intracranial space and their stability in the extracellular milieu are vastly different. None of them used individually are specific for TBI but elevated biofluid levels simply reflect neural cell damage that can be caused by other insults or pathologies. However, the specificity increases when they are co-analyzed as a biomarker panel. The use of such a “sixplex” will have improved specificity, accuracy and sensitivity and will reduce false negative protein biomarker results. Because these proteins are of different molecular entities, different stabilities and different biological half-lives, the challenge is not only to co-analyze them reliably and reproducibly in biofluids but to create an algorithm that takes their biological and molecular variables into account.
- (3)
- Reference ranges: Clinically utilized fluid-based biomarkers of metabolism, inflammation and organ damage—e.g., troponin—have well-established and verified normal reference ranges based on values found in healthy individuals. Moreover, some of the markers have established reference ranges for different age groups, biological males or females and races. No such reference ranges exist for any of the neural damage markers—GFAP, UCH-L1, NF-L, tau—and their various phosphorylated forms—used in most clinical studies. In the absence of such reference ranges, the current and published fluid biomarker data, which widely vary from laboratory to laboratory, have only limited, if any, clinical utility.
- (4)
- Longitudinal studies: It has been amply demonstrated that TBI-induced pathobiologies change over time, but most studies provide only single-timepoint-based protein biomarker data. Serial sampling and biomarker analyses are critical to identify the ongoing pathobiological changes, their onset and their extent. Such an approach will identify potential therapeutic targets, their therapeutic windows as well as disease trend and potential outcome. Such serial sampling and analyses, even if they are restricted to the “classic”, neural damage markers—GFAP, UCH-L1, NF-L, tau and its various phosphorylated forms—will provide clinically useful information about the disease trend. Elevated biofluid levels of these markers beyond the acute phase will indicate ongoing processes that keep damaging and/or killing neurons, glia and axons.
- (5)
- Expanded biomarker panel: Neural damage markers alone cannot identify the pathobiologies causing the extended damage. Measuring time-dependent changes in the biofluid levels of “mechanistic” protein biomarkers and markers of endothelial stress, vascular injury, cell adhesion, inflammation, etc., will identify the pathobiological changes and importantly their temporal pattern. If we know the pathobiologies, we can identify potential therapeutic targets and/or therapies. Determining the time-dependent changes in the biofluid level of protein biomarkers will help to identify potential therapeutic windows for pharmacological or other interventions. The good news is that several of such “mechanistic” markers have already been routinely analyzed in clinical/ER settings and can identify ongoing pathobiological processes, e.g., inflammation. The combination with neural damage markers such as an extended biomarker panel—if the technical, etc., issues listed above are addressed—can serve as the basis of clinical utility.
- (6)
- Biomarker data management and integration: Currently, biomarker data are deposited in medical records, and only a fraction of the data are available typically through scientific reports or publications [189]. The biomarker data in those reports or publications are unstructured and not readily available for data mining, machine learning (ML) or other Artificial Intelligence (AI) approaches. Depositing fluid-based protein biomarker data in a database, e.g., maintained by the NIH or insurance companies, will also allow to harmonize and integrate fluid-based protein biomarker data with imaging, physiology, neurological, etc., data currently collected in clinical settings and thus taking advantage of the ever-increasing power and capabilities of Generative AI [190].
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yue, J.K.; Kobeissy, F.H.; Jain, S.; Sun, X.; Phelps, R.R.L.; Korley, F.K.; Gardner, R.C.; Ferguson, A.R.; Huie, J.R.; Schneider, A.L.C.; et al. Neuroinflammatory Biomarkers for Traumatic Brain Injury Diagnosis and Prognosis: A TRACK-TBI Pilot Study. Neurotrauma Rep. 2023, 4, 171–183. [Google Scholar] [CrossRef]
- Schneider, A.L.C.; Barber, J.; Temkin, N.; Gardner, R.C.; Manley, G.; Diaz-Arrastia, R.; Sandsmark, D. Associations of Preexisting Vascular Risk Factors With Outcomes After Traumatic Brain Injury: A TRACK-TBI Study. J. Head Trauma Rehabil. 2023, 38, E88–E98. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.K.; Yang, Z.; Zhu, T.; Shi, Y.; Rubenstein, R.; Tyndall, J.A.; Manley, G.T. An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert. Rev. Mol. Diagn. 2018, 18, 165–180. [Google Scholar] [CrossRef]
- Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15. [Google Scholar] [CrossRef]
- Chunyk, A.G.; Joyce, A.; Fischer, S.K.; Dysinger, M.; Mikulskis, A.; Jeromin, A.; Lawrence-Henderson, R.; Baker, D.; Yeung, D. A Multi-site In-depth Evaluation of the Quanterix Simoa from a User’s Perspective. AAPS J. 2017, 20, 10. [Google Scholar] [CrossRef]
- Poorbaugh, J.; Samanta, T.; Bright, S.W.; Sissons, S.E.; Chang, C.Y.; Oberoi, P.; MacDonald, A.J.; Martin, A.P.; Cox, K.L.; Benschop, R.J. Measurement of IL-21 in human serum and plasma using ultrasensitive MSD S-PLEX(R) and Quanterix SiMoA methodologies. J. Immunol. Methods 2019, 466, 9–16. [Google Scholar] [CrossRef]
- Courville, E.; Kazim, S.F.; Vellek, J.; Tarawneh, O.; Stack, J.; Roster, K.; Roy, J.; Schmidt, M.; Bowers, C. Machine learning algorithms for predicting outcomes of traumatic brain injury: A systematic review and meta-analysis. Surg. Neurol. Int. 2023, 14, 262. [Google Scholar] [CrossRef]
- GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 56–87. [Google Scholar] [CrossRef]
- Agoston, D.V.; Skold, M.K. Editorial: When Physics Meets Biology; Biomechanics and Biology of Traumatic Brain Injury. Front. Neurol. 2016, 7, 91. [Google Scholar] [CrossRef]
- Pugh, M.J.; Kennedy, E.; Prager, E.M.; Humpherys, J.; Dams-O’Connor, K.; Hack, D.; McCafferty, M.K.; Wolfe, J.; Yaffe, K.; McCrea, M.; et al. Phenotyping the Spectrum of Traumatic Brain Injury: A Review and Pathway to Standardization. J. Neurotrauma 2021, 38, 3222–3234. [Google Scholar] [CrossRef]
- Folweiler, K.A.; Sandsmark, D.K.; Diaz-Arrastia, R.; Cohen, A.S.; Masino, A.J. Unsupervised Machine Learning Reveals Novel Traumatic Brain Injury Patient Phenotypes with Distinct Acute Injury Profiles and Long-Term Outcomes. J. Neurotrauma 2020, 37, 1431–1444. [Google Scholar] [CrossRef]
- Al-Adli, N.; Akbik, O.S.; Rail, B.; Montgomery, E.; Caldwell, C.; Barrie, U.; Vira, S.; Al Tamimi, M.; Bagley, C.A.; Aoun, S.G. The Clinical Use of Serum Biomarkers in Traumatic Brain Injury: A Systematic Review Stratified by Injury Severity. World Neurosurg. 2021, 155, e418–e438. [Google Scholar] [CrossRef]
- Agoston, D.V.; Shutes-David, A.; Peskind, E.R. Biofluid biomarkers of traumatic brain injury. Brain Inj. 2017, 31, 1195–1203. [Google Scholar] [CrossRef] [PubMed]
- Agoston, D.V.; Elsayed, M. Serum-Based Protein Biomarkers in Blast-Induced Traumatic Brain Injury Spectrum Disorder. Front. Neurol. 2012, 3, 107. [Google Scholar] [CrossRef] [PubMed]
- Reith, F.C.; Van den Brande, R.; Synnot, A.; Gruen, R.; Maas, A.I. The reliability of the Glasgow Coma Scale: A systematic review. Intensive Care Med. 2016, 42, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Edwards, S.L. Using the Glasgow Coma Scale: Analysis and limitations. Br. J. Nurs. 2001, 10, 92–101. [Google Scholar] [CrossRef]
- Jennett, B. The history of the Glasgow Coma Scale: An interview with professor Bryan Jennett. Interview by Carole Rush. Int. J. Trauma Nurs. 1997, 3, 114–118. [Google Scholar]
- Segatore, M.; Way, C. The Glasgow Coma Scale: Time for change. Heart Lung 1992, 21, 548–557. [Google Scholar]
- Teasdale, G.; Maas, A.; Lecky, F.; Manley, G.; Stocchetti, N.; Murray, G. The Glasgow Coma Scale at 40 years: Standing the test of time. Lancet Neurol. 2014, 13, 844–854. [Google Scholar] [CrossRef]
- Reith, F.C.; Synnot, A.; van den Brande, R.; Gruen, R.L.; Maas, A.I. Factors Influencing the Reliability of the Glasgow Coma Scale: A Systematic Review. Neurosurgery 2017, 80, 829–839. [Google Scholar] [CrossRef]
- Chieregato, A.; Martino, C.; Pransani, V.; Nori, G.; Russo, E.; Noto, A.; Simini, B. Classification of a traumatic brain injury: The Glasgow Coma scale is not enough. Acta Anaesthesiol. Scand. 2010, 54, 696–702. [Google Scholar] [CrossRef]
- Lu, J.; Murray, G.D.; Steyerberg, E.W.; Butcher, I.; McHugh, G.S.; Lingsma, H.; Mushkudiani, N.; Choi, S.; Maas, A.I.; Marmarou, A. Effects of Glasgow Outcome Scale misclassification on traumatic brain injury clinical trials. J. Neurotrauma 2008, 25, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The new neurometabolic cascade of concussion. Neurosurgery 2014, 75 (Suppl. S4), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Giza, C.C.; Hovda, D.A. The Neurometabolic Cascade of Concussion. J. Athl. Train. 2001, 36, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Hovda, D.A.; Lee, S.M.; Smith, M.L.; Von Stuck, S.; Bergsneider, M.; Kelly, D.; Shalmon, E.; Martin, N.; Caron, M.; Mazziotta, J.; et al. The neurochemical and metabolic cascade following brain injury: Moving from animal models to man. J. Neurotrauma 1995, 12, 903–906. [Google Scholar] [CrossRef] [PubMed]
- Ott, L.; Young, B.; McClain, C. The metabolic response to brain injury. JPEN J. Parenter. Enter. Nutr. 1987, 11, 488–493. [Google Scholar] [CrossRef]
- Sulhan, S.; Lyon, K.A.; Shapiro, L.A.; Huang, J.H. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J. Neurosci. Res. 2020, 98, 19–28. [Google Scholar] [CrossRef]
- Da Silva Meirelles, L.; Simon, D.; Regner, A. Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Int. J. Mol. Sci. 2017, 18, 1082. [Google Scholar] [CrossRef]
- Delage, C.; Taib, T.; Mamma, C.; Lerouet, D.; Besson, V.C. Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021, 13, 1624. [Google Scholar] [CrossRef]
- Menacho, S.; Hawryluk, G. Failure of an effective physiologic threshold compliance tool to demonstrate benefit in a clinical trial of traumatic brain injury patients. J. Clin. Neurosci. 2021, 88, 113–119. [Google Scholar] [CrossRef]
- Schumacher, M.; Denier, C.; Oudinet, J.P.; Adams, D.; Guennoun, R. Progesterone neuroprotection: The background of clinical trial failure. J. Steroid Biochem. Mol. Biol. 2016, 160, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Stein, D.G. Embracing failure: What the Phase III progesterone studies can teach about TBI clinical trials. Brain Inj. 2015, 29, 1259–1272. [Google Scholar] [CrossRef]
- Ahmed, Z. Current Clinical Trials in Traumatic Brain Injury. Brain Sci. 2022, 12, 527. [Google Scholar] [CrossRef] [PubMed]
- Nasrallah, F.; Bellapart, J.; Walsham, J.; Jacobson, E.; To, X.V.; Manzanero, S.; Brown, N.; Meyer, J.; Stuart, J.; Evans, T.; et al. PREdiction and Diagnosis using Imaging and Clinical biomarkers Trial in Traumatic Brain Injury (PREDICT-TBI) study protocol: An observational, prospective, multicentre cohort study for the prediction of outcome in moderate-to-severe TBI. BMJ Open 2023, 13, e067740. [Google Scholar] [CrossRef]
- Sandsmark, D.K.; Bashir, A.; Wellington, C.L.; Diaz-Arrastia, R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019, 103, 367–379. [Google Scholar] [CrossRef]
- Hanas, J.S.; Hocker, J.R.S.; Lerner, M.R.; Couch, J.R. Distinguishing and phenotype monitoring of traumatic brain injury and post-concussion syndrome including chronic migraine in serum of Iraq and Afghanistan war veterans. PLoS ONE 2019, 14, e0215762. [Google Scholar] [CrossRef]
- Casillas-Espinosa, P.M.; Andrade, P.; Santana-Gomez, C.; Paananen, T.; Smith, G.; Ali, I.; Ciszek, R.; Ndode-Ekane, X.E.; Brady, R.D.; Tohka, J.; et al. Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Res. 2019, 156, 106131. [Google Scholar] [CrossRef]
- Diaz-Arrastia, R.; Agostini, M.A.; Madden, C.J.; Van Ness, P.C. Posttraumatic epilepsy: The endophenotypes of a human model of epileptogenesis. Epilepsia 2009, 50 (Suppl. S2), 14–20. [Google Scholar] [CrossRef]
- Thelin, E.; Al Nimer, F.; Frostell, A.; Zetterberg, H.; Blennow, K.; Nyström, H.; Svensson, M.; Bellander, B.M.; Piehl, F.; Nelson, D.W. A Serum Protein Biomarker Panel Improves Outcome Prediction in Human Traumatic Brain Injury. J. Neurotrauma 2019, 36, 2850–2862. [Google Scholar] [CrossRef]
- Shultz, S.R.; McDonald, S.J.; Vonder Haar, C.; Meconi, A.; Vink, R.; van Donkelaar, P.; Taneja, C.; Iverson, G.L.; Christie, B.R. The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neurosci. Biobehav. Rev. 2017, 76 Pt B, 396–414. [Google Scholar] [CrossRef]
- Percy, A.J.; Byrns, S.; Pennington, S.R.; Holmes, D.T.; Anderson, N.L.; Agreste, T.M.; Duffy, M.A. Clinical translation of MS-based, quantitative plasma proteomics: Status, challenges, requirements, and potential. Expert Rev. Proteom. 2016, 13, 673–684. [Google Scholar] [CrossRef]
- Kleiman, R.J.; Ehlers, M.D. Data gaps limit the translational potential of preclinical research. Sci. Transl. Med. 2016, 8, 320ps321. [Google Scholar] [CrossRef]
- Hall, E.D. Translational Principles of Neuroprotective and Neurorestorative Therapy Testing in Animal Models of Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group, LLC.: Oxfordshire, UK, 2016. [Google Scholar]
- Agoston, D.V.; Vink, B.; Helmy, A.; Risling, M.; Nelson, D.W.; Prins, M.P.D. How to Translate Time; the Temporal Aspects of Rodent and Human Pathobiological Processes in Traumatic Brain Injury. J. Neurotrauma 2019, 36, 1724–1737. [Google Scholar] [CrossRef]
- Vespa, P. Traumatic brain injury is a longitudinal disease process. Curr. Opin. Neurol. 2017, 30, 563–564. [Google Scholar] [CrossRef]
- Agoston, D. Bench-to-bedside and bedside back to the bench: Seeking a better understanding of the acute pathophysiological process in severe traumatic brain injury. Front. Neurol. 2015, 6, 47. [Google Scholar] [CrossRef]
- Kunz, A.; Dirnagl, U.; Mergenthaler, P. Acute pathophysiological processes after ischaemic and traumatic brain injury. Best. Pract. Res. Clin. Anaesthesiol. 2010, 24, 495–509. [Google Scholar] [CrossRef]
- Rauchman, S.H.; Zubair, A.; Jacob, B.; Rauchman, D.; Pinkhasov, A.; Placantonakis, D.G.; Reiss, A.B. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front. Neurosci. 2023, 17, 1090672. [Google Scholar] [CrossRef]
- Shultz, S.R.; Shah, A.D.; Huang, C.; Dill, L.K.; Schittenhelm, R.B.; Morganti-Kossmann, M.C.; Semple, B.D. Temporal proteomics of human cerebrospinal fluid after severe traumatic brain injury. J. Neuroinflamm. 2022, 19, 291. [Google Scholar] [CrossRef]
- McCredie, V.A.; Chavarría, J.; Baker, A.J. How do we identify the crashing traumatic brain injury patient—The intensivist’s view. Curr. Opin. Crit. Care 2021, 27, 320–327. [Google Scholar] [CrossRef]
- McCrea, M.A.; Giacino, J.T.; Barber, J.; Temkin, N.R.; Nelson, L.D.; Levin, H.S.; Dikmen, S.; Stein, M.; Bodien, Y.G.; Boase, K.; et al. Functional Outcomes Over the First Year After Moderate to Severe Traumatic Brain Injury in the Prospective, Longitudinal TRACK-TBI Study. JAMA Neurol. 2021, 78, 982–992. [Google Scholar] [CrossRef]
- Hanafy, S.; Xiong, C.; Chan, V.; Sutton, M.; Escobar, M.; Colantonio, A.; Mollayeva, T. Comorbidity in traumatic brain injury and functional outcomes: A systematic review. Eur. J. Phys. Rehabil. Med. 2021, 57, 535–550. [Google Scholar] [CrossRef]
- Zahniser, E.; Temkin, N.R.; Machamer, J.; Barber, J.; Manley, G.T.; Markowitz, A.J.; Dikmen, S.S. The Functional Status Examination in Mild Traumatic Brain Injury: A TRACK-TBI Sub-Study. Arch. Clin. Neuropsychol. 2019, 34, 1165–1174. [Google Scholar] [CrossRef]
- BTF. Management of Severe TBI; BTF: St Leonards, Australia, 2022. [Google Scholar]
- Volovici, V.; Ercole, A.; Citerio, G.; Stocchetti, N.; Haitsma, I.K.; Huijben, J.A.; Dirven, C.M.F.; van der Jagt, M.; Steyerberg, E.W.; Nelson, D.; et al. Variation in Guideline Implementation and Adherence Regarding Severe Traumatic Brain Injury Treatment: A CENTER-TBI Survey Study in Europe. World Neurosurg. 2019, 125, e515–e520. [Google Scholar] [CrossRef]
- Svedung Wettervik, T.M.; Lewén, A.; Enblad, P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front. Neurol. 2021, 12, 638132. [Google Scholar] [CrossRef]
- Elf, K.; Nilsson, P.; Enblad, P. Outcome after traumatic brain injury improved by an organized secondary insult program and standardized neurointensive care. Crit. Care Med. 2002, 30, 2129–2134. [Google Scholar] [CrossRef]
- Lefevre-Dognin, C.; Cogné, M.; Perdrieau, V.; Granger, A.; Heslot, C.; Azouvi, P. Definition and epidemiology of mild traumatic brain injury. Neurochirurgie 2021, 67, 218–221. [Google Scholar] [CrossRef]
- Krueger, E.M.; DiGiorgio, A.M.; Jagid, J.; Cordeiro, J.G.; Farhat, H. Current Trends in Mild Traumatic Brain Injury. Cureus 2021, 13, e18434. [Google Scholar] [CrossRef]
- Lumba-Brown, A.; Yeates, K.O.; Sarmiento, K.; Breiding, M.J.; Haegerich, T.M.; Gioia, G.A.; Turner, M.; Benzel, E.C.; Suskauer, S.J.; Giza, C.C.; et al. Centers for Disease Control and Prevention Guideline on the Diagnosis and Management of Mild Traumatic Brain Injury Among Children. JAMA Pediatr. 2018, 172, e182853. [Google Scholar] [CrossRef]
- Godoy, D.A.; Seifi, A.; Chi, G.; Paredes Saravia, L.; Rabinstein, A.A. Intracranial Pressure Monitoring in Moderate Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit. Care 2022, 37, 514–522. [Google Scholar] [CrossRef]
- Azad, T.D.; Shah, P.P.; Kim, H.B.; Stevens, R.D. Endotypes and the Path to Precision in Moderate and Severe Traumatic Brain Injury. Neurocrit. Care 2022, 37, 259–266. [Google Scholar] [CrossRef]
- Robinson, C.P. Moderate and Severe Traumatic Brain Injury. Continuum 2021, 27 (Suppl. S2), 1278–1300. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, C.; Nelson, D.W.; Zeiler, F.A.; Ercole, A.; Ghatan, P.H.; von Horn, H.; Risling, M.; Svensson, M.; Agoston, D.V.; Bellander, B.M.; et al. Influence of Blood-Brain Barrier Integrity on Brain Protein Biomarker Clearance in Severe Traumatic Brain Injury: A Longitudinal Prospective Study. J. Neurotrauma 2020, 37, 1381–1391. [Google Scholar] [CrossRef]
- Lin, I.H.; Kamnaksh, A.; Aniceto, R.; McCullough, J.; Bekdash, R.; Eklund, M.; Ghatan, P.H.; Risling, M.; Svensson, M.; Bellander, B.M.; et al. Time-Dependent Changes in the Biofluid Levels of Neural Injury Markers in Severe Traumatic Brain Injury Patients-Cerebrospinal Fluid and Cerebral Microdialysates: A Longitudinal Prospective Pilot Study. Neurotrauma Rep. 2023, 4, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Younger, D.S. Mild traumatic brain injury and sports-related concussion. Handb. Clin. Neurol. 2023, 196, 475–494. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, V.; Richter, S.; Whitehouse, D.P.; Bloom, B.M.; Lecky, F. Fluid biomarkers and neuroimaging in mild traumatic brain injury: Current uses and potential future directions for clinical use in emergency medicine. Emerg. Med. J. 2023, 40, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.; Sandsmark, D.K. Clinical Updates in Mild Traumatic Brain Injury (Concussion). Neuroimaging Clin. N. Am. 2023, 33, 271–278. [Google Scholar] [CrossRef]
- Voormolen, D.C.; Zeldovich, M.; Haagsma, J.A.; Polinder, S.; Friedrich, S.; Maas, A.I.R.; Wilson, L.; Steyerberg, E.W.; Covic, A.; Andelic, N.; et al. Outcomes after Complicated and Uncomplicated Mild Traumatic Brain Injury at Three-and Six-Months Post-Injury: Results from the CENTER-TBI Study. J. Clin. Med. 2020, 9, 1525. [Google Scholar] [CrossRef]
- Lingsma, H.F.; Yue, J.K.; Maas, A.I.; Steyerberg, E.W.; Manley, G.T.; Cooper, S.R.; Dams-O’Connor, K.; Gordon, W.A.; Menon, D.K.; Mukherjee, P.; et al. Outcome prediction after mild and complicated mild traumatic brain injury: External validation of existing models and identification of new predictors using the TRACK-TBI pilot study. J. Neurotrauma 2015, 32, 83–94. [Google Scholar] [CrossRef]
- Iverson, G.L.; Lange, R.T.; Waljas, M.; Liimatainen, S.; Dastidar, P.; Hartikainen, K.M.; Soimakallio, S.; Ohman, J. Outcome from Complicated versus Uncomplicated Mild Traumatic Brain Injury. Rehabil. Res. Pract. 2012, 2012, 415740. [Google Scholar] [CrossRef]
- Voormolen, D.C.; Haagsma, J.A.; Polinder, S.; Maas, A.I.R.; Steyerberg, E.W.; Vuleković, P.; Sewalt, C.A.; Gravesteijn, B.Y.; Covic, A.; Andelic, N.; et al. Post-Concussion Symptoms in Complicated vs. Uncomplicated Mild Traumatic Brain Injury Patients at Three and Six Months Post-Injury: Results from the CENTER-TBI Study. J. Clin. Med. 2019, 8, 1921. [Google Scholar] [CrossRef]
- Wofford, K.L.; Loane, D.J.; Cullen, D.K. Acute drivers of neuroinflammation in traumatic brain injury. Neural Regen. Res. 2019, 14, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.W.; McGeachy, M.J.; Bayır, H.; Clark, R.S.; Loane, D.J.; Kochanek, P.M. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Corps, K.N.; Roth, T.L.; McGavern, D.B. Inflammation and neuroprotection in traumatic brain injury. JAMA Neurol. 2015, 72, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Finnie, J.W. Neuroinflammation: Beneficial and detrimental effects after traumatic brain injury. Inflammopharmacology 2013, 21, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Huie, J.R.; Chou, A.; Torres-Espin, A.; Nielson, J.L.; Yuh, E.L.; Gardner, R.C.; Diaz-Arrastia, R.; Manley, G.T.; Ferguson, A.R. FAIR Data Reuse in Traumatic Brain Injury: Exploring Inflammation and Age as Moderators of Recovery in the TRACK-TBI Pilot. Front. Neurol. 2021, 12, 768735. [Google Scholar] [CrossRef]
- Kumar, R.G.; Diamond, M.L.; Boles, J.A.; Berger, R.P.; Tisherman, S.A.; Kochanek, P.M.; Wagner, A.K. Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 2015, 45, 253–262. [Google Scholar] [CrossRef]
- Walker, K.A.; Chen, J.; Shi, L.; Yang, Y.; Fornage, M.; Zhou, L.; Schlosser, P.; Surapaneni, A.; Grams, M.E.; Duggan, M.R.; et al. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci. Transl. Med. 2023, 15, eadf5681. [Google Scholar] [CrossRef]
- Needham, E.J.; Helmy, A.; Zanier, E.R.; Jones, J.L.; Coles, A.J.; Menon, D.K. The immunological response to traumatic brain injury. J. Neuroimmunol. 2019, 332, 112–125. [Google Scholar] [CrossRef]
- Needham, E.J.; Stoevesandt, O.; Thelin, E.P.; Zetterberg, H.; Zanier, E.R.; Al Nimer, F.; Ashton, N.J.; Outtrim, J.G.; Newcombe, V.F.J.; Mousa, H.S.; et al. Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury. J. Immunol. 2021, 207, 90–100. [Google Scholar] [CrossRef]
- Newcombe, V.F.J.; Ashton, N.J.; Posti, J.P.; Glocker, B.; Manktelow, A.; Chatfield, D.A.; Winzeck, S.; Needham, E.; Correia, M.M.; Williams, G.B.; et al. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain 2022, 145, 2064–2076. [Google Scholar] [CrossRef]
- Needham, E. Brain Injury in COVID-19 is Associated with Autoinflammation and Autoimmunity. medRxiv 2021. [Google Scholar] [CrossRef]
- Needham, E.J.; Ren, A.L.; Digby, R.J.; Norton, E.J.; Ebrahimi, S.; Outtrim, J.G.; Chatfield, D.A.; Manktelow, A.E.; Leibowitz, M.M.; Newcombe, V.F.J.; et al. Brain injury in COVID-19 is associated with dysregulated innate and adaptive immune responses. Brain 2022, 145, 4097–4107. [Google Scholar] [CrossRef] [PubMed]
- Adrian, H.; Mårten, K.; Salla, N.; Lasse, V. Biomarkers of Traumatic Brain Injury: Temporal Changes in Body Fluids. eNeuro 2016, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Agoston, D.V. How to translate time? The temporal aspect of human and rodent biology. Front. Neurol. 2017, 18, 92. [Google Scholar] [CrossRef] [PubMed]
- Brunswick, A.S.; Hwang, B.Y.; Appelboom, G.; Hwang, R.Y.; Piazza, M.A.; Connolly, E.S., Jr. Serum biomarkers of spontaneous intracerebral hemorrhage induced secondary brain injury. J. Neurol. Sci. 2012, 321, 1–10. [Google Scholar] [CrossRef]
- Wang, H.C.; Sun, C.F.; Chen, H.; Chen, M.S.; Shen, G.; Ma, Y.B.; Wang, B.D. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj. 2014, 28, 1491–1503. [Google Scholar] [CrossRef]
- Hinson, H.E.; Rowell, S.; Schreiber, M. Clinical evidence of inflammation driving secondary brain injury: A systematic review. J. Trauma Acute Care Surg. 2015, 78, 184–191. [Google Scholar] [CrossRef]
- Krishnamurthy, K.; Laskowitz, D.T. Frontiers in Neuroscience Cellular and Molecular Mechanisms of Secondary Neuronal Injury following Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group, LLC.: Oxfordshire, UK, 2016. [Google Scholar]
- Somayaji, M.R.; Przekwas, A.J.; Gupta, R.K. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms. Curr. Neuropharmacol. 2018, 16, 484–504. [Google Scholar] [CrossRef]
- Lazaridis, C.; Rusin, C.G.; Robertson, C.S. Secondary brain injury: Predicting and preventing insults. Neuropharmacology 2019, 145, 145–152. [Google Scholar] [CrossRef]
- Gyorgy, A.; Ling, G.; Wingo, D.; Walker, J.; Tong, L.; Parks, S.; Januszkiewicz, A.; Baumann, R.; Agoston, D.V. Time-dependent changes in serum biomarker levels after blast traumatic brain injury. J. Neurotrauma 2011, 28, 1121–1126. [Google Scholar] [CrossRef]
- Agoston, D.V.; Risling, M. Where will the (New) Drugs for Traumatic Brain Injury Treatment be Coming From? Front. Neurol. 2012, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Agoston, D.V.; Risling, M.; Bellander, B.M. Bench-to-bedside and bedside back to the bench; coordinating clinical and experimental traumatic brain injury studies. Front. Neurol. 2012, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.M. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit. Care 2014, 20, 217–229. [Google Scholar] [CrossRef]
- Thelin, E.P.; Tajsic, T.; Zeiler, F.A.; Menon, D.K.; Hutchinson, P.J.A.; Carpenter, K.L.H.; Morganti-Kossmann, M.C.; Helmy, A. Monitoring the Neuroinflammatory Response Following Acute Brain Injury. Front. Neurol. 2017, 8, 351. [Google Scholar] [CrossRef]
- Thelin, E.P.; Zeiler, F.A.; Ercole, A.; Mondello, S.; Buki, A.; Bellander, B.M.; Helmy, A.; Menon, D.K.; Nelson, D.W. Serial Sampling of Serum Protein Biomarkers for Monitoring Human Traumatic Brain Injury Dynamics: A Systematic Review. Front. Neurol. 2017, 8, 300. [Google Scholar] [CrossRef]
- Ahmed, F.; Gyorgy, A.; Kamnaksh, A.; Ling, G.; Tong, L.; Parks, S.; Agoston, D. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 2012, 33, 3705–3711. [Google Scholar] [CrossRef]
- Rostami, E.; Gyorgy, A.; Davidsson, J.; Walker, J.; Wingo, D.; Angeria, M.; BM, B.; Agoston, D.; Risling, M. Time-dependent changes in serum level of protein biomarkers after focal traumatic brain injury. Int. J. Neurorehabilit. 2015, 2, 2–6. [Google Scholar] [CrossRef]
- Whitehouse, D.P.; Vile, A.R.; Adatia, K.; Herlekar, R.; Roy, A.S.; Mondello, S.; Czeiter, E.; Amrein, K.; Büki, A.; Maas, A.I.R.; et al. Blood Biomarkers and Structural Imaging Correlations Post-Traumatic Brain Injury: A Systematic Review. Neurosurgery 2022, 90, 170–179. [Google Scholar] [CrossRef]
- Yue, J.K.; Upadhyayula, P.S.; Avalos, L.N.; Deng, H.; Wang, K.K.W. The Role of Blood Biomarkers for Magnetic Resonance Imaging Diagnosis of Traumatic Brain Injury. Medicina 2020, 56, 87. [Google Scholar] [CrossRef]
- Bouvier, D.; Oris, C.; Brailova, M.; Durif, J.; Sapin, V. Interest of blood biomarkers to predict lesions in medical imaging in the context of mild traumatic brain injury. Clin. Biochem. 2020, 85, 5–11. [Google Scholar] [CrossRef]
- Wright, D.K.; Trezise, J.; Kamnaksh, A.; Bekdash, R.; Johnston, L.A.; Ordidge, R.; Semple, B.D.; Gardner, A.J.; Stanwell, P.; O’Brien, T.J.; et al. Behavioral, blood, and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Sci. Rep. 2016, 6, 28713. [Google Scholar] [CrossRef] [PubMed]
- Amoo, M.; Henry, J.; O’Halloran, P.J.; Brennan, P.; Husien, M.B.; Campbell, M.; Caird, J.; Javadpour, M.; Curley, G.F. S100B, GFAP, UCH-L1 and NSE as predictors of abnormalities on CT imaging following mild traumatic brain injury: A systematic review and meta-analysis of diagnostic test accuracy. Neurosurg. Rev. 2021, 45, 1171–1193. [Google Scholar] [CrossRef]
- Lamers, K.J.; Vos, P.; Verbeek, M.M.; Rosmalen, F.; van Geel, W.J.; van Engelen, B.G. Protein S-100B, neuron-specific enolase (NSE), myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) in cerebrospinal fluid (CSF) and blood of neurological patients. Brain Res. Bull. 2003, 61, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Yates, D. Traumatic brain injury: Serum levels of GFAP and S100B predict outcomes in TBI. Nat. Rev. Neurol. 2011, 7, 63. [Google Scholar] [PubMed]
- Richard, M.; Lagares, A.; Bondanese, V.; de la Cruz, J.; Mejan, O.; Pavlov, V.; Payen, J.F. Study protocol for investigating the performance of an automated blood test measuring GFAP and UCH-L1 in a prospective observational cohort of patients with mild traumatic brain injury: European BRAINI study. BMJ Open 2021, 11, e043635. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament light chain as a biomarker in neurological disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Karantali, E.; Kazis, D.; McKenna, J.; Chatzikonstantinou, S.; Petridis, F.; Mavroudis, I. Neurofilament light chain in patients with a concussion or head impacts: A systematic review and meta-analysis. Eur. J. Trauma Emerg. Surg. 2021, 48, 1555–1567. [Google Scholar] [CrossRef]
- Narayanan, S.; Shanker, A.; Khera, T.; Subramaniam, B. Neurofilament light: A narrative review on biomarker utility. Fac. Rev. 2021, 10, 46. [Google Scholar] [CrossRef]
- Thelin, E.P.; Nelson, D.W.; Bellander, B.M. A review of the clinical utility of serum S100B protein levels in the assessment of traumatic brain injury. Acta Neurochir. 2017, 159, 209–225. [Google Scholar] [CrossRef]
- Agoston, D.V. COVID-19 and Traumatic Brain Injury (TBI); What We Can Learn From the Viral Pandemic to Better Understand the Biology of TBI, Improve Diagnostics and Develop Evidence-Based Treatments. Front. Neurol. 2021, 12, 752937. [Google Scholar] [CrossRef]
- Sun, M.; Symons, G.F.; O’Brien, W.T.; McCullough, J.; Aniceto, R.; Lin, I.H.; Eklund, M.; Brady, R.D.; Costello, D.; Chen, Z.; et al. Serum Protein Biomarkers of Inflammation, Oxidative Stress, and Cerebrovascular and Glial Injury in Concussed Australian Football Players. J. Neurotrauma 2022, 39, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Baker, T.L.; Agoston, D.V.; Brady, R.D.; Major, B.; McDonald, S.J.; Mychasiuk, R.; Wright, D.K.; Yamakawa, G.R.; Sun, M.; Shultz, S.R. Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist 2022, 28, 594–612. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Ahmed, M.E.; Selvakumar, G.P.; Thangavel, R.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Burton, C.; James, D.; Zaheer, A. Mast Cell Activation, Neuroinflammation, and Tight Junction Protein Derangement in Acute Traumatic Brain Injury. Mediat. Inflamm. 2020, 2020, 4243953. [Google Scholar] [CrossRef]
- Abdullahi, W.; Tripathi, D.; Ronaldson, P.T. Blood-brain barrier dysfunction in ischemic stroke: Targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 2018, 315, C343–C356. [Google Scholar] [CrossRef]
- Forster, C. Tight junctions and the modulation of barrier function in disease. Histochem. Cell Biol. 2008, 130, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Wolburg, H.; Lippoldt, A. Tight junctions of the blood-brain barrier: Development, composition and regulation. Vasc. Pharmacol. 2002, 38, 323–337. [Google Scholar] [CrossRef]
- Kniesel, U.; Wolburg, H. Tight junctions of the blood-brain barrier. Cell. Mol. Neurobiol. 2000, 20, 57–76. [Google Scholar] [CrossRef]
- Morita, K.; Sasaki, H.; Furuse, M.; Tsukita, S. Endothelial claudin: Claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J. Cell Biol. 1999, 147, 185–194. [Google Scholar] [CrossRef]
- Hinson, H.E.; Jacobs, J.; McWeeney, S.; Wachana, A.; Shi, T.; Martin, K.; Rodland, K. Antibody-Free Mass Spectrometry Identification of Vascular Integrity Markers in Major Trauma. Neurotrauma Rep. 2021, 2, 322–329. [Google Scholar] [CrossRef]
- Rusiecki, J.; Levin, L.I.; Wang, L.; Byrne, C.; Krishnamurthy, J.; Chen, L.; Galdzicki, Z.; French, L.M. Blast traumatic brain injury and serum inflammatory cytokines: A repeated measures case-control study among U.S. military service members. J. Neuroinflamm. 2020, 17, 20. [Google Scholar] [CrossRef]
- Sharma, R.; Rosenberg, A.; Bennett, E.R.; Laskowitz, D.T.; Acheson, S.K. A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PLoS ONE 2017, 12, e0173798. [Google Scholar] [CrossRef] [PubMed]
- Abou-El-Hassan, H.; Sukhon, F.; Assaf, E.J.; Bahmad, H.; Abou-Abbass, H.; Jourdi, H.; Kobeissy, F.H. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol. Biol. 2017, 1598, 65–99. [Google Scholar] [CrossRef]
- Vafadari, B.; Salamian, A.; Kaczmarek, L. MMP-9 in translation: From molecule to brain physiology, pathology, and therapy. J. Neurochem. 2016, 139 (Suppl. S2), 91–114. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Muneer, P.M.; Pfister, B.J.; Haorah, J.; Chandra, N. Role of Matrix Metalloproteinases in the Pathogenesis of Traumatic Brain Injury. Mol. Neurobiol. 2016, 53, 6106–6123. [Google Scholar] [CrossRef] [PubMed]
- Balança, B.; Desmurs, L.; Grelier, J.; Perret-Liaudet, A.; Lukaszewicz, A.C. DAMPs and RAGE Pathophysiology at the Acute Phase of Brain Injury: An Overview. Int. J. Mol. Sci. 2021, 22, 2439. [Google Scholar] [CrossRef]
- Tsitsipanis, C.; Miliaraki, M.; Paflioti, E.; Lazarioti, S.; Moustakis, N.; Ntotsikas, K.; Theofanopoulos, A.; Ilia, S.; Vakis, A.; Simos, P.; et al. Inflammation biomarkers IL-6 and IL-10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp. Ther. Med. 2023, 26, 364. [Google Scholar] [CrossRef]
- Gyoneva, S.; Ransohoff, R.M. Inflammatory reaction after traumatic brain injury: Therapeutic potential of targeting cell-cell communication by chemokines. Trends Pharmacol. Sci. 2015, 36, 471–480. [Google Scholar] [CrossRef]
- Neamțu, B.M.; Visa, G.; Maniu, I.; Ognean, M.L.; Pérez-Elvira, R.; Dragomir, A.; Agudo, M.; Șofariu, C.R.; Gheonea, M.; Pitic, A.; et al. A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury. Int. J. Environ. Res. Public Health 2021, 18, 4807. [Google Scholar] [CrossRef]
- Brown, A.W.; Malec, J.F.; McClelland, R.L.; Diehl, N.N.; Englander, J.; Cifu, D.X. Clinical elements that predict outcome after traumatic brain injury: A prospective multicenter recursive partitioning (decision-tree) analysis. J. Neurotrauma 2005, 22, 1040–1051. [Google Scholar] [CrossRef]
- Andrews, P.J.; Sleeman, D.H.; Statham, P.F.; McQuatt, A.; Corruble, V.; Jones, P.A.; Howells, T.P.; Macmillan, C.S. Predicting recovery in patients suffering from traumatic brain injury by using admission variables and physiological data: A comparison between decision tree analysis and logistic regression. J. Neurosurg. 2002, 97, 326–336. [Google Scholar] [CrossRef]
- Schindler, C.R.; Best, A.; Woschek, M.; Verboket, R.D.; Marzi, I.; Eichler, K.; Störmann, P. Cranial CT is a mandatory tool to exclude asymptomatic cerebral hemorrhage in elderly patients on anticoagulation. Front. Med. 2023, 10, 1117777. [Google Scholar] [CrossRef] [PubMed]
- Bonney, P.A.; Briggs, A.; Briggs, R.G.; Jarvis, C.A.; Attenello, F.; Giannotta, S.L. Rate of Intracranial Hemorrhage After Minor Head Injury. Cureus 2020, 12, e10653. [Google Scholar] [CrossRef] [PubMed]
- Ghaith, H.S.; Nawar, A.A.; Gabra, M.D.; Abdelrahman, M.E.; Nafady, M.H.; Bahbah, E.I.; Ebada, M.A.; Ashraf, G.M.; Negida, A.; Barreto, G.E. A Literature Review of Traumatic Brain Injury Biomarkers. Mol. Neurobiol. 2022, 59, 4141–4158. [Google Scholar] [CrossRef]
- Pei, Y.; Tang, X.; Zhang, E.; Lu, K.; Xia, B.; Zhang, J.; Huang, Y.; Zhang, H.; Dong, L. The diagnostic and prognostic value of glial fibrillary acidic protein in traumatic brain injury: A systematic review and meta-analysis. Eur. J. Trauma. Emerg. Surg. 2023, 49, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Puffer, R.C.; Puccio, A.M.; Yuh, E.L.; Yue, J.K.; Diaz-Arrastia, R.; Korley, F.K.; Wang, K.K.W.; Sun, X.; Taylor, S.R.; et al. Point-of-Care Platform Blood Biomarker Testing of Glial Fibrillary Acidic Protein versus S100 Calcium-Binding Protein B for Prediction of Traumatic Brain Injuries: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. J. Neurotrauma 2020, 37, 2460–2467. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Biberthaler, P.; Welch, R.D.; Lewis, L.M.; Barzo, P.; Bogner-Flatz, V.; Gunnar Brolinson, P.; Buki, A.; Chen, J.Y.; Christenson, R.H.; et al. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): A multicentre observational study. Lancet Neurol. 2018, 17, 782–789. [Google Scholar] [CrossRef]
- Cheng, F.; Yuan, Q.; Yang, J.; Wang, W.; Liu, H. The prognostic value of serum neuron-specific enolase in traumatic brain injury: Systematic review and meta-analysis. PLoS ONE 2014, 9, e106680. [Google Scholar] [CrossRef]
- Mercier, E.; Boutin, A.; Lauzier, F.; Fergusson, D.A.; Simard, J.F.; Zarychanski, R.; Moore, L.; McIntyre, L.A.; Archambault, P.; Lamontagne, F.; et al. Predictive value of S-100beta protein for prognosis in patients with moderate and severe traumatic brain injury: Systematic review and meta-analysis. BMJ 2013, 346, f1757. [Google Scholar] [CrossRef]
- Unden, L.; Calcagnile, O.; Unden, J.; Reinstrup, P.; Bazarian, J. Validation of the Scandinavian guidelines for initial management of minimal, mild and moderate traumatic brain injury in adults. BMC Med. 2015, 13, 292. [Google Scholar] [CrossRef]
- Lagerstedt, L.; Azurmendi, L.; Tenovuo, O.; Katila, A.J.; Takala, R.S.K.; Blennow, K.; Newcombe, V.F.J.; Maanpää, H.R.; Tallus, J.; Hossain, I.; et al. Interleukin 10 and Heart Fatty Acid-Binding Protein as Early Outcome Predictors in Patients With Traumatic Brain Injury. Front. Neurol. 2020, 11, 376. [Google Scholar] [CrossRef]
- Farragher, C.D.; Ku, Y.; Powers, J.E. The Potential Role of Neurofilament Light in Mild Traumatic Brain Injury Diagnosis: A Systematic Review. Cureus 2022, 14, e31301. [Google Scholar] [CrossRef] [PubMed]
- Tovar, P. Chapter 14—Tau protein, biomarker for traumatic brain injury. In Biomarkers for Traumatic Brain Injury; Wu, A.H.B., Peacock, W.F., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 205–208. [Google Scholar]
- Chen, H.; Ding, V.Y.; Zhu, G.; Jiang, B.; Li, Y.; Boothroyd, D.; Rezaii, P.G.; Bet, A.M.; Paulino, A.D.; Weber, A.; et al. Association between Blood and Computed Tomographic Imaging Biomarkers in a Cohort of Mild Traumatic Brain Injury Patients. J. Neurotrauma 2022, 39, 1329–1338. [Google Scholar] [CrossRef]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Ekanayake, V.; Lippa, S.M.; Chou, Y.Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; et al. Time course and diagnostic utility of NfL, tau, GFAP, and UCH-L1 in subacute and chronic TBI. Neurology 2020, 95, e623–e636. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, K.; Dejam, D.; Duong, C.; Ding, K.; French, A.; Ng, E.; Preet, K.; Franks, A.; Kwan, I.; Phillips, H.W.; et al. Systematic Review of Serum Biomarkers in Traumatic Brain Injury. Cureus 2021, 13, e17056. [Google Scholar] [CrossRef]
- O’Connell, G.C.; Alder, M.L.; Smothers, C.G.; Still, C.H.; Webel, A.R.; Moore, S.M. Use of high-sensitivity digital ELISA improves the diagnostic performance of circulating brain-specific proteins for detection of traumatic brain injury during triage. Neurol. Res. 2020, 42, 346–353. [Google Scholar] [CrossRef]
- Hicks, C.; Dhiman, A.; Barrymore, C.; Goswami, T. Traumatic Brain Injury Biomarkers, Simulations and Kinetics. Bioengineering 2022, 9, 612. [Google Scholar] [CrossRef]
- Zeiler, F.A.; Thelin, E.P.; Czosnyka, M.; Hutchinson, P.J.; Menon, D.K.; Helmy, A. Cerebrospinal Fluid and Microdialysis Cytokines in Severe Traumatic Brain Injury: A Scoping Systematic Review. Front. Neurol. 2017, 8, 331. [Google Scholar] [CrossRef]
- Hutchinson, P.J.; Jalloh, I.; Helmy, A.; Carpenter, K.L.; Rostami, E.; Bellander, B.M.; Boutelle, M.G.; Chen, J.W.; Claassen, J.; Dahyot-Fizelier, C.; et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015, 41, 1517–1528. [Google Scholar] [CrossRef]
- Hillered, L.; Persson, L.; Nilsson, P.; Ronne-Engstrom, E.; Enblad, P. Continuous monitoring of cerebral metabolism in traumatic brain injury: A focus on cerebral microdialysis. Curr. Opin. Crit. Care 2006, 12, 112–118. [Google Scholar] [CrossRef]
- Hutchinson, P.J. Microdialysis in traumatic brain injury--methodology and pathophysiology. Acta Neurochir. Suppl. 2005, 95, 441–445. [Google Scholar]
- Hillered, L.; Vespa, P.M.; Hovda, D.A. Translational neurochemical research in acute human brain injury: The current status and potential future for cerebral microdialysis. J. Neurotrauma 2005, 22, 3–41. [Google Scholar] [CrossRef] [PubMed]
- Ungerstedt, U.; Rostami, E. Microdialysis in neurointensive care. Curr. Pharm. Des. 2004, 10, 2145–2152. [Google Scholar] [CrossRef]
- Bellander, B.M.; Cantais, E.; Enblad, P.; Hutchinson, P.; Nordstrom, C.H.; Robertson, C.; Sahuquillo, J.; Smith, M.; Stocchetti, N.; Ungerstedt, U.; et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004, 30, 2166–2169. [Google Scholar] [CrossRef] [PubMed]
- Ungerstedt, U. Microdialysis--principles and applications for studies in animals and man. J. Intern. Med. 1991, 230, 365–373. [Google Scholar] [CrossRef]
- Oddo, M.; Hutchinson, P.J. Understanding and monitoring brain injury: The role of cerebral microdialysis. Intensive Care Med. 2018, 44, 1945–1948. [Google Scholar] [CrossRef]
- Nordström, C.H. Cerebral microdialysis in TBI-limitations and possibilities. Acta Neurochir. 2017, 159, 2275–2277. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef] [PubMed]
- Korley, F.K.; Peacock, W.F.; Eckner, J.T.; Maio, R.; Levin, S.; Bechtold, K.T.; Peters, M.; Roy, D.; Falk, H.J.; Hall, A.J.; et al. Clinical Gestalt for Early Prediction of Delayed Functional and Symptomatic Recovery From Mild Traumatic Brain Injury Is Inadequate. Acad. Emerg. Med. 2019, 26, 1384–1387. [Google Scholar] [CrossRef]
- Peacock, W.F.T.; Van Meter, T.E.; Mirshahi, N.; Ferber, K.; Gerwien, R.; Rao, V.; Sair, H.I.; Diaz-Arrastia, R.; Korley, F.K. Derivation of a Three Biomarker Panel to Improve Diagnosis in Patients with Mild Traumatic Brain Injury. Front. Neurol. 2017, 8, 641. [Google Scholar] [CrossRef]
- McDonald, S.J.; Shultz, S.R.; Agoston, D.V. The Known Unknowns: An Overview of the State of Blood-based Protein Biomarkers of Mild Traumatic Brain Injury. J. Neurotrauma 2021, 38, 2652–2666. [Google Scholar] [CrossRef]
- Bazarian, J.J.; Welch, R.D.; Caudle, K.; Jeffrey, C.A.; Chen, J.Y.; Chandran, R.; McCaw, T.; Datwyler, S.A.; Zhang, H.; McQuiston, B. Accuracy of a rapid glial fibrillary acidic protein/ubiquitin carboxyl-terminal hydrolase L1 test for the prediction of intracranial injuries on head computed tomography after mild traumatic brain injury. Acad. Emerg. Med. 2021, 28, 1308–1317. [Google Scholar] [CrossRef]
- Anto-Ocrah, M.; Mannix, R.; Bazarian, J.J. Age and Sex Interactions in Recovery From Mild Traumatic Brain Injury: More Questions Than Answers. JAMA Netw. Open 2021, 4, e213068. [Google Scholar] [CrossRef] [PubMed]
- Lewis, L.M.; Papa, L.; Bazarian, J.J.; Weber, A.; Howard, R.; Welch, R.D. Biomarkers May Predict Unfavorable Neurological Outcome after Mild Traumatic Brain Injury. J. Neurotrauma 2020, 37, 2624–2631. [Google Scholar] [CrossRef] [PubMed]
- Posti, J.P.; Hossain, I.; Takala, R.S.; Liedes, H.; Newcombe, V.; Outtrim, J.; Katila, A.J.; Frantzen, J.; Ala-Seppala, H.; Coles, J.P.; et al. Glial Fibrillary Acidic Protein and Ubiquitin C-Terminal Hydrolase-L1 Are Not Specific Biomarkers for Mild CT-Negative Traumatic Brain Injury. J. Neurotrauma 2017, 34, 1427–1438. [Google Scholar] [CrossRef]
- Luoto, T.M.; Raj, R.; Posti, J.P.; Gardner, A.J.; Panenka, W.J.; Iverson, G.L. A Systematic Review of the Usefulness of Glial Fibrillary Acidic Protein for Predicting Acute Intracranial Lesions following Head Trauma. Front. Neurol. 2017, 8, 652. [Google Scholar] [CrossRef]
- Pujol-Calderón, F.; Portelius, E.; Zetterberg, H.; Blennow, K.; Rosengren, L.E.; Höglund, K. Neurofilament changes in serum and cerebrospinal fluid after acute ischemic stroke. Neurosci. Lett. 2019, 698, 58–63. [Google Scholar] [CrossRef]
- Sjölin, K.; Aulin, J.; Wallentin, L.; Eriksson, N.; Held, C.; Kultima, K.; Oldgren, J.; Burman, J. Serum Neurofilament Light Chain in Patients With Atrial Fibrillation. J. Am. Heart Assoc. 2022, 11, e025910. [Google Scholar] [CrossRef]
- Sofou, K.; Shahim, P.; Tulinius, M.; Blennow, K.; Zetterberg, H.; Mattsson, N.; Darin, N. Cerebrospinal fluid neurofilament light is associated with survival in mitochondrial disease patients. Mitochondrion 2019, 46, 228–235. [Google Scholar] [CrossRef]
- Jones, C.M.C.; Harmon, C.; McCann, M.; Gunyan, H.; Bazarian, J.J. S100B outperforms clinical decision rules for the identification of intracranial injury on head CT scan after mild traumatic brain injury. Brain Inj. 2020, 34, 407–414. [Google Scholar] [CrossRef]
- Ananthaharan, A.; Kravdal, G.; Straume-Naesheim, T.M. Utility and effectiveness of the Scandinavian guidelines to exclude computerized tomography scanning in mild traumatic brain injury—A prospective cohort study. BMC Emerg. Med. 2018, 18, 44. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B story: From biomarker to active factor in neural injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef]
- MacAulay, N. Molecular mechanisms of brain water transport. Nat. Rev. Neurosci. 2021, 22, 326–344. [Google Scholar] [CrossRef]
- Czeiter, E.; Amrein, K.; Gravesteijn, B.Y.; Lecky, F.; Menon, D.K.; Mondello, S.; Newcombe, V.F.J.; Richter, S.; Steyerberg, E.W.; Vyvere, T.V.; et al. Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine 2020, 56, 102785. [Google Scholar] [CrossRef] [PubMed]
- Czeiter, E.; Mondello, S.; Kovacs, N.; Sandor, J.; Gabrielli, A.; Schmid, K.; Tortella, F.; Wang, K.K.; Hayes, R.L.; Barzo, P.; et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 2012, 29, 1770–1778. [Google Scholar] [CrossRef] [PubMed]
- Ercole, A.; Thelin, E.P.; Holst, A.; Bellander, B.M.; Nelson, D.W. Kinetic modelling of serum S100b after traumatic brain injury. BMC Neurol. 2016, 16, 93. [Google Scholar] [CrossRef]
- Ooi, S.Z.Y.; Spencer, R.J.; Hodgson, M.; Mehta, S.; Phillips, N.L.; Preest, G.; Manivannan, S.; Wise, M.P.; Galea, J.; Zaben, M. Interleukin-6 as a prognostic biomarker of clinical outcomes after traumatic brain injury: A systematic review. Neurosurg. Rev. 2022, 45, 3035–3054. [Google Scholar] [CrossRef]
- Helmy, A.; Guilfoyle, M.R.; Carpenter, K.L.; Pickard, J.D.; Menon, D.K.; Hutchinson, P.J. Recombinant human interleukin-1 receptor antagonist promotes M1 microglia biased cytokines and chemokines following human traumatic brain injury. J. Cereb. Blood Flow. Metab. 2016, 36, 1434–1448. [Google Scholar] [CrossRef]
- Schneider Soares, F.M.; Menezes de Souza, N.; Liborio Schwarzbold, M.; Paim Diaz, A.; Costa Nunes, J.; Hohl, A.; Nunes Abreu da Silva, P.; Vieira, J.; Lisboa de Souza, R.; More Bertotti, M.; et al. Interleukin-10 is an independent biomarker of severe traumatic brain injury prognosis. Neuroimmunomodulation 2012, 19, 377–385. [Google Scholar] [CrossRef]
- Hiebert, J.B.; Shen, Q.; Thimmesch, A.R.; Pierce, J.D. Traumatic brain injury and mitochondrial dysfunction. Am. J. Med. Sci. 2015, 350, 132–138. [Google Scholar] [CrossRef]
- Agoston, D.V. Big Data, Artificial Intelligence and Machine Learning in Neurotrauma. In Leveraging Biomedical and Healthcare Data: Semantics, Analytics and Knowledge; Kobeissy, F.A.A., Zaraket, F.A., Wang, K., Eds.; Academic Press: London, UK, 2019; pp. 53–75. [Google Scholar]
- Khalili, H.; Rismani, M.; Nematollahi, M.A.; Masoudi, M.S.; Asadollahi, A.; Taheri, R.; Pourmontaseri, H.; Valibeygi, A.; Roshanzamir, M.; Alizadehsani, R.; et al. Prognosis prediction in traumatic brain injury patients using machine learning algorithms. Sci. Rep. 2023, 13, 960. [Google Scholar] [CrossRef]
- Nourelahi, M.; Dadboud, F.; Khalili, H.; Niakan, A.; Parsaei, H. A machine learning model for predicting favorable outcome in severe traumatic brain injury patients after 6 months. Acute Crit. Care 2022, 37, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Kimawaha, P.; Jusakul, A.; Junsawang, P.; Thanan, R.; Titapun, A.; Khuntikeo, N.; Techasen, A. Establishment of a Potential Serum Biomarker Panel for the Diagnosis and Prognosis of Cholangiocarcinoma Using Decision Tree Algorithms. Diagnostics 2021, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Lasseter, H.C.; Provost, A.C.; Chaby, L.E.; Daskalakis, N.P.; Haas, M.; Jeromin, A. Cross-platform comparison of highly sensitive immunoassay technologies for cytokine markers: Platform performance in post-traumatic stress disorder and Parkinson’s disease. Cytokine X 2020, 2, 100027. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, A.R.; Nielson, J.L.; Cragin, M.H.; Bandrowski, A.E.; Martone, M.E. Big data from small data: Data-sharing in the ‘long tail’ of neuroscience. Nat. Neurosci. 2014, 17, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Rajaei, F.; Cheng, S.; Williamson, C.A.; Wittrup, E.; Najarian, K. AI-Based Decision Support System for Traumatic Brain Injury: A Survey. Diagnostics 2023, 13, 1640. [Google Scholar] [CrossRef] [PubMed]
TBI Severity Pathobiology/Abnormalities | Sub-Concussive | Mild/Concussion | Repeated/ Complicated Mild | Moderate | Severe |
---|---|---|---|---|---|
Metabolic | |||||
- hypoxia | -/+(?) | -/+(?) | +(?) | ++ | +++ |
- oxidative stress | -/+(?) | -/+(?) | +(?) | + | +++ |
- cerebral glucose | - | -/+(?) | +(?) | + | +++ |
- excitotoxicity | - | -/+(?) | +(?) | + | +++ |
Neuron, astroglia | |||||
- stress/damage | - | -/+(?) | + | ++ | +++ |
- loss/death | - | - | -/+ | ++ | +++ |
Axon (TAI, DAI) | |||||
- stress/damage | - | -/+(?) | + | ++ | +++ |
- loss | - | - | -/+ | + | +++ |
Vascular/endothelial | |||||
- stress | -/+ | + | ++ | +++ | +++ |
- damage | - | -/+(?) | + | ++ | +++ |
- (micro)bleeding | - | - | -/+ | + | +++ |
Cerebral edema | |||||
- cytotoxic | - | - | - | - | +/- |
- vasogenic | - | - | - | +/- | ++ |
Inflammatory response | |||||
- neuroinflammation | - | ? | -/+ | ++ | +++ |
- autoimmune | - | - | ? | +/-? | ++? |
Technical Requirements | Can Be Measured in Easily Available Biofluids | Can Be Assayed Multiple Times | High Sensitivity, Specificity Assays Available | Standardized Assay Platform | Standardized Outputs | Rapid Results |
---|---|---|---|---|---|---|
Requirements Fulfilled | Yes | Yes | Yes (platform dependent) | No | No | No |
Discrepancy | N/A | N/A | N/A | Critical | Critical | Critical |
Clinical Requirements | Normal Reference Ranges Available | Disease-Related Trajectory of Results Defined | Conceptual Understanding of Results | Results Identify Therapeutic Interventions | Results Help with Avoiding or Withdrawing Harmful Therapies | Results Reflect Success of Therapeutic Interventions |
Requirements Fulfilled | No | No | Yes | No | No | No |
Extent of Discrepancy | Critical | Critical | N/A | Critical | Critical | Critical |
Biomarker | Abbr. | Sens. | Spec. | Notes and References |
---|---|---|---|---|
Ubiquitin C-Terminal Hydrolase-1 | UCH-L1 | 0.97 | 0.40 | Mild TBI; +/- Intracranial Lesions [136] |
Glial Fibrillary Acidic Protein | GFAP | 0.93 | 0.66 | All Severities: +/- Intracranial Lesions [137] |
0.99–0.84 | 0.15–0.59 | Mild TBI; CT+/-: Concentration Ranges of 13.1–190.1 pg/mL [138] | ||
DuoSet | UCH-L1/GFAP | 0.976 | 0.364 | Mild TBI; CT+: Predetermined Cut-off of UCH-L1 = 327 pg/mL; GFAP = 22 pg/mL [139] |
Neuron Specific Enolase | NSE | 0.79 | 0.50 | Severe TBI; Mortality [140] |
0.72 | 0.66 | Severe TBI; Unfavorable Neurological Prognosis [141] | ||
Calcium Binding Protein S100 Subunit Beta | S100B | 0.95 | 0.47 | Mild TBI; +/- Traumatic Intracranial Hemorrhages [141,142] |
Neurofilament Light Chain | NF-L | 0.72 | 0.96 | Favorable Outcome (GOSE > 5) [143,144] |
Tau Protein | Tau | 0.88 | 0.94 | Predicting Poor Outcomes [145] |
Severity, Biofluids | Mild/Complicated Mild TBI (GCS: 13–15) | Moderate TBI (GCS: 9–12) | Severe TBI (GCS: 3–8) |
---|---|---|---|
Blood (plasma, serum) * | + | + | + |
(Exosomes) ** | + | NA | NA |
Cerebrospinal fluid | -/+ | +/- | + |
Brain extracellular fluid (bECF; cerebral microdialysate) *** | - | - | +/- |
Criteria | Comments |
---|---|
Easily assayable in easily available biological fluid(s) | Typically, this will be blood (plasma/serum) |
Standardized assay platform(s) available/does not rely on specialist technique for analysis | Assay platforms must be consistent across different hardware and software and over time if analyzed at multiple times; assays have to be robust, e.g., stability of the marker should be known within the biofluid if samples are not assayed immediately |
High sensitivity and specificity | In order to supplement existing diagnostic modalities, such as head CT, high sensitivity and specificity are required |
Rapid results | For clinical implementation, results must be available within a time frame that allows clinical decisions to be made; typically, this would be within an hour |
Can be assayed multiple times | Timing in relation to injury has a major impact on interpretation |
Reference ranges in health are available | Data on pathological thresholds and the range/standard deviation must be known in health and alternative pathologies with similar clinical presentations |
Natural history or disease-related trajectory of response is well defined | Trajectory of change is more informative than one-off assessments |
Clinicians have a clear conceptual understanding of what the result means | Ambiguous results or those that may be confounded by other factors (e.g., multi-system trauma, reduced hepatic or renal clearance) can cause additional problems for non-specialist decision makers |
Result has a clear impact on management | Unless there is a specific fork in the clinical decision-making algorithm, additional information from a biomarker may not make a practical difference to the patient |
Reduction in time in hospital/further investigations | ‘Rule-out’ tests/triaging can be useful in speeding up patient flow within emergency departments, or avoiding unnecessary imaging |
After a therapy is instituted | Given the paucity of potentially available therapies in TBI, implementation of biomarkers in clinical practice may be limited, but can indicate treatment efficacy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agoston, D.V.; Helmy, A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. Int. J. Mol. Sci. 2023, 24, 16267. https://doi.org/10.3390/ijms242216267
Agoston DV, Helmy A. Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. International Journal of Molecular Sciences. 2023; 24(22):16267. https://doi.org/10.3390/ijms242216267
Chicago/Turabian StyleAgoston, Denes V., and Adel Helmy. 2023. "Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside" International Journal of Molecular Sciences 24, no. 22: 16267. https://doi.org/10.3390/ijms242216267
APA StyleAgoston, D. V., & Helmy, A. (2023). Fluid-Based Protein Biomarkers in Traumatic Brain Injury: The View from the Bedside. International Journal of Molecular Sciences, 24(22), 16267. https://doi.org/10.3390/ijms242216267