Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer
Abstract
:1. Introduction
2. Normal Saline Is Not ‘Normal’: Insights from Fluid Resuscitation Studies
Type of Study | Reported Effects | References |
---|---|---|
Clinical (Intravenous infusion) | Electrolyte disturbance
| [21,22,23,24,25] |
Renal dysfunction
| [21,22,24,25,31,32] | |
Cardiac dysfunction
| [25] | |
Pre-clinical (Intrarenal infusion) | Renal dysfunction
| [27] |
Pre-clinical (Peritoneal lavage) | Decrease in pH | [33,34] |
Mesothelial cell damage
| [33,34,35] | |
In vitro (Primary culture of mesothelial cells) | Loss of cell adhesion | [33] |
Induction of oxidative stress | [36] | |
Impairment of fibrinolytic properties | [34,36] |
3. The Use of Normal Saline in Peritoneal Lavage and Its Impact on Mesothelial Cells
4. The Unique Biology of the Omentum and Omental Metastasis
5. Impact of Normal Saline on the Omentum and Risk of Metastasis
6. Could Balanced Crystalloids Be Used Instead of Normal Saline for Peritoneal Lavage?
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liebermann-Meffert, D. The greater omentum. Anatomy, embryology, and surgical applications. Surg. Clin. N. Am. 2000, 80, 275–293. [Google Scholar] [CrossRef]
- Platell, C.; Cooper, D.; Papadimitriou, J.M.; Hall, J.C. The omentum. World J. Gastroenterol. 2000, 6, 169–176. [Google Scholar] [CrossRef]
- Lengyel, E. Ovarian cancer development and metastasis. Am. J. Pathol. 2010, 177, 1053–1064. [Google Scholar] [CrossRef]
- National Cancer Institute Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Ovarian Cancer. Available online: https://seer.cancer.gov/statfacts/html/ovary.html (accessed on 26 October 2023).
- Arie, A.B.; McNally, L.; Kapp, D.S.; Teng, N.N. The omentum and omentectomy in epithelial ovarian cancer: A reappraisal: Part II—The role of omentectomy in the staging and treatment of apparent early stage epithelial ovarian cancer. Gynecol. Oncol. 2013, 131, 784–790. [Google Scholar] [CrossRef]
- Ariake, K.; Yokoyama, S.; Doi, T.; Takemura, S.; Kajiwara, T.; Kuroda, F. Effect of omentum removal on the risk for postoperative adhesive small bowel obstruction recurrence: A case-control study. Int. J. Surg. 2015, 13, 27–32. [Google Scholar] [CrossRef]
- Ambroze, W.L., Jr.; Wolff, B.G.; Kelly, K.A.; Beart, R.W., Jr.; Dozois, R.R.; Ilstrup, D.M. Let sleeping dogs lie: Role of the omentum in the ileal pouch-anal anastomosis procedure. Dis. Colon Rectum. 1991, 34, 563–565. [Google Scholar] [CrossRef]
- McNally, L.; Teng, N.N.; Kapp, D.S.; Karam, A. Does omentectomy in epithelial ovarian cancer affect survival? An analysis of the Surveillance, Epidemiology, and End Results database. Int. J. Gynecol. Cancer 2015, 25, 607–615. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Hirakawa, H.; Wang, H.; Mizunuma, H. Is omentectomy mandatory in the operation for ovarian cancer? Preliminary results in a rat study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 164, 89–92. [Google Scholar] [CrossRef]
- Refky, B.; Gaballah, K.; Attallah, K.; Mohamed, H. EP960 Total omentectomy versus omental sampling in early ovarian cancer surgery. Int. J. Gynecol. Cancer 2019, 29, A511. [Google Scholar] [CrossRef]
- Bilbao, M.; Aikins, J.K.; Ostrovsky, O. Is routine omentectomy of grossly normal omentum helpful in surgery for ovarian cancer? A look at the tumor microenvironment and its clinical implications. Gynecol. Oncol. 2021, 161, 78–82. [Google Scholar] [CrossRef]
- Skala, S.L.; Hagemann, I.S. Optimal sampling of grossly normal omentum in staging of gynecologic malignancies. Int. J. Gynecol. Pathol. 2015, 34, 281–287. [Google Scholar] [CrossRef]
- Awad, S.; Allison, S.P.; Lobo, D.N. The history of 0.9% saline. Clin. Nutr. 2008, 27, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Lazarus-Barlow, W.S. On the initial rate of osmosis of blood-serum with reference to the composition of “physiological saline solution” in mammals. J. Physiol. 1896, 20, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Oh, M.S.; Uribarri, J. Electrolytes, water, and acid-base balance. In Modern Nutrition in Health and Disease, 10th ed.; Shils, M.E., Shike, M., Ross, A.C., Caballero, B., Cousins, R.J., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 149–193. [Google Scholar]
- Nguyen, M.K.; Kurtz, I. Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J. Appl. Physiol. 2006, 100, 1293–1300. [Google Scholar] [CrossRef]
- Heavens, K.R.; Kenefick, R.W.; Caruso, E.M.; Spitz, M.G.; Cheuvront, S.N. Validation of equations used to predict plasma osmolality in a healthy adult cohort. Am. J. Clin. Nutr. 2014, 100, 1252–1256. [Google Scholar] [CrossRef]
- Agnati, L.F.; Marcoli, M.; Leo, G.; Maura, G.; Guidolin, D. Homeostasis and the concept of ‘interstitial fluids hierarchy’: Relevance of cerebrospinal fluid sodium concentrations and brain temperature control (Review). Int. J. Mol. Med. 2017, 39, 487–497. [Google Scholar] [CrossRef]
- Blumberg, N.; Cholette, J.M.; Pietropaoli, A.P.; Phipps, R.; Spinelli, S.L.; Eaton, M.P.; Noronha, S.A.; Seghatchian, J.; Heal, J.M.; Refaai, M.A. 0.9% NaCl (Normal Saline)—Perhaps not so normal after all? Transfus. Apher. Sci. 2018, 57, 127–131. [Google Scholar] [CrossRef]
- Finfer, S.; Myburgh, J.; Bellomo, R. Intravenous fluid therapy in critically ill adults. Nat. Rev. Nephrol. 2018, 14, 541–557. [Google Scholar] [CrossRef]
- Scheingraber, S.; Rehm, M.; Sehmisch, C.; Finsterer, U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999, 90, 1265–1270. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Cox, E.F.; Francis, S.T.; Lobo, D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 2012, 256, 18–24. [Google Scholar] [CrossRef]
- Williams, E.L.; Hildebrand, K.L.; McCormick, S.A.; Bedel, M.J. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth. Analg. 1999, 88, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.D.; Bagshaw, S.M.; Goldstein, S.L.; Scherer, L.A.; Duan, M.; Schermer, C.R.; Kellum, J.A. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann. Surg. 2012, 255, 821–829. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, S.A.; Karkouti, K.; Wijeysundera, D.; Minkovich, L.; Tait, G.; Beattie, W.S. Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: A propensity-matched cohort study. Anesth. Analg. 2013, 117, 412–421. [Google Scholar] [CrossRef]
- Reddi, B.A. Why is saline so acidic (and does it really matter?). Int. J. Med. Sci. 2013, 10, 747–750. [Google Scholar] [CrossRef]
- Wilcox, C.S. Regulation of renal blood flow by plasma chloride. J. Clin. Investig. 1983, 71, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Bell, P.D.; Lapointe, J.Y.; Sabirov, R.; Hayashi, S.; Peti-Peterdi, J.; Manabe, K.; Kovacs, G.; Okada, Y. Macula densa cell signaling involves ATP release through a maxi anion channel. Proc. Natl. Acad. Sci. USA 2003, 100, 4322–4327. [Google Scholar] [CrossRef]
- Burnstock, G.; Evans, L.C.; Bailey, M.A. Purinergic signalling in the kidney in health and disease. Purinergic Signal. 2014, 10, 71–101. [Google Scholar] [CrossRef]
- de-Madaria, E.; Herrera-Marante, I.; González-Camacho, V.; Bonjoch, L.; Quesada-Vázquez, N.; Almenta-Saavedra, I.; Miralles-Maciá, C.; Acevedo-Piedra, N.G.; Roger-Ibáñez, M.; Sánchez-Marin, C.; et al. Fluid resuscitation with lactated Ringer’s solution vs normal saline in acute pancreatitis: A triple-blind, randomized, controlled trial. United Eur. Gastroenterol. J. 2018, 6, 63–72. [Google Scholar] [CrossRef]
- Semler, M.W.; Self, W.H.; Wanderer, J.P.; Ehrenfeld, J.M.; Wang, L.; Byrne, D.W.; Stollings, J.L.; Kumar, A.B.; Hughes, C.G.; Hernandez, A.; et al. Balanced crystalloids versus saline in critically ill adults. N. Engl. J. Med. 2018, 378, 829–839. [Google Scholar] [CrossRef]
- Self, W.H.; Semler, M.W.; Wanderer, J.P.; Wang, L.; Byrne, D.W.; Collins, S.P.; Slovis, C.M.; Lindsell, C.J.; Ehrenfeld, J.M.; Siew, E.D.; et al. Balanced crystalloids versus saline in noncritically ill adults. N. Engl. J. Med. 2018, 378, 819–828. [Google Scholar] [CrossRef]
- Akasaka, H.; Lee, W.; Ko, S.Y.; Lengyel, E.; Naora, H. Normal saline remodels the omentum and stimulates its receptivity for transcoelomic metastasis. JCI Insight. 2023, 8, e167336. [Google Scholar] [CrossRef] [PubMed]
- Cwalinski, J.; Staniszewski, R.; Baum, E.; Jasinski, T.; Mackowiak, B.; Bręborowicz, A. Normal saline may promote formation of peritoneal adhesions. Int. J. Clin. Exp. Med. 2015, 8, 8828–8834. [Google Scholar] [PubMed]
- van Westreenen, M.; van den Tol, P.M.; Pronk, A.; Marquet, R.L.; Jeekel, J.; Leguit, P. Perioperative lavage promotes intraperitoneal adhesion in the rat. Eur. Surg. Res. 1999, 31, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Połubinska, A.; Breborowicz, A.; Staniszewski, R.; Oreopoulos, D.G. Normal saline induces oxidative stress in peritoneal mesothelial cells. J. Pediatr. Surg. 2008, 43, 1821–1826. [Google Scholar] [CrossRef]
- Whitehouse, J.S.; Weigelt, J.A. Diagnostic peritoneal lavage: A review of indications, technique, and interpretation. Scand. J. Trauma Resusc. Emerg. Med. 2009, 17, 13. [Google Scholar] [CrossRef]
- Whiteside, O.J.; Tytherleigh, M.G.; Thrush, S.; Farouk, R.; Galland, R.B. Intra-operative peritoneal lavage—Who does it and why? Ann. R. Coll. Surg. Engl. 2005, 87, 255–258. [Google Scholar] [CrossRef]
- Burnett, W.E.; Brown, G.R., Jr.; Rosemond, G.P.; Caswell, H.T.; Buchor, R.B.; Tyson, R.R. The treatment of peritonitis using peritoneal lavage. Ann. Surg. 1957, 145, 675–682. [Google Scholar] [CrossRef]
- Lin, O. Challenges in the interpretation of peritoneal cytologic specimens. Arch. Pathol. Lab. Med. 2009, 133, 739–742. [Google Scholar] [CrossRef]
- Rodriguez, E.F.; Monaco, S.E.; Khalbuss, W.; Austin, R.M.; Pantanowitz, L. Abdominopelvic washings: A comprehensive review. Cytojournal 2013, 10, 7. [Google Scholar] [CrossRef]
- Zuna, R.E. Diagnostic cytopathology of peritoneal washings. Cytojournal 2022, 19, 9. [Google Scholar] [CrossRef]
- Mutsaers, S.E.; Birnie, K.; Lansley, S.; Herrick, S.E.; Lim, C.B.; Prêle, C.M. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 2015, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Bottles, K.D.; Laszik, Z.; Morrissey, J.H.; Kinasewitz, G.T. Tissue factor expression in mesothelial cells: Induction both in vivo and in vitro. Am. J. Respir. Cell Mol. Biol. 1997, 17, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Ivarsson, M.L.; Holmdahl, L.; Falk, P.; Mölne, J.; Risberg, B. Characterization and fibrinolytic properties of mesothelial cells isolated from peritoneal lavage. Scand. J. Clin. Lab. Investig. 1998, 58, 195–203. [Google Scholar] [CrossRef]
- Teixeira, J.; Basit, F.; Swarts, H.G.; Forkink, M.; Oliveira, P.J.; Willems, P.H.G.M.; Koopman, W.J.H. Extracellular acidification induces ROS- and mPTP-mediated death in HEK293 cells. Redox Biol. 2018, 15, 394–404. [Google Scholar] [CrossRef]
- Morison, R. Remarks on some functions of the omentum. Br. Med. J. 1906, 1, 76–78. [Google Scholar] [CrossRef]
- Shipley, P.G.; Cunningham, R.S. Studies on absorption from serous cavities: I. The omentum as a factor in absorption from the peritoneal cavity. Am. J. Physiol. 1916, 40, 75–81. [Google Scholar] [CrossRef]
- Goldsmith, H.S.; De los Santos, R.; Beattie, E.J., Jr. Relief of chronic lymphedema by omental transposition. Ann. Surg. 1967, 166, 573–585. [Google Scholar] [CrossRef]
- Hagiwara, A.; Takahashi, T.; Sawai, K.; Taniguchi, H.; Shimotsuma, M.; Okano, S.; Sakakura, C.; Tsujimoto, H.; Osaki, K.; Sasaki, S.; et al. Milky spots as the implantation site for malignant cells in peritoneal dissemination in mice. Cancer Res. 1993, 53, 687–692. [Google Scholar]
- Meza-Perez, S.; Randall, T.D. Immunological functions of the omentum. Trends Immunol. 2017, 38, 526–536. [Google Scholar] [CrossRef]
- Buscher, K.; Wang, H.; Zhang, X.; Striewski, P.; Wirth, B.; Saggu, G.; Lütke-Enking, S.; Mayadas, T.N.; Ley, K.; Sorokin, L.; et al. Protection from septic peritonitis by rapid neutrophil recruitment through omental high endothelial venules. Nat. Commun. 2016, 7, 10828. [Google Scholar] [CrossRef]
- Marcy, H.O. The omentum as a surgical factor in laparotomy. JAMA. 1902, XXXIX, 474–477. [Google Scholar] [CrossRef]
- Tan, D.S.; Agarwal, R.; Kaye, S.B. Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 2006, 7, 925–934. [Google Scholar] [CrossRef]
- Lee, W.; Ko, S.Y.; Mohamed, M.S.; Kenny, H.A.; Lengyel, E.; Naora, H. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum. J. Exp. Med. 2019, 216, 176–194. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Tallapragada, S.; Schaar, B.; Kamat, K.; Chanana, A.M.; Zhang, Y.; Patel, S.; Parkash, V.; Rinker-Schaeffer, C.; Folkins, A.K.; et al. Omental macrophages secrete chemokine ligands that promote ovarian cancer colonization of the omentum via CCR1. Commun. Biol. 2020, 3, 524. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef]
- Ko, S.Y.; Barengo, N.; Ladanyi, A.; Lee, J.S.; Marini, F.; Lengyel, E.; Naora, H. HOXA9 promotes ovarian cancer growth by stimulating cancer-associated fibroblasts. J. Clin. Investig. 2012, 122, 3603–3617. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Tang, H.; Xu, L.; Wang, X.; Yang, C.; Ruan, S.; Guo, J.; Hu, S.; Wang, Z. Fibroblasts in omentum activated by tumor cells promote ovarian cancer growth, adhesion and invasiveness. Carcinogenesis 2012, 33, 20–29. [Google Scholar] [CrossRef]
- Kenny, H.A.; Chiang, C.Y.; White, E.A.; Schryver, E.M.; Habis, M.; Romero, I.L.; Ladanyi, A.; Penicka, C.V.; George, J.; Matlin, K.; et al. Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. J. Clin. Investig. 2014, 124, 4614–4628. [Google Scholar] [CrossRef]
- Etzerodt, A.; Moulin, M.; Doktor, T.K.; Delfini, M.; Mossadegh-Keller, N.; Bajenoff, M.; Sieweke, M.H.; Moestrup, S.K.; Auphan-Anezin, N.; Lawrence, T. Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. J. Exp. Med. 2020, 217, e20191869. [Google Scholar] [CrossRef]
- Pearce, O.M.T.; Delaine-Smith, R.M.; Maniati, E.; Nichols, S.; Wang, J.; Böhm, S.; Rajeeve, V.; Ullah, D.; Chakravarty, P.; Jones, R.R.; et al. Deconstruction of a metastatic tumor microenvironment reveals a common matrix response in human cancers. Cancer Discov. 2018, 8, 304–319. [Google Scholar] [CrossRef]
- Liu, M.; Starenki, D.; Scharer, C.D.; Silva-Sanchez, A.; Molina, P.A.; Pollock, J.S.; Cooper, S.J.; Arend, R.C.; Rosenberg, A.F.; Randall, T.D.; et al. Circulating Tregs accumulate in omental tumors and acquire adipose-resident features. Cancer Immunol. Res. 2022, 10, 641–655. [Google Scholar] [CrossRef]
- Ghosn, E.E.; Cassado, A.A.; Govoni, G.R.; Fukuhara, T.; Yang, Y.; Monack, D.M.; Bortoluci, K.R.; Almeida, S.R.; Herzenberg, L.A.; Herzenberg, L.A. Two physically, functionally, and developmentally distinct peritoneal macrophage subsets. Proc. Natl. Acad. Sci. USA 2010, 107, 2568–2573. [Google Scholar] [CrossRef] [PubMed]
- Okabe, Y.; Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014, 157, 832–844. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Gao, J.L.; Murphy, P.M. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J. Immunol. 2008, 180, 569–579. [Google Scholar] [CrossRef] [PubMed]
- Getzin, T.; Krishnasamy, K.; Gamrekelashvili, J.; Kapanadze, T.; Limbourg, A.; Häger, C.; Napp, L.C.; Bauersachs, J.; Haller, H.; Limbourg, F.P. The chemokine receptor CX3CR1 coordinates monocyte recruitment and endothelial regeneration after arterial injury. EMBO Mol. Med. 2018, 10, 151–159. [Google Scholar] [CrossRef]
- Ueda, A.; Ishigatsubo, Y.; Okubo, T.; Yoshimura, T. Transcriptional regulation of the human monocyte chemoattractant protein-1 gene. Cooperation of two NF-kappaB sites and NF-kappaB/Rel subunit specificity. J. Biol. Chem. 1997, 272, 31092–31099. [Google Scholar] [CrossRef]
- Khachigian, L.M.; Resnick, N.; Gimbrone, M.A., Jr.; Collins, T. Nuclear factor-kappa B interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J. Clin. Investig. 1995, 96, 1169–1175. [Google Scholar] [CrossRef]
- Tong, Q.; Zheng, L.; Lin, L.; Li, B.; Wang, D.; Huang, C.; Li, D. VEGF is upregulated by hypoxia-induced mitogenic factor via the PI-3K/Akt-NF-kappaB signaling pathway. Respir. Res. 2006, 7, 37. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, M.; Wang, P.; Zhang, L.; Yuan, C.; Qi, J.; Qiao, Y.; Kuo, P.C.; Gao, C. NF-κB- and AP-1-mediated DNA looping regulates osteopontin transcription in endotoxin-stimulated murine macrophages. J. Immunol. 2011, 186, 3173–3179. [Google Scholar] [CrossRef]
- Bellocq, A.; Suberville, S.; Philippe, C.; Bertrand, F.; Perez, J.; Fouqueray, B.; Cherqui, G.; Baud, L. Low environmental pH is responsible for the induction of nitric-oxide synthase in macrophages. Evidence for involvement of nuclear factor-kappaB activation. J. Biol. Chem. 1998, 273, 5086–5092. [Google Scholar] [CrossRef]
- Rajamäki, K.; Nordström, T.; Nurmi, K.; Åkerman, K.E.; Kovanen, P.T.; Öörni, K.; Eklund, K.K. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J. Biol. Chem. 2013, 288, 13410–13419. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; Laumonnier, Y.; Burysek, L.; Syrovets, T.; Simmet, T. Thrombin-induced expression of endothelial CX3CL1 potentiates monocyte CCL2 production and transendothelial migration. J. Leukoc. Biol. 2008, 84, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Sindelar, W.F.; Brower, S.T.; Merkel, A.B.; Takesue, E.I. Randomised trial of intraperitoneal irrigation with low molecular weight povidone-iodine solution to reduce intra-abdominal infectious complications. J. Hosp. Infect. 1985, 6 (Suppl. S1), 103–114. [Google Scholar] [CrossRef] [PubMed]
- Song, H.L.; Zhang, D.M.; Wen, H.; Wang, M.; Zhao, N.; Gao, Y.H.; Ding, N. Peritoneal lavage with povidone-iodine solution in colorectal cancer-induced rats. J. Surg. Res. 2018, 228, 93–99. [Google Scholar] [CrossRef]
- Steins, A.; Carroll, C.; Choong, F.J.; George, A.J.; He, J.S.; Parsons, K.M.; Feng, S.; Man, S.M.; Kam, C.; van Loon, L.M.; et al. Cell death and barrier disruption by clinically used iodine concentrations. Life Sci. Alliance 2023, 6, e202201875. [Google Scholar] [CrossRef]
- Połubinska, A.; Winckiewicz, M.; Staniszewski, R.; Breborowicz, A.; Oreopoulos, D.G. Time to reconsider saline as the ideal rinsing solution during abdominal surgery. Am. J. Surg. 2006, 192, 281–285. [Google Scholar] [CrossRef]
- Sitter, T.; Sauter, M. Impact of glucose in peritoneal dialysis: Saint or sinner? Perit. Dial. Int. 2005, 25, 415–425. [Google Scholar] [CrossRef]
- Hong, F.Y.; Bao, J.F.; Hao, J.; Yu, Q.; Liu, J. Methylglyoxal and advanced glycation end-products promote cytokines expression in peritoneal mesothelial cells via MAPK signaling. Am. J. Med. Sci. 2015, 349, 105–109. [Google Scholar] [CrossRef]
- Leung, J.C.; Chan, L.Y.; Li, F.F.; Tang, S.C.; Chan, K.W.; Chan, T.M.; Lam, M.F.; Wieslander, A.; Lai, K.N. Glucose degradation products downregulate ZO-1 expression in human peritoneal mesothelial cells: The role of VEGF. Nephrol. Dial. Transpl. 2005, 20, 1336–1349. [Google Scholar] [CrossRef]
- Qayyum, A.; Oei, E.L.; Paudel, K.; Fan, S.L. Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions. World J. Nephrol. 2015, 4, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Rizoli, S. PlasmaLyte. J. Trauma 2011, 70 (Suppl. S5), S17–S18. [Google Scholar] [CrossRef] [PubMed]
Plasma | Interstitial Fluids | Normal Saline | Lactated Ringer’s Solution | Plasma-Lyte A | |
---|---|---|---|---|---|
Sodium (mmol/L) | 136–145 | 136–145 | 154 | 130 | 140 |
Chloride (mmol/L) | 102–110 | 108–118 | 154 | 109 | 98 |
Potassium (mmol/L) | 3.5–5.7 | 3.5–5.0 | 0 | 4.0 | 5.0 |
Calcium (mmol/L) | 1.0–2.5 | 1.2–2.8 | 0 | 2.7 | 0 |
Magnesium (mmol/L) | 0.5–1.2 | 0.5–1.3 | 0 | 0 | 1.5 |
Bicarbonate (mmol/L) | 24–25 | 22–28 | 0 | 0 | 0 |
Lactate (mmol/L) | <1.0 | <1.2 | 0 | 28 | 0 |
Acetate (mmol/L) | Negligible | NA ** | 0 | 0 | 27 |
Gluconate (mmol/L) | Negligible | NA | 0 | 0 | 23 |
pH | 7.38–7.42 | 7.35–7.45 | 5.0–5.5 | 6.5–6.6 | 7.4 |
Osmolarity (mOsmol/L) | NA | NA | 308 | 273 | 294 |
Osmolality (mOsmol/kg) | 280–296 | 280–296 | 286 | 254 | 271 |
Type of Study | Type of Solution | Reported Effects | References |
---|---|---|---|
Clinical (Intravenous infusion) | Lactated Ringer’s solution | Lower incidence of hyperchloremic acidosis * | [21,23,32] |
Lower incidence of renal dysfunction * | [31,32] | ||
Lower C-reactive protein levels * | [30] | ||
Clinical (Intravenous infusion) | Plasma-Lyte A | Lower incidence of hyperchloremic acidosis * | [24,32] |
Lower incidence of renal dysfunction * | [24,31,32] | ||
Clinical (Peritoneal lavage) | Povidone-iodine | Lower incidence of infectious complications * | [76] |
Pre-clinical (Peritoneal lavage) | Lactated Ringer’s solution | No decrease in pH | [33] |
Reduced degree of mesothelial cell exfoliation * | [33] | ||
Pre-clinical (Peritoneal lavage) | Povidone-iodine | Formation of peritoneal adhesions | [35] |
Compromises integrity of intestinal mucosa barrier | [77] | ||
In vitro | Lactated Ringer’s solution | Reduced loss of mesothelial cell adhesion * | [33] |
Povidone-iodine | Toxic to epithelial, endothelial and mesothelial cells | [78] | |
Peritoneal dialysis solution | Loss of mesothelial cell membrane integrity | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akasaka, H.; Naora, H. Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer. Int. J. Mol. Sci. 2023, 24, 16449. https://doi.org/10.3390/ijms242216449
Akasaka H, Naora H. Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer. International Journal of Molecular Sciences. 2023; 24(22):16449. https://doi.org/10.3390/ijms242216449
Chicago/Turabian StyleAkasaka, Hironari, and Honami Naora. 2023. "Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer" International Journal of Molecular Sciences 24, no. 22: 16449. https://doi.org/10.3390/ijms242216449
APA StyleAkasaka, H., & Naora, H. (2023). Revisiting the Use of Normal Saline for Peritoneal Washing in Ovarian Cancer. International Journal of Molecular Sciences, 24(22), 16449. https://doi.org/10.3390/ijms242216449