Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome
Abstract
:1. Introduction
2. Results
2.1. Early Symptoms
2.2. Clinical Features
2.3. ACE-2 Susceptibility
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patients
4.3. DNA Sample and Genotyping
4.4. Clinical Data
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Callard, F.; Perego, E. How and why patients made Long COVID. Soc. Sci. Med. 2021, 268, 113426. [Google Scholar] [CrossRef] [PubMed]
- Shah, W.; Hillman, T.; Playford, E.D.; Hishmeh, L. Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021, 372, n136. [Google Scholar] [CrossRef] [PubMed]
- Burnett, D.M.; Skinner, C.E. Year in Review: Long COVID and Pulmonary Rehabilitation. Respir. Care 2023, 68, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Besnier, F.; Bérubé, B.; Malo, J.; Gagnon, C.; Grégoire, C.A.; Juneau, M.; Simard, F.; L’Allier, P.; Nigam, A.; Iglésies-Grau, J.; et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. Int. J. Environ. Res. Public Health 2022, 19, 4133. [Google Scholar] [CrossRef]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open 2021, 11, e048391. [Google Scholar] [CrossRef]
- Tziolos, N.R.; Ioannou, P.; Baliou, S.; Kofteridis, D.P. Long COVID-19 Pathophysiology: What Do We Know So Far? Microorganisms 2023, 11, 2458. [Google Scholar] [CrossRef]
- Miyazato, Y.; Morioka, S.; Tsuzuki, S.; Akashi, M.; Osanai, Y.; Tanaka, K.; Terada, M.; Suzuki, M.; Kutsuna, S.; Saito, S.; et al. Prolonged and Late-Onset Symptoms of Coronavirus Disease 2019. Open Forum. Infect. Dis. 2020, 7, ofaa507. [Google Scholar] [CrossRef]
- Lai, C.C.; Hsu, C.K.; Yen, M.Y.; Lee, P.I.; Ko, W.C.; Hsueh, P.R. Long COVID: An inevitable sequela of SARS-CoV-2 infection. J. Microbiol. Immunol. Infect. 2023, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sudre, C.H.; Murray, B.; Varsavsky, T.; Graham, M.S.; Penfold, R.S.; Bowyer, R.C.; Pujol, J.C.; Klaser, K.; Antonelli, M.; Canas, L.S.; et al. Attributes and predictors of Long COVID. Nat. Med. 2021, 27, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Mackey, K.; Ayers, C.K.; Kondo, K.K.; Saha, S.; Advani, S.M.; Young, S.; Spencer, H.; Rusek, M.; Anderson, J.; Veazie, S.; et al. Racial and Ethnic Disparities in COVID-19-Related Infections, Hospitalizations, and Deaths: A Systematic Review. Ann. Intern. Med. 2021, 174, 362–373. [Google Scholar] [CrossRef] [PubMed]
- Kopel, J.; Perisetti, A.; Roghani, A.; Aziz, M.; Gajendran, M.; Goyal, H. Racial and Gender-Based Differences in COVID-19. Front. Public Health 2020, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Hasanvand, A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology 2022, 30, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Martin, J.F.; Ortiz de Lejarazu, R.; Pumarola, T.; Rello, J.; Almansa, R.; Ramirez, P.; Martin-Loeches, I.; Varillas, D.; Gallegos, M.C.; Seron, C.; et al. Th1 and Th17 hypercytokinemia as early host response signature in severe pandemic influenza. Crit. Care 2009, 13, R201. [Google Scholar] [CrossRef] [PubMed]
- Dastar, S.; Gharesouran, J.; Mortazavi, D.; Hosseinzadeh, H.; Kian, S.J.; Taheri, M.; Ghafouri-Fard, S.; Jamali, E.; Rezazadeh, M. COVID-19 pandemic: Insights into genetic susceptibility to SARS-CoV-2 and host genes implications on virus spread, disease severity and outcomes. Hum. Antibodies 2022, 30, 1–14. [Google Scholar] [CrossRef]
- Anastassopoulou, C.; Gkizarioti, Z.; Patrinos, G.P.; Tsakris, A. Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Hum. Genomics 2020, 14, 40. [Google Scholar] [CrossRef]
- Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: Angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 905–919. [Google Scholar] [CrossRef]
- Scialo, F.; Daniele, A.; Amato, F.; Pastore, L.; Matera, M.G.; Cazzola, M.; Castaldo, G.; Bianco, A. ACE2: The Major Cell Entry Receptor for SARS-CoV-2. Lung 2020, 198, 867–877. [Google Scholar] [CrossRef]
- Möhlendick, B.; Schönfelder, K.; Breuckmann, K.; Elsner, C.; Babel, N.; Balfanz, P.; Dahl, E.; Dreher, M.; Fistera, D.; Herbstreit, F.; et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Pharmacogenet Genom. 2021, 31, 165–171. [Google Scholar] [CrossRef]
- Mir, M.M.; Mir, R.; Alghamdi, M.A.A.; Alsayed, B.A.; Wani, J.I.; Alharthi, M.H.; Al-Shahrani, A.M. Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality. J. Pers. Med. 2021, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sanz, J.; Jiménez, D.; Martínez-Campelo, L.; Cruz, R.; Vizcarra, P.; Sánchez-Conde, M.; Ron, R.; Rodríguez, M.; Herrera, S.; Moreno, S.; et al. Role of ACE2 genetic polymorphisms in susceptibility to SARS-CoV-2 among highly exposed but non infected healthcare workers. In Emerg Microbes Infect; Taylor & Francis: New York, NY, USA, 2021; Volume 10, pp. 493–496. [Google Scholar]
- Keikha, M.; Karbalaei, M. Global distribution of ACE1 (rs4646994) and ACE2 (rs2285666) polymorphisms associated with COVID-19: A systematic review and meta-analysis. Microb. Pathog. 2022, 172, 105781. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Kaur, G.; Pathak, T.; Banerjee, I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022, 844, 146790. [Google Scholar] [CrossRef] [PubMed]
- Daniel, G.; Paola, A.R.; Nancy, G.; Fernando, S.O.; Beatriz, A.; Zulema, R.; Julieth, A.; Claudia, C.; Adriana, R. Epigenetic mechanisms and host factors impact ACE2 gene expression: Implications in COVID-19 susceptibility. Infect. Genet. Evol. 2022, 104, 105357. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Arendt-Nielsen, L.; Díaz-Gil, G.; Gómez-Esquer, F.; Gil-Crujera, A.; Gómez-Sánchez, S.M.; Ambite-Quesada, S.; Palomar-Gallego, M.A.; Pellicer-Valero, O.J.; Giordano, R. Genetic Association between ACE2 (rs2285666 and rs2074192) and TMPRSS2 (rs12329760 and rs2070788) Polymorphisms with Post-COVID Symptoms in Previously Hospitalized COVID-19 Survivors. Genes 2022, 13, 1935. [Google Scholar] [CrossRef]
- Yates, A.D.; Achuthan, P.; Akanni, W.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2020. Nucleic. Acids Res. 2020, 48, D682–D688. [Google Scholar] [CrossRef]
- Fernández-de-Las-Peñas, C. Long COVID: Current definition. Infection 2022, 50, 285–286. [Google Scholar] [CrossRef]
- Nabavi, N. Long COVID: How to define it and how to manage it. BMJ 2020, 370, m3489. [Google Scholar] [CrossRef]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Risk Factors Associated with Long COVID Syndrome: A Retrospective Study. Iran. J. Med. Sci. 2021, 46, 428–436. [Google Scholar] [CrossRef]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
- Tirelli, U.; Taibi, R.; Chirumbolo, S. Post COVID syndrome: A new challenge for medicine. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4422–4425. [Google Scholar] [CrossRef]
- Raveendran, A.V.; Jayadevan, R.; Sashidharan, S. Long COVID: An overview. Diabetes Metab. Syndr. 2021, 15, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, Â.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for Long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef] [PubMed]
- Asadi-Pooya, A.A.; Akbari, A.; Emami, A.; Lotfi, M.; Rostamihosseinkhani, M.; Nemati, H.; Barzegar, Z.; Kabiri, M.; Zeraatpisheh, Z.; Farjoud-Kouhanjani, M.; et al. Long COVID syndrome-associated brain fog. J. Med. Virol. 2022, 94, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Antar, A.A.R.; Yu, T.; Demko, Z.O.; Hu, C.; Tornheim, J.A.; Blair, P.W.; Thomas, D.L.; Manabe, Y.C. Long COVID brain fog and muscle pain are associated with longer time to clearance of SARS-CoV-2 RNA from the upper respiratory tract during acute infection. Front. Immunol. 2023, 14, 1147549. [Google Scholar] [CrossRef] [PubMed]
- Heubner, L.; Petrick, P.L.; Güldner, A.; Bartels, L.; Ragaller, M.; Mirus, M.; Rand, A.; Tiebel, O.; Beyer-Westendorf, J.; Rößler, M.; et al. Extreme obesity is a strong predictor for in-hospital mortality and the prevalence of long-COVID in severe COVID-19 patients with acute respiratory distress syndrome. Sci. Rep. 2022, 12, 18418. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Montani, D.; Savale, L.; Noel, N.; Meyrignac, O.; Colle, R.; Gasnier, M.; Corruble, E.; Beurnier, A.; Jutant, E.M.; Pham, T.; et al. Post-acute COVID-19 syndrome. Eur. Respir. Rev. 2022, 31, 601–605. [Google Scholar] [CrossRef]
- Anaya, J.M.; Rojas, M.; Salinas, M.L.; Rodríguez, Y.; Roa, G.; Lozano, M.; Rodríguez-Jiménez, M.; Montoya, N.; Zapata, E.; Monsalve, D.M.; et al. Post-COVID syndrome. A case series and comprehensive review. Autoimmun. Rev. 2021, 20, 102947. [Google Scholar] [CrossRef]
- Lagadinou, M.; Kostopoulou, E.; Karatza, A.; Marangos, M.; Gkentzi, D. The prolonged effects of COVID-19. A new “threat”? Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 4611–4615. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Ashton, R.; Ansdell, P.; Hume, E.; Maden-Wilkinson, T.; Ryan, D.; Tuttiett, E.; Faghy, M. COVID-19 and the long-term cardio-respiratory and metabolic health complications. Rev. Cardiovasc. Med. 2022, 23, 53. [Google Scholar] [CrossRef] [PubMed]
- Kovarik, J.J.; Bileck, A.; Hagn, G.; Meier-Menches, S.M.; Frey, T.; Kaempf, A.; Hollenstein, M.; Shoumariyeh, T.; Skos, L.; Reiter, B.; et al. A multi-omics based anti-inflammatory immune signature characterizes Long COVID-19 syndrome. iScience 2023, 26, 105717. [Google Scholar] [CrossRef]
- Allan-Blitz, L.T.; Akbari, O.; Kojima, N.; Saavedra, E.; Chellamuthu, P.; Denny, N.; MacMullan, M.A.; Hess, V.; Shacreaw, M.; Brobeck, M.; et al. Unique immune and inflammatory cytokine profiles may define Long COVID syndrome. Clin. Exp. Med. 2023, 23, 2925–2930. [Google Scholar] [CrossRef] [PubMed]
- Saengsiwaritt, W.; Jittikoon, J.; Chaikledkaew, U.; Udomsinprasert, W. Genetic polymorphisms of ACE1, ACE2, and TMPRSS2 associated with COVID-19 severity: A systematic review with meta-analysis. Rev. Med. Virol. 2022, 32, e2323. [Google Scholar] [CrossRef]
- Atiku, S.M.; Kasozi, D.; Campbell, K. Single Nucleotide Variants (SNVs) of Angiotensin-Converting Enzymes (ACE1 and ACE2): A Plausible Explanation for the Global Variation in COVID-19 Prevalence. J. Renin. Angiotensin Aldosterone Syst. 2023, 2023, 9668008. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, Y.; Li, X.; Li, W.; Liu, X.; Xue, X. The Impact of ACE2 Polymorphisms on COVID-19 Disease: Susceptibility, Severity, and Therapy. Front. Cell Infect. Microbiol. 2021, 11, 753721. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, Y.; Lan, J.; Chen, H.; Wang, Y.; Shi, H.; Feng, F.; Chen, D.Y.; Close, B.; Zhao, X.; et al. Susceptibilities of Human ACE2 Genetic Variants in Coronavirus Infection. J. Virol. 2022, 96, e0149221. [Google Scholar] [CrossRef]
- Bakhshandeh, B.; Sorboni, S.G.; Javanmard, A.R.; Mottaghi, S.S.; Mehrabi, M.R.; Sorouri, F.; Abbasi, A.; Jahanafrooz, Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect. Genet Evol. 2021, 90, 104773. [Google Scholar] [CrossRef]
- Taher, I.; Almaeen, A.; Ghazy, A.; Abu-Farha, M.; Mohamed Channanath, A.; Elsa John, S.; Hebbar, P.; Arefanian, H.; Abubaker, J.; Al-Mulla, F.; et al. Relevance between COVID-19 and host genetics of immune response. Saudi. J. Biol. Sci. 2021, 28, 6645–6652. [Google Scholar] [CrossRef] [PubMed]
- Adli, A.; Rahimi, M.; Khodaie, R.; Hashemzaei, N.; Hosseini, S.M. Role of genetic variants and host polymorphisms on COVID-19: From viral entrance mechanisms to immunological reactions. J. Med. Virol. 2022, 94, 1846–1865. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Liu, Y.; Zhang, Z.; Zhai, Y.; Dai, Y.; Wu, Z.; Nie, X.; Du, L. Polymorphisms and mutations of ACE2 and TMPRSS2 genes are associated with COVID-19: A systematic review. Eur. J. Med. Res. 2022, 27, 26. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Tonmoy, M.I.Q.; Fariha, A.; Islam, M.S.; Roy, A.S.; Islam, M.N.; Kar, K.; Alam, M.R.; Rahaman, M.M. Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach. Bioinform. Biol. Insights 2021, 15, 11779322211054684. [Google Scholar] [CrossRef]
- Sabater Molina, M.; Nicolás Rocamora, E.; Bendicho, A.I.; Vázquez, E.G.; Zorio, E.; Rodriguez, F.D.; Gil Ortuño, C.; Rodríguez, A.I.; Sánchez-López, A.J.; Jara Rubio, R.; et al. Polymorphisms in ACE, ACE2, AGTR1 genes and severity of COVID-19 disease. PLoS ONE 2022, 17, e0263140. [Google Scholar] [CrossRef]
Symbol | Gene | Polymorphism | dbSNP | Genomic Location | MAF Long COVID-19 | MAF (IBS) * | HWE | FIS |
---|---|---|---|---|---|---|---|---|
ACE-2 | Angiotensin-converting enzyme 2 | c.513-1451G>A | rs2106806 | Xp22.2 | 43.8% (G) | 58.1% (G) | p = 0.069 | 0.41 |
ACE-2 | Angiotensin-converting enzyme 2 | c.15643279T>C | rs6629110 | Xp22.2 | 34.4% (T) | 41.9% (T) | p = 0.135 | 0.24 |
Long COVID-19 (n = 16) | Non-Long COVID-19 (n = 13) | p Value | ||
---|---|---|---|---|
Fatigue | No, n (%) | 5 (31.2) | 11 (84.6) | 0.004 |
Yes, n (%) | 11 (68.8) | 2 (15.4) | ||
Myalgia | No, n (%) | 9 (56.2) | 13 (100.0) | 0.006 |
Yes, n (%) | 7 (43.8) | 0 (0.0) | ||
Headache | No, n (%) | 10 (62.5) | 13 (100.0) | 0.013 |
Yes, n (%) | 6 (37.5) | 0 (0.0) | ||
Dyspnoea | No, n (%) | 13 (81.2) | 12 (92.3) | 0.390 |
Yes, n (%) | 3 (18.8) | 1 (7.7) | ||
Arthralgia | No, n (%) | 12 (75.0) | 13 (100.0) | 0.052 |
Yes, n (%) | 4 (25.0) | 0 (0.0) | ||
Chest pain | No, n (%) | 13 (81.2) | 13 (100.0) | 0.099 |
Yes, n (%) | 3 (18.8) | 0 (0.0) | ||
Tachycardia | No, n (%) | 13 (81.2) | 13 (100.0) | 0.099 |
Yes, n (%) | 3 (18.8) | 0 (0.0) | ||
Brain fog | No, n (%) | 8 (50.0) | 13 (100.0) | 0.003 |
Yes, n (%) | 8 (50.0) | 0 (0.0) |
Long COVID-19 (n = 16) | Non-Long COVID-19 (n = 13) | p Value | ||
---|---|---|---|---|
Time of symptoms, months (SD) | 19.69 (4.13) | 0.61 (0.12) | <0.001 | |
Hospital admission | No, n (%) | 15 (93.8) | 13 (100.0) | 0.359 |
Yes, n (%) | 1 (6.2) | 0 (0.0) | ||
Pneumonia | No, n (%) | 13 (81.2) | 13 (100.0) | 0.099 |
Yes, n (%) | 3 (18.8) | 0 (0.0) | ||
Emergencies | No, n (%) | 4 (25.0) | 12 (92.3) | <0.001 |
Yes, n (%) | 12 (75.0) | 1 (7.7) | ||
SARS-CoV-2 reinfection | No, n (%) | 10 (62.5) | 13 (100.0) | 0.013 |
Yes, n (%) | 6 (37.5) | 0 (0.0) | ||
Previous diseases | No, n (%) | 8 (50.0) | 12 (92.3) | 0.003 |
Yes, n (%) | 8 (50.0) | 1 (7.7) | ||
Respiratory disease | No, n (%) | 9 (56.2) | 13 (100.0) | 0.006 |
Yes, n (%) | 7 (43.8) | 0 (0.0) |
ACE-2 c.513-1451G>A (rs2106806) | ACE-2 c.15643279T>C (rs6629110) | ||||||||
---|---|---|---|---|---|---|---|---|---|
GG | GA | AA | p Value | CC | CT | TT | p Value | ||
Hospital admission | Yes, n (%) | 0 (0.0) | 0 (0.0) | 1 (20.0) | 0.309 | 1 (50.0) | 1 (14.3) | 2 (28.6) | 0.315 |
No, n (%) | 3 (100.0) | 8 (100.0) | 4 (80.0) | 1 (50.0) | 6 (85.7) | 5 (71.4) | |||
Pneumonia | Yes, n (%) | 0 (0.0) | 2 (25.0) | 1 (20.0) | 0.637 | 1 (50.0) | 1 (14.3) | 1 (14.3) | 0.481 |
No, n (%) | 3 (100.0) | 6 (75.0) | 4 (80.0) | 1 (50.0) | 6 (85.7) | 6 (85.7) | |||
Emergencies | Yes, n (%) | 3 (100.0) | 5 (62.5) | 4 (80.0) | 0.420 | 2 (100.0) | 5 (71.4) | 5 (71.4) | 0.683 |
No, n (%) | 0 (0.0) | 3 (37.5) | 1 (20.0) | 0 (0.0) | 2 (28.6) | 2 (28.6) | |||
SARS-CoV-2 reinfection | Yes, n (%) | 0 (0.0) | 3 (37.5) | 3 (60.0) | 0.237 | 0 (0.0) | 4 (57.1) | 2 (28.6) | 0.274 |
No, n (%) | 3 (100.0) | 5 (62.5) | 2 (40.0) | 2 (100.0) | 3 (42.9) | 5 (71.4) | |||
Previous diseases | Yes, n (%) | 1 (33.3) | 4 (50.0) | 3 (60.0) | 0.766 | 1 (50.0) | 4 (57.1) | 3 (42.9) | 0.734 |
No, n (%) | 2 (66.7) | 4 (50.0) | 2 (40.0) | 1 (50.0) | 3 (42.9) | 4 (57.1) | |||
Respiratory disease | Yes, n (%) | 1 (33.3) | 4 (50.0) | 2 (40.0) | 0.866 | 0 (0.0) | 5 (71.4) | 2 (28.6) | 0.111 |
No, n (%) | 2 (66.7) | 4 (50.0) | 3 (60.0) | 2 (100.0) | 2 (28.6) | 5 (71.4) |
ACE-2 c.513-1451G>A (rs2106806) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Dominant Model | Recessive Model | Allele | OR [95% CI]; p Value | ||||||||||
GG | GA | AA | GG | GA + AA | AA | GA + GG | G | A | Genotype | Dominant Model | Recessive Model | Allele | ||
Long COVID-19 | Yes, n (%) | 3 (18.8) ↓ | 8 (50.0) | 5 (31.2) ↑ | 3 (18.8) ↓ | 13 (81.2) ↑ | 5 (31.2) | 11 (68.8) | 3 (18.7) ↓ | 13 (81.3) ↑ | <0.001 | 3.188 [1.274–5.975]; 0.001 | 1.574 [0.952–2.631]; 0.074 | 4.214 [2.521–8.853]; <0.001 |
No, n (%) | 9 (69.2) ↑ | 3 (23.1) | 1 (7.7) ↓ | 9 (69.2) ↑ | 4 (30.8) ↓ | 1 (7.7) | 12 (92.3) | 9 (69.2) ↑ | 4 (30.3) ↓ | |||||
ACE-2 c.15643279T>C (rs6629110) | ||||||||||||||
Genotype | Dominant Model | Recessive Model | Allele | OR [95% CI]; p value | ||||||||||
CC | CT | TT | CC | CT + TT | TT | CT + CC | C | T | Genotype | Dominant Model | Recessive Model | Allele | ||
Long COVID-19 | Yes, n (%) | 2 (12.4) ↓ | 7 (43.8) | 7 (43.8) ↑ | 2 (12.5) ↓ | 14 (87.5) ↑ | 7 (43.8) ↑ | 9 (56.2) | 2 (12.5) ↓ | 14 (87.5) ↑ | 0.001 | 2.633 [1.638–4.598]; <0.001 | 2.242 [1.367–3.571]; <0.001 | 3.754 [1.785–6.105]; 0.002 |
No, n (%) | 7 (53.8) ↑ | 5 (38.5) | 1 (7.7) ↓ | 7 (53.8) ↑ | 6 (46.2) ↓ | 1 (7.7) ↓ | 12 (92.3) | 7 (53.8) ↑ | 6 (46.2) ↓ |
Long COVID-19 (n= 16) | Non-Long COVID-19 (n = 13) | p Value | ||
---|---|---|---|---|
Age, years (SD) | 46.13 (7.91) | 46.92 (6.00) | 0.766 | |
Weight, kg (SD) | 65.52 (12.52) | 63.14 (13.39) | 0.363 | |
Height, cm (SD) | 166.23 (8.03) | 167.25 (7.99) | 0.743 | |
Sex | Male, n (%) | 1 (6.2) | 4 (30.8) | 0.082 |
Female, n (%) | 15 (93.8) | 9 (69.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varillas-Delgado, D.; Jimenez-Antona, C.; Lizcano-Alvarez, A.; Cano-de-la-Cuerda, R.; Molero-Sanchez, A.; Laguarta-Val, S. Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome. Int. J. Mol. Sci. 2023, 24, 16717. https://doi.org/10.3390/ijms242316717
Varillas-Delgado D, Jimenez-Antona C, Lizcano-Alvarez A, Cano-de-la-Cuerda R, Molero-Sanchez A, Laguarta-Val S. Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome. International Journal of Molecular Sciences. 2023; 24(23):16717. https://doi.org/10.3390/ijms242316717
Chicago/Turabian StyleVarillas-Delgado, David, Carmen Jimenez-Antona, Angel Lizcano-Alvarez, Roberto Cano-de-la-Cuerda, Alberto Molero-Sanchez, and Sofia Laguarta-Val. 2023. "Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome" International Journal of Molecular Sciences 24, no. 23: 16717. https://doi.org/10.3390/ijms242316717
APA StyleVarillas-Delgado, D., Jimenez-Antona, C., Lizcano-Alvarez, A., Cano-de-la-Cuerda, R., Molero-Sanchez, A., & Laguarta-Val, S. (2023). Predictive Factors and ACE-2 Gene Polymorphisms in Susceptibility to Long COVID-19 Syndrome. International Journal of Molecular Sciences, 24(23), 16717. https://doi.org/10.3390/ijms242316717