Red Flags in Primary Mitochondrial Diseases: What Should We Recognize?
Abstract
:1. Introduction
2. Neurological Red Flags
2.1. Progressive External Ophthalmoplegia (PEO)
2.2. Exercise Intolerance
2.3. Stroke-like Episodes (SLEs)
2.4. Bilateral Brainstem Lesions
2.5. Epilepsy
2.6. Movement Disorders
2.7. Migraine
2.8. Neuropathy
2.9. Cognitive Decline
2.10. Optic Atrophy and Pigmented Retinopathy
2.11. Sensorineural Hearing Loss
3. Gastrointestinal Red Flags
3.1. Liver Failure
3.2. Severe Dysmotility/Pseudo-Obstructive Episodes
4. Cardiovascular Red Flags
4.1. Cardiomyopathies
4.2. Arrythmias, Cardiac Conduction Defects, and Valvulopathies
5. Kidney Red Flags
5.1. Tubulopathies
5.2. Glomerulopathies
6. Endocrine Red Flags
6.1. Diabetes Mellitus
6.2. Other Endocrine Signs
7. Other Red Flags
7.1. Lactic Acidosis
7.2. Cachexia
7.3. Lipomas
7.4. Short Stature
8. Combinations of Symptoms
9. Focus on Pediatric Mitochondrial Neurological Red Flags
10. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F.; et al. Prevalence of Nuclear and Mitochondrial DNA Mutations Related to Adult Mitochondrial Disease. Ann. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef]
- Schlieben, L.D.; Prokisch, H. The Dimensions of Primary Mitochondrial Disorders. Front. Cell Dev. Biol. 2020, 8, 600079. [Google Scholar] [CrossRef]
- Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Klopstock, T.; Kornblum, C.; Mancuso, M.; Mcfarland, R.; Sue, C.M.; Suomalainen, A.; Taylor, R.W.; et al. Mitochondrial Disease in Adults: Recent Advances and Future Promise. Lancet Neurol. 2021, 20, 573–584. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A.; Carelli, V.; Hirano, M. The Clinical Maze of Mitochondrial Neurology. Nat. Rev. Neurol. 2013, 9, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Payne, B.A.I.; Wilson, I.J.; Yu-Wai-Man, P.; Coxhead, J.; Deehan, D.; Horvath, R.; Taylor, R.W.; Samuels, D.C.; Santibanez-Koref, M.; Chinnery, P.F. Universal Heteroplasmy of Human Mitochondrial DNA. Hum. Mol. Genet. 2013, 22, 384–390. [Google Scholar] [CrossRef] [PubMed]
- McClelland, C.; Manousakis, G.; Lee, M.S. Progressive External Ophthalmoplegia. Curr. Neurol. Neurosci. Rep. 2016, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Smits, B.W.; Fermont, J.; Delnooz, C.C.S.; Kalkman, J.S.; Bleijenberg, G.; van Engelen, B.G.M. Disease Impact in Chronic Progressive External Ophthalmoplegia: More than Meets the Eye. Neuromuscul. Disord. 2011, 21, 272–278. [Google Scholar] [CrossRef]
- Smits, B.W.; Heijdra, Y.F.; Cuppen, F.W.A.; Van Engelen, B.G.M. Nature and Frequency of Respiratory Involvement in Chronic Progressive External Ophthalmoplegia. J. Neurol. 2011, 258, 2020–2025. [Google Scholar] [CrossRef]
- Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Federico, A.; Minetti, C.; Moggio, M.; Mongini, T.; Santorelli, F.M.; et al. Revisiting Mitochondrial Ocular Myopathies: A Study from the Italian Network. J. Neurol. 2017, 264, 1777–1784. [Google Scholar] [CrossRef]
- Orsucci, D.; Ienco, E.C.; Rossi, A.; Siciliano, G.; Mancuso, M. Mitochondrial Syndromes Revisited. J. Clin. Med. 2021, 10, 1249. [Google Scholar] [CrossRef]
- Soldath, P.; Madsen, K.L.; Buch, A.E.; Duno, M.; Wibrand, F.; Vissing, J. Pure Exercise Intolerance and Ophthalmoplegia Associated with the m.12,294G>A Mutation in the MT-TL2 Gene: A Case Report. BMC Musculoskelet. Disord. 2017, 18, 419. [Google Scholar] [CrossRef]
- Mancuso, M.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Minetti, C.; Moggio, M.; Mongini, T.; Servidei, S.; Tonin, P.; et al. Fatigue and Exercise Intolerance in Mitochondrial Diseases. Literature Revision and Experience of the Italian Network of Mitochondrial Diseases. Neuromuscul. Disord. 2012, 22, S226–S229. [Google Scholar] [CrossRef]
- Distelmaier, F.; Klopstock, T. Neuroimaging in Mitochondrial Disease. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 194, pp. 173–185. [Google Scholar] [CrossRef]
- Marques-Matos, C.; Reis, J.; Reis, C.; Castro, L.; Carvalho, M. Mitochondrial Encephalomyopathy With Lactic Acidosis and Strokelike Episodes Presenting Before 50 Years of Age. JAMA Neurol. 2016, 73, 604. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Horai, S.; Matsuoka, T.; Koga, Y.; Nihei, K.; Kobayashi, M.; Nonaka, I. Mitochondria1 Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes (MELAS): A Correlative Study of the Clinical Features and Mitochondrial DNA Mutation. Neurology 1992, 42, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Bindoff, L.A.; Gorman, G.S.; Horvath, R.; Klopstock, T.; Mancuso, M.; Martikainen, M.H.; Mcfarland, R.; Nesbitt, V.; Pitceathly, R.D.S.; et al. Consensus-Based Statements for the Management of Mitochondrial Stroke-like Episodes. Wellcome Open Res. 2019, 4, 201. [Google Scholar] [CrossRef]
- Hikmat, O.; Naess, K.; Engvall, M.; Klingenberg, C.; Rasmussen, M.; Tallaksen, C.M.E.; Brodtkorb, E.; Ostergaard, E.; de Coo, I.F.M.; Pias-Peleteiro, L.; et al. Simplifying the Clinical Classification of Polymerase Gamma (POLG) Disease Based on Age of Onset; Studies Using a Cohort of 155 Cases. J. Inherit. Metab. Dis. 2020, 43, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Ricci, E.; Richard Koenigsberger, M.; Defendini, R.; Pavlakis, S.G.; DeVivo, D.C.; DiMauro, S.; Rowland, L.P. MELAS: An Original Case and Clinical Criteria for Diagnosis. Neuromuscul. Disord. 1992, 2, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Majamaa-Voltti, K.; Turkka, J.; Kortelainen, M.-L.; Huikuri, H.; Majamaa, K. Causes of Death in Pedigrees with the 3243A>G Mutation in Mitochondrial DNA. J. Neurol. Neurosurg. Psychiatry 2008, 79, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Lax, N.Z.; Blain, A.P.; Erskine, D.; Baker, M.R.; Polvikoski, T.; Thomas, R.H.; Morris, C.M.; Lai, M.; Whittaker, R.G.; et al. Forecasting Stroke-like Episodes and Outcomes in Mitochondrial Disease. Brain 2022, 145, 542–554. [Google Scholar] [CrossRef]
- Cheng, W.; Zhang, Y.; He, L. MRI Features of Stroke-Like Episodes in Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-Like Episodes. Front. Neurol. 2022, 13, 843386. [Google Scholar] [CrossRef]
- Rahman, S. Leigh Syndrome. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2023; Volume 194, pp. 43–63. [Google Scholar] [CrossRef]
- Green, D.R.; Kroemer, G. The Pathophysiology of Mitochondrial Cell Death. Science 2004, 305, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Inak, G.; Rybak-Wolf, A.; Lisowski, P.; Pentimalli, T.M.; Jüttner, R.; Glažar, P.; Uppal, K.; Bottani, E.; Brunetti, D.; Secker, C.; et al. Defective Metabolic Programming Impairs Early Neuronal Morphogenesis in Neural Cultures and an Organoid Model of Leigh Syndrome. Nat. Commun. 2021, 12, 1929. [Google Scholar] [CrossRef]
- Sofou, K.; Steneryd, K.; Wiklund, L.M.; Tulinius, M.; Darin, N. MRI of the Brain in Childhood-Onset Mitochondrial Disorders with Central Nervous System Involvement. Mitochondrion 2013, 13, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.M.; Na, J.H.; Park, S.; Lee, Y.M. Clinical Characteristics of Early-Onset and Late-Onset Leigh Syndrome. Front. Neurol. 2020, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Martikainen, M.H.; Ng, Y.S.; Gorman, G.S.; Alston, C.L.; Blakely, E.L.; Schaefer, A.M.; Chinnery, P.F.; Burn, D.J.; Taylor, R.W.; McFarland, R.; et al. Clinical, Genetic, and Radiological Features of Extrapyramidal Movement Disorders in Mitochondrial Disease. JAMA Neurol. 2016, 73, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Leigh and Leigh-Like Syndrome in Children and Adults. Pediatr. Neurol. 2008, 39, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, F.A.; Hannappel, A.; Anderka, O.; Ludwig, B. Surf1, Associated with Leigh Syndrome in Humans, Is a Heme-Binding Protein in Bacterial Oxidase Biogenesis. J. Biol. Chem. 2009, 284, 25735–25741. [Google Scholar] [CrossRef]
- Ng, Y.S.; Martikainen, M.H.; Gorman, G.S.; Blain, A.; Bugiardini, E.; Bunting, A.; Schaefer, A.M.; Alston, C.L.; Blakely, E.L.; Sharma, S.; et al. Pathogenic Variants in MT-ATP6: A United Kingdom–Based Mitochondrial Disease Cohort Study. Ann. Neurol. 2019, 86, 310–315. [Google Scholar] [CrossRef]
- Ng, Y.S.; Lax, N.Z.; Maddison, P.; Alston, C.L.; Blakely, E.L.; Hepplewhite, P.D.; Riordan, G.; Meldau, S.; Chinnery, P.F.; Pierre, G.; et al. MT-ND5 Mutation Exhibits Highly Variable Neurological Manifestations at Low Mutant Load. EBioMedicine 2018, 30, 86–93. [Google Scholar] [CrossRef]
- La Morgia, C.; Caporali, L.; Gandini, F.; Olivieri, A.; Toni, F.; Nassetti, S.; Brunetto, D.; Stipa, C.; Scaduto, C.; Parmeggiani, A.; et al. Association of the MtDNA m.4171C>A/MT-ND1 Mutation with Both Optic Neuropathy and Bilateral Brainstem Lesions. BMC Neurol. 2014, 14, 116. [Google Scholar] [CrossRef]
- Nakagawa, E.; Hirano, S.; Yamanouchi, H.; Goto, Y.; Nonaka, I.; Takashima, S. Progressive Brainstem and White Matter Lesions in Kearns—Sayre Syndrome: A Case Report. Brain Dev. 1994, 16, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Chu, B.C.; Terae, S.; Takahashi, C.; Kikuchi, Y.; Miyasaka, K.; Abe, S.; Minowa, K.; Sawamura, T. MRI of the Brain in the Kearns-Sayre Syndrome: Report of Four Cases and a Review. Neuroradiology 1999, 41, 759–764. [Google Scholar] [CrossRef]
- Hai, N.T.; Ngan, V.K.; Giang, N.Q.; Hoang, V.H.; Viet, L.A.; Duc, N.T.; Hien, T.T.T.; He, D.V.; Duc, N.M. The Magnetic Resonance Imaging of Leigh Syndrome in a Child. Clin. Ter. 2021, 172, 500–503. [Google Scholar] [CrossRef]
- Wesół-Kucharska, D.; Rokicki, D.; Jezela-Stanek, A. Epilepsy in Mitochondrial Diseases—Current State of Knowledge on Aetiology and Treatment. Children 2021, 8, 532. [Google Scholar] [CrossRef]
- Patel, K.P.; O’Brien, T.W.; Subramony, S.H.; Shuster, J.; Stacpoole, P.W. The Spectrum of Pyruvate Dehydrogenase Complex Deficiency: Clinical, Biochemical and Genetic Features in 371 Patients. Mol. Genet. Metab. 2012, 106, 385–394. [Google Scholar] [CrossRef]
- Chang, X.; Wu, Y.; Zhou, J.; Meng, H.; Zhang, W.; Guo, J. A Meta-Analysis and Systematic Review of Leigh Syndrome: Clinical Manifestations, Respiratory Chain Enzyme Complex Deficiency, and Gene Mutations. Medicine 2020, 99, E18634. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Zarrouk-Mahjoub, S. Management of Epilepsy in MERRF Syndrome. Seizure 2017, 50, 166–170. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS Syndrome: Clinical Manifestations, Pathogenesis, and Treatment Options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Thomas, R.H. The Mitochondrial Epilepsies. Eur. J. Paediatr. Neurol. 2020, 24, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Surana, S.; Rossor, T.; Hassell, J.; Boyd, S.; D’Arco, F.; Aylett, S.; Bhate, S.; Carr, L.; Das, K.; DeVile, C.; et al. Diagnostic Algorithm for Children Presenting with Epilepsia Partialis Continua. Epilepsia 2020, 61, 2224–2233. [Google Scholar] [CrossRef]
- Lopriore, P.; Gomes, F.; Montano, V.; Siciliano, G.; Mancuso, M. Mitochondrial Epilepsy, a Challenge for Neurologists. Int. J. Mol. Sci. 2022, 23, 13216. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, M.E.; Ng, Y.S.; Taylor, R.W.; McFarland, R. Epilepsy Due to Mutations in the Mitochondrial Polymerase Gamma (POLG) Gene: A Clinical and Molecular Genetic Review. Epilepsia 2016, 57, 1531–1545. [Google Scholar] [CrossRef] [PubMed]
- Hikmat, O.; Eichele, T.; Tzoulis, C.; Bindoff, L. Understanding the Epilepsy in POLG Related Disease. Int. J. Mol. Sci. 2017, 18, 1845. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Mitochondrial Diseases and Status Epilepticus. Epilepsia 2018, 59, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Shorvon, S.; Ferlisi, M. The Treatment of Super-Refractory Status Epilepticus: A Critical Review of Available Therapies and a Clinical Treatment Protocol. Brain 2011, 134, 2802–2818. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Goldstein, A.; Karaa, A.; Koenig, M.K.; Anselm, I.; Brunel-Guitton, C.; Christodoulou, J.; Cohen, B.H.; Dimmock, D.; Enns, G.M.; et al. Patient Care Standards for Primary Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet. Med. 2017, 19, 1380–1397. [Google Scholar] [CrossRef]
- Rahman, S. Advances in the Treatment of Mitochondrial Epilepsies. Epilepsy Behav. 2019, 101, 106546. [Google Scholar] [CrossRef] [PubMed]
- Ticci, C.; Sicca, F.; Ardissone, A.; Bertini, E.; Carelli, V.; Diodato, D.; Di Vito, L.; Filosto, M.; La Morgia, C.; Lamperti, C.; et al. Mitochondrial Epilepsy: A Cross-Sectional Nationwide Italian Survey. Neurogenetics 2020, 21, 87–96. [Google Scholar] [CrossRef]
- Lee, S.; Na, J.H.; Lee, Y.M. Epilepsy in Leigh Syndrome with Mitochondrial DNA Mutations. Front. Neurol. 2019, 10, 496. [Google Scholar] [CrossRef]
- Lopriore, P.; Ricciarini, V.; Siciliano, G.; Mancuso, M.; Montano, V. Mitochondrial Ataxias: Molecular Classification and Clinical Heterogeneity. Neurol. Int. 2022, 14, 337–356. [Google Scholar] [CrossRef]
- Vergara, R.C.; Jaramillo-Riveri, S.; Luarte, A.; Moënne-Loccoz, C.; Fuentes, R.; Couve, A.; Maldonado, P.E. The Energy Homeostasis Principle: Neuronal Energy Regulation Drives Local Network Dynamics Generating Behavior. Front. Comput. Neurosci. 2019, 13, 49. [Google Scholar] [CrossRef]
- Tranchant, C.; Anheim, M. Movement Disorders in Mitochondrial Diseases. Rev. Neurol. 2016, 172, 524–529. [Google Scholar] [CrossRef]
- Filosto, M.; Mancuso, M. Mitochondrial Diseases: A Nosological Update. Acta Neurol. Scand. 2007, 115, 211–221. [Google Scholar] [CrossRef]
- Hakonen, A.H.; Heiskanen, S.; Juvonen, V.; Lappalainen, I.; Luoma, P.T.; Rantamäki, M.; Van Goethem, G.; Löfgren, A.; Hackman, P.; Paetau, A.; et al. Mitochondrial DNA Polymerase W748S Mutation: A Common Cause of Autosomal Recessive Ataxia with Ancient European Origin. Am. J. Hum. Genet. 2005, 77, 430–441. [Google Scholar] [CrossRef]
- Schicks, J.; Synofzik, M.; Schulte, C.; Schöls, L. POLG, but Not PEO1, Is a Frequent Cause of Cerebellar Ataxia in Central Europe. Mov. Disord. 2010, 25, 2678–2682. [Google Scholar] [CrossRef] [PubMed]
- Goffart, S.; Cooper, H.M.; Tyynismaa, H.; Wanrooij, S.; Suomalainen, A.; Spelbrink, J.N. Twinkle Mutations Associated with Autosomal Dominant Progressive External Ophthalmoplegia Lead to Impaired Helicase Function and in Vivo MtDNA Replication Stalling. Hum. Mol. Genet. 2009, 18, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Fadic, R.; Russell, J.A.; Vedanarayanan, V.V.; Lehar, M.; Kuncl, R.W.; Johns, D.R. Sensory Ataxic Neuropathy as the Presenting Feature of a Novel Mitochondrial Disease. Neurology 1997, 49, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, D.; Torsvik, J.; Dallabona, C.; Teixeira, P.; Sztromwasser, P.; Fernandez-Vizarra, E.; Cerutti, R.; Reyes, A.; Preziuso, C.; D’Amati, G.; et al. Defective PITRM1 Mitochondrial Peptidase Is Associated with Aβ Amyloidotic Neurodegeneration. EMBO Mol. Med. 2016, 8, 176–190. [Google Scholar] [CrossRef]
- Kiferle, L.; Orsucci, D.; Mancuso, M.; Lo Gerfo, A.; Petrozzi, L.; Siciliano, G.; Ceravolo, R.; Bonuccelli, U. Twinkle Mutation in an Italian Family with External Progressive Ophthalmoplegia and Parkinsonism: A Case Report and an Update on the State of Art. Neurosci. Lett. 2013, 556, 1–4. [Google Scholar] [CrossRef]
- Horvath, R.; Kley, R.A.; Vorgerd, M. Parkinson Syndrome, Neuropathy, and Myopathy Caused by the Mutation A8344G (MERRF) in TRNA Lys. Neurology 2007, 68, 56–58. [Google Scholar] [CrossRef]
- Dermaut, B.; Seneca, S.; Dom, L.; Smets, K.; Ceulemans, L.; Smet, J.; De Paepe, B.; Tousseyn, S.; Weckhuysen, S.; Gewillig, M.; et al. Progressive Myoclonic Epilepsy as an Adult-Onset Manifestation of Leigh Syndrome Due to m.14487T>C. J. Neurol. Neurosurg. Psychiatry 2010, 81, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Thobois, S.; Vighetto, A.; Grochowicki, M.; Godinot, C.; Broussolle, E.; Aimard, G. [Leber “plus” Disease: Optic Neuropathy, Parkinsonian Syndrome and Supranuclear Ophthalmoplegia]. Rev. Neurol. 1997, 153, 595–598. [Google Scholar] [PubMed]
- De Coo, I.F.M.; Renier, W.O.; Ruitenbeek, W.; Ter Laak, H.J.; Bakker, M.; Schägger, H.; Van Oost, B.A.; Smeets, H.J.M. A 4–Base Pair Deletion in the Mitochondrial Cytochrome b Gene Associated with Parkinsonism/MELAS Overlap Syndrome. Ann. Neurol. 1999, 45, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Montano, V.; Orsucci, D.; Carelli, V.; La Morgia, C.; Valentino, M.L.; Lamperti, C.; Marchet, S.; Musumeci, O.; Toscano, A.; Primiano, G.; et al. Adult-Onset Mitochondrial Movement Disorders: A National Picture from the Italian Network. J. Neurol. 2022, 269, 1413–1421. [Google Scholar] [CrossRef]
- Yorns, W.R.; Hardison, H.H. Mitochondrial Dysfunction in Migraine. Semin. Pediatr. Neurol. 2013, 20, 188–193. [Google Scholar] [CrossRef]
- Vollono, C.; Primiano, G.; Della Marca, G.; Losurdo, A.; Servidei, S. Migraine in Mitochondrial Disorders: Prevalence and Characteristics. Cephalalgia 2018, 38, 1093–1106. [Google Scholar] [CrossRef]
- Nesbitt, V.; Pitceathly, R.D.S.; Turnbull, D.M.; Taylor, R.W.; Sweeney, M.G.; Mudanohwo, E.E.; Rahman, S.; Hanna, M.G.; McFarland, R. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical Phenotypes Associated with the m.3243A>G Mutation—Implications for Diagnosis and Management. J. Neurol. Neurosurg. Psychiatry 2013, 84, 936–938. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Angelini, C.; Bertini, E.; Carelli, V.; Comi, G.P.; Donati, A.; Minetti, C.; Moggio, M.; Mongini, T.; et al. The m.3243A>G Mitochondrial DNA Mutation and Related Phenotypes. A Matter of Gender? J. Neurol. 2014, 261, 504–510. [Google Scholar] [CrossRef]
- Primiano, G.; Rollo, E.; Romozzi, M.; Calabresi, P.; Servidei, S.; Vollono, C. Preventive Migraine Treatment in Mitochondrial Diseases: A Case Report of Erenumab Efficacy and Literature Review. Neurol. Sci. 2022, 43, 6955–6959. [Google Scholar] [CrossRef]
- Pareyson, D.; Piscosquito, G.; Moroni, I.; Salsano, E.; Zeviani, M. Peripheral Neuropathy in Mitochondrial Disorders. Lancet Neurol. 2013, 12, 1011–1024. [Google Scholar] [CrossRef]
- Finsterer, J. Mitochondrial Neuropathy. Clin. Neurol. Neurosurg. 2005, 107, 181–186. [Google Scholar] [CrossRef]
- Garone, C.; Tadesse, S.; Hirano, M. Clinical and Genetic Spectrum of Mitochondrial Neurogastrointestinal Encephalomyopathy. Brain 2011, 134, 3326–3332. [Google Scholar] [CrossRef]
- Gilhuis, H.J.; Schelhaas, H.J.; Cruysberg, J.R.M.; Zwarts, M.J. Demyelinating Polyneuropathy in Leber Hereditary Optic Neuropathy. Neuromuscul. Disord. 2006, 16, 394–395. [Google Scholar] [CrossRef]
- Santoro, L.; Carrozzo, R.; Malandrini, A.; Piemonte, F.; Patrono, C.; Villanova, M.; Tessa, A.; Palmeri, S.; Bertini, E.; Santorelli, F.M. A Novel SURF1 Mutation Results in Leigh Syndrome with Peripheral Neuropathy Caused by Cytochrome c Oxidase Deficiency. Neuromuscul. Disord. 2000, 10, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Bouillot, S.; Martin-Negrier, M.L.; Vital, A.; Ferrer, X.; Lagueny, A.; Vincent, D.; Coquet, M.; Orgogozo, J.M.; Bloch, B.; Vital, C. Peripheral Neuropathy Associated with Mitochondrial Disorders: 8 Cases and Review of the Literature. J. Peripher. Nerv. Syst. 2002, 7, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Rusanen, H.; Majamaa, K.; Tolonen, U.; Remes, A.M.; Myllyla, R.; Hassinen, I.E. Demyelinating Polyneuropathy in a Patient with the TRNALeu(Uur) Mutation at Base Pair 3243 of the Mitochondrial DNA. Neurology 1995, 45, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Hanna, M.G. Diagnosis and Therapy in Neuromuscular Disorders: Diagnosis and New Treatments in Mitochondrial Diseases. J. Neurol. Neurosurg. Psychiatry 2009, 80, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, K. MFN2 Mutation Distribution and Genotype/Phenotype Correlation in Charcot-Marie-Tooth Type 2. Brain 2006, 129, 2093–2102. [Google Scholar] [CrossRef]
- Nelis, E.; Van Broeckhoven, C. Estimation of the Mutation Frequencies in Charcot-Marie-Tooth Disease Type 1 and Hereditary Neuropathy with Liability to Pressure Palsies: A European Collaborative Study. Eur. J. Hum. Genet. 1996, 4, 25–33. [Google Scholar] [CrossRef]
- Horvath, R.; Medina, J.; Reilly, M.M.; Shy, M.E.; Zuchner, S. Peripheral Neuropathy in Mitochondrial Disease. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2023; pp. 99–116. [Google Scholar] [CrossRef]
- Saporta, A.S.D.; Sottile, S.L.; Miller, L.J.; Feely, S.M.E.; Siskind, C.E.; Shy, M.E. Charcot-Marie-Tooth Disease Subtypes and Genetic Testing Strategies. Ann. Neurol. 2011, 69, 22–33. [Google Scholar] [CrossRef]
- Murphy, S.M.; Laura, M.; Fawcett, K.; Pandraud, A.; Liu, Y.T.; Davidson, G.L.; Rossor, A.M.; Polke, J.M.; Castleman, V.; Manji, H.; et al. Charcot-Marie-Tooth Disease: Frequency of Genetic Subtypes and Guidelines for Genetic Testing. J. Neurol. Neurosurg. Psychiatry 2012, 83, 706–710. [Google Scholar] [CrossRef]
- Saporta, M.A.; Dang, V.; Volfson, D.; Zou, B.; Xie, X.S.; Adebola, A.; Liem, R.K.; Shy, M.; Dimos, J.T. Axonal Charcot-Marie-Tooth Disease Patient-Derived Motor Neurons Demonstrate Disease-Specific Phenotypes Including Abnormal Electrophysiological Properties. Exp. Neurol. 2015, 263, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Kim, S.; Nam, Y.; Jung, U.J.; Kim, S.R. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer’s Disease. Int. J. Mol. Sci. 2021, 22, 4850. [Google Scholar] [CrossRef]
- Moore, H.L.; Kelly, T.; Bright, A.; Field, R.H.; Schaefer, A.M.; Blain, A.P.; Taylor, R.W.; McFarland, R.; Turnbull, D.M.; Gorman, G.S. Cognitive Deficits in Adult m.3243A>G- and m.8344A>G-Related Mitochondrial Disease: Importance of Correcting for Baseline Intellectual Ability. Ann. Clin. Transl. Neurol. 2019, 6, 826–836. [Google Scholar] [CrossRef]
- Moore, H.L.; Blain, A.P.; Turnbull, D.M.; Gorman, G.S. Systematic Review of Cognitive Deficits in Adult Mitochondrial Disease. Eur. J. Neurol. 2020, 27, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.J.G.; Brenner, P.; HeuB, D.; Engelhardt, A.; Reichmann, H.; Seibel, P.; Neundörfer, B. Neuropsychological Status of Mitochondrial Encephalomyopathies. Eur. J. Neurol. 1995, 2, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, P.; Engelstad, K.; Wei, B.Y.; Kulikova, R.; Oskoui, M.; Sproule, D.; Battista, V.; Koenigsberger, C.D.; Pascual, P.J.; Shanske, S.; et al. Natural History of MELAS Associated with Mitochondrial DNA m.3243AG Genotype. Neurology 2011, 77, 1965–1971. [Google Scholar] [CrossRef]
- Nomura, T.; Ota, M.; Kotake, N.; Tanaka, K. [Two Cases of MERRF (Myoclonus Epilepsy Associated with Ragged Red Fibers) Showing Different Clinical Features in the Same Family]. Rinsho Shinkeigaku 1993, 33, 1198–1200. [Google Scholar]
- Kalimo, H.; Lundberg, P.O.; Olsson, Y. Familial Subacute Necrotizing Encephalomyelopathy of the Adult Form (Adult Leigh Syndrome). Ann. Neurol. 1979, 6, 200–206. [Google Scholar] [CrossRef]
- Tsao, C.-Y.; Mendell, J.R.; Bartholomew, D. High Mitochondrial DNA T8993G Mutation (>90%) Without Typical Features of Leigh’s and NARP Syndromes. J. Child. Neurol. 2001, 16, 533–535. [Google Scholar] [CrossRef]
- McFarland, R.; Taylor, R.W.; Turnbull, D.M. The Neurology of Mitochondrial DNA Disease. Lancet Neurol. 2002, 1, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Lascaratos, G.; Garway-Heath, D.F.; Willoughby, C.E.; Chau, K.Y.; Schapira, A.H.V. Mitochondrial Dysfunction in Glaucoma: Understanding Genetic Influences. Mitochondrion 2012, 12, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Majander, A.; Robson, A.G.; João, C.; Holder, G.E.; Chinnery, P.F.; Moore, A.T.; Votruba, M.; Stockman, A.; Yu-Wai-Man, P. The Pattern of Retinal Ganglion Cell Dysfunction in Leber Hereditary Optic Neuropathy. Mitochondrion 2017, 36, 138–149. [Google Scholar] [CrossRef]
- Marotta, R.; Chin, J.; Chiotis, M.; Shuey, N.; Collins, S.J. Long-Term Screening for Primary Mitochondrial DNA Variants Associated with Leber Hereditary Optic Neuropathy: Incidence, Penetrance and Clinical Features. Mitochondrion 2020, 54, 128–132. [Google Scholar] [CrossRef]
- Boggan, R.M.; Lim, A.; Taylor, R.W.; McFarland, R.; Pickett, S.J. Resolving Complexity in Mitochondrial Disease: Towards Precision Medicine. Mol. Genet. Metab. 2019, 128, 19–29. [Google Scholar] [CrossRef]
- Kirkman, M.A.; Yu-Wai-Man, P.; Korsten, A.; Leonhardt, M.; Dimitriadis, K.; De Coo, I.F.; Klopstock, T.; Chinnery, P.F. Geneenvironment Interactions in Leber Hereditary Optic Neuropathy. Brain 2009, 132, 2317–2326. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Chinnery, P.F. Dominant Optic Atrophy: Novel OPA1 Mutations and Revised Prevalence Estimates. Ophthalmology 2013, 120, 1712–1712.e1. [Google Scholar] [CrossRef]
- Borrelli, E.; Triolo, G.; Cascavilla, M.L.; La Morgia, C.; Rizzo, G.; Savini, G.; Balducci, N.; Nucci, P.; Giglio, R.; Darvizeh, F.; et al. Changes in Choroidal Thickness Follow the RNFL Changes in Leber’s Hereditary Optic Neuropathy. Sci. Rep. 2016, 6, 37332. [Google Scholar] [CrossRef] [PubMed]
- Newman, N.J.; Carelli, V.; Taiel, M.; Yu-Wai-Man, P. Visual Outcomes in Leber Hereditary Optic Neuropathy Patients with the m.11778G>A (MTND4) Mitochondrial DNA Mutation. J. Neuro-Ophthalmol. 2020, 40, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ji, Y.; Chen, J.; Xu, M.; Wang, G.; Ci, X.; Lin, B.; Mo, J.Q.; Zhou, X.; Guan, M.X. Assocation between Leber’s Hereditary Optic Neuropathy and MT-ND1 3460G>a Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 38. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, F.; Fu, Q.; Liang, M.; Tong, Y.; Liu, X.; Lin, B.; Mi, H.; Zhang, M.; Wei, Q.P.; et al. Mitochondrial Haplotypes May Modulate the Phenotypic Manifestation of the LHON-Associated m.14484T>C (MT-ND6) Mutation in Chinese Families. Mitochondrion 2013, 13, 772–781. [Google Scholar] [CrossRef]
- d’Almeida, O.C.; Violante, I.R.; Quendera, B.; Castelo-Branco, M. Mitochondrial Pathophysiology beyond the Retinal Ganglion Cell: Occipital GABA Is Decreased in Autosomal Dominant Optic Neuropathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 2341–2348. [Google Scholar] [CrossRef]
- Yu-Wai-Man, P.; Griffiths, P.G.; Gorman, G.S.; Lourenco, C.M.; Wright, A.F.; Auer-Grumbach, M.; Toscano, A.; Musumeci, O.; Valentino, M.L.; Caporali, L.; et al. Multi-System Neurological Disease Is Common in Patients with OPA1 Mutations. Brain 2010, 133, 771–786. [Google Scholar] [CrossRef]
- Isashiki, Y.; Nakagawa, M.; Ohba, N.; Kamimura, K.; Sakoda, Y.; Higuchi, I.; Izumo, S.; Osame, M. Retinal Manifestations in Mitochondrial Diseases Associated with Mitochondrial DNA Mutation. Acta Ophthalmol. Scand. 1998, 76, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Stamate, A.C.; Burcea, M.; Zemba, M. Unilateral pigmentary retinopathy—A review of literature and case presentation. Rom. J. Ophthalmol. 2016, 60, 47–52. [Google Scholar] [PubMed]
- Shemesh, A.; Margolin, E. Kearns-Sayre Syndrome. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Latvala, T.; Mustonen, E.; Uusitalo, R.; Majama, K. Pigmentary Retinopathy in Patients with the Melas Mutation 3243A→G in Mitochondrial DNA. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 795–801. [Google Scholar] [CrossRef]
- Han, J.; Lee, Y.M.; Kim, S.M.; Han, S.Y.; Lee, J.B.; Han, S.H. Ophthalmological Manifestations in Patients with Leigh Syndrome. Br. J. Ophthalmol. 2015, 99, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.R.; Bain, S.C.; Good, P.A.; Hattersley, A.T.; Barnett, A.H.; Gibson, J.M.; Dodson, P.M. Pigmentary Retinal Dystrophy and the Syndrome of Maternally Inherited Diabetes and Deafness Caused by the Mitochondrial DNA 3243 TRNA Leu A to G Mutation. Ophthalmology 1999, 106, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Al-Enezi, M.; Al-Saleh, H.; Nasser, M. Mitochondrial Disorders with Significant Ophthalmic Manifestations. Middle East. Afr. J. Ophthalmol. 2008, 15, 81. [Google Scholar] [CrossRef]
- Kullar, P.J.; Quail, J.; Lindsey, P.; Wilson, J.A.; Horvath, R.; Yu-Wai-Man, P.; Gorman, G.S.; Taylor, R.W.; Ng, Y.; McFarland, R.; et al. Both Mitochondrial DNA and Mitonuclear Gene Mutations Cause Hearing Loss through Cochlear Dysfunction. Brain 2016, 139, e33. [Google Scholar] [CrossRef]
- Santarelli, R.; Rossi, R.; Scimemi, P.; Cama, E.; Valentino, M.L.; La Morgia, C.; Caporali, L.; Liguori, R.; Magnavita, V.; Monteleone, A.; et al. OPA1-Related Auditory Neuropathy: Site of Lesion and Outcome of Cochlear Implantation. Brain 2015, 138, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sun, W.; Zhou, X.; Bao, S.; Gong, S.; He, D.Z. Editorial: Hearing Loss and Cognitive Disorders. Front. Neurosci. 2022, 16, 902405. [Google Scholar] [CrossRef]
- Zou, T.; Ye, B.; Chen, K.; Zhang, A.; Guo, D.; Pan, Y.; Ding, R.; Hu, H.; Sun, X.; Xiang, M. Impacts of Impaired Mitochondrial Dynamics in Hearing Loss: Potential Therapeutic Targets. Front. Neurosci. 2022, 16, 998507. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kumari, D.; Panigrahi, I.; Khetarpal, P. A Systematic Review of the Monogenic Causes of Non-Syndromic Hearing Loss (NSHL) and Discussion of Current Diagnosis and Treatment Options. Clin. Genet. 2023, 103, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Orsucci, D.; Caldarazzo Ienco, E.; Siciliano, G.; Mancuso, M. Mitochondrial Disorders and Drugs: What Every Physician Should Know. Drugs Context. 2019, 8, 212588. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.; Horslen, S.P.; Gómez, A.M.; Squires, J.E. Mitochondrial Hepatopathy. Clin. Liver. Dis. 2022, 26, 421–438. [Google Scholar] [CrossRef]
- Grattagliano, I.; Russmann, S.; Diogo, C.; Bonfrate, L.; Oliveira, P.J.; Wang, D.Q.-H.; Portincasa, P. Mitochondria in Chronic Liver Disease. Curr. Drug Targets 2011, 12, 879–893. [Google Scholar] [CrossRef]
- Schara, U.; Von Kleist-Retzow, J.C.; Lainka, E.; Gerner, P.; Pyle, A.; Smith, P.M.; Lochmüller, H.; Czermin, B.; Abicht, A.; Holinski-Feder, E.; et al. Acute Liver Failure with Subsequent Cirrhosis as the Primary Manifestation of TRMU Mutations. J. Inherit. Metab. Dis. 2011, 34, 197–201. [Google Scholar] [CrossRef]
- Horvath, R.; Hudson, G.; Ferrari, G.; Fütterer, N.; Ahola, S.; Lamantea, E.; Prokisch, H.; Lochmüller, H.; McFarland, R.; Ramesh, V.; et al. Phenotypic Spectrum Associated with Mutations of the Mitochondrial Polymerase γ Gene. Brain 2006, 129, 1674–1684. [Google Scholar] [CrossRef]
- Saneto, R.P.; Cohen, B.H.; Copeland, W.C.; Naviaux, R.K. Alpers-Huttenlocher Syndrome. Pediatr. Neurol. 2013, 48, 167–178. [Google Scholar] [CrossRef]
- De Vries, M.C.; Brown, D.A.; Allen, M.E.; Bindoff, L.; Gorman, G.S.; Karaa, A.; Keshavan, N.; Lamperti, C.; McFarland, R.; Ng, Y.S.; et al. Safety of Drug Use in Patients with a Primary Mitochondrial Disease: An International Delphi-Based Consensus. J. Inherit. Metab. Dis. 2020, 43, 800–818. [Google Scholar] [CrossRef]
- Hakonen, A.H.; Isohanni, P.; Paetau, A.; Herva, R.; Suomalainen, A.; Lönnqvist, T. Recessive Twinkle Mutations in Early Onset Encephalopathy with MtDNA Depletion. Brain 2007, 130, 3032–3040. [Google Scholar] [CrossRef]
- Spinazzola, A.; Invernizzi, F.; Carrara, F.; Lamantea, E.; Donati, A.; Dirocco, M.; Giordano, I.; Meznaric-Petrusa, M.; Baruffini, E.; Ferrero, I.; et al. Clinical and Molecular Features of Mitochondrial DNA Depletion Syndromes. J. Inherit. Metab. Dis. 2009, 32, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Dalla Rosa, I.; Cámara, Y.; Durigon, R.; Moss, C.F.; Vidoni, S.; Akman, G.; Hunt, L.; Johnson, M.A.; Grocott, S.; Wang, L.; et al. MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet. 2016, 12, e1005779. [Google Scholar] [CrossRef] [PubMed]
- Tadiboyina, V.T.; Rupar, A.; Atkison, P.; Feigenbaum, A.; Kronick, J.; Wang, J.; Hegele, R.A. Novel Mutation in DGUOK in Hepatocerebral Mitochondrial DNA Depletion Syndrome Associated with Cystathioninuria. Am. J. Med. Genet. A 2005, 135, 289–291. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, D.P.; Zhang, Q.; Dionisi-Vici, C.; Carrozzo, R.; Shieh, J.; Tang, L.-Y.; Truong, C.; Schmitt, E.; Sifry-Platt, M.; Lucioli, S.; et al. Clinical and Molecular Features of Mitochondrial DNA Depletion Due to Mutations in Deoxyguanosine Kinase. Hum. Mutat. 2008, 29, 330–331. [Google Scholar] [CrossRef] [PubMed]
- Uusimaa, J.; Evans, J.; Smith, C.; Butterworth, A.; Craig, K.; Ashley, N.; Liao, C.; Carver, J.; Diot, A.; Macleod, L.; et al. Clinical, Biochemical, Cellular and Molecular Characterization of Mitochondrial DNA Depletion Syndrome Due to Novel Mutations in the MPV17 Gene. Eur. J. Hum. Genet. 2014, 22, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Tiranti, V.; Viscomi, C.; Hildebrandt, T.; Di Meo, I.; Mineri, R.; Tiveron, C.; Levitt, M.D.; Prelle, A.; Fagiolari, G.; Rimoldi, M.; et al. Loss of ETHE1, a Mitochondrial Dioxygenase, Causes Fatal Sulfide Toxicity in Ethylmalonic Encephalopathy. Nat. Med. 2009, 15, 200–205. [Google Scholar] [CrossRef]
- Chen, X.; Han, L.; Yao, H. Novel Compound Heterozygous Variants of ETHE1 Causing Ethylmalonic Encephalopathy in a Chinese Patient: A Case Report. Front. Genet. 2020, 11, 341. [Google Scholar] [CrossRef]
- Hassan, S.; Mahmoud, A.; Mohammed, T.O.; Mohammad, S. Pediatric Liver Transplantation from a Living Donor in Mitochondrial Disease: Good Outcomes in DGUOK Deficiency? Pediatr. Transpl. 2020, 24, e13714. [Google Scholar] [CrossRef]
- Tam, A.; AlDhaheri, N.S.; Mysore, K.; Tessier, M.E.; Goss, J.; Fernandez, L.A.; D’Alessandro, A.M.; Schwoerer, J.S.; Rice, G.M.; Elsea, S.H.; et al. Improved Clinical Outcome Following Liver Transplant in Patients with Ethylmalonic Encephalopathy. Am. J. Med. Genet. A 2019, 179, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Chinnery, P.F.; Jones, S.; Sviland, L.; Andrews, R.M.; Parsons, T.J.; Turnbull, D.M.; Bindoff, L.A. Mitochondrial Enteropathy: The Primary Pathology May Not Be within the Gastrointestinal Tract. Gut 2001, 48, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Filosto, M.; Piccinelli, S.C.; Caria, F.; Cassarino, S.G.; Baldelli, E.; Galvagni, A.; Volonghi, I.; Scarpelli, M.; Padovani, A. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE-MTDPS1). J. Clin. Med. 2018, 7, 389. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Carelli, V.; De Giorgio, R.; Pironi, L.; Accarino, A.; Cenacchi, G.; D’Alessandro, R.; Filosto, M.; Martí, R.; Nonino, F.; et al. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE): Position Paper on Diagnosis, Prognosis, and Treatment by the MNGIE International Network. J. Inherit. Metab. Dis. 2021, 44, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Ng, Y.S.; Feeney, C.; Schaefer, A.M.; Holmes, C.E.; Hynd, P.; Alston, C.L.; Grady, J.P.; Roberts, M.; Maguire, M.; Bright, A.; et al. Pseudo-Obstruction, Stroke, and Mitochondrial Dysfunction: A Lethal Combination. Ann. Neurol. 2016, 80, 686–692. [Google Scholar] [CrossRef]
- Hikmat, O.; Charalampos, T.; Klingenberg, C.; Rasmussen, M.; Tallaksen, C.M.E.; Brodtkorb, E.; Fiskerstrand, T.; McFarland, R.; Rahman, S.; Bindoff, L.A. The Presence of Anaemia Negatively Influences Survival in Patients with POLG Disease. J. Inherit. Metab. Dis. 2017, 40, 861–866. [Google Scholar] [CrossRef]
- Prasun, P.; Koeberl, D.D. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)-like Phenotype in a Patient with a Novel Heterozygous POLG Mutation. J. Neurol. 2014, 261, 1818–1819. [Google Scholar] [CrossRef]
- Tang, S.; Dimberg, E.L.; Milone, M.; Wong, L.J.C. Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE)-like Phenotype: An Expanded Clinical Spectrum of POLG1 Mutations. J. Neurol. 2012, 259, 862–868. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Wang, J.; Dai, H.; Almannai, M.; Scaglia, F.; Craigen, W.J.; Wong, L.-J.C. MPV17-Related Mitochondrial DNA Maintenance Defect. In GeneReviews®; University of Washington, Seattle: Seattle, WA, USA, 2012. [Google Scholar]
- Scaglia, F.; Towbin, J.A.; Craigen, W.J.; Belmont, J.W.; Smith, E.O.B.; Neish, S.R.; Ware, S.M.; Hunter, J.V.; Fernbach, S.D.; Vladutiu, G.D.; et al. Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients with Mitochondrial Disease. Pediatrics 2004, 114, 925–931. [Google Scholar] [CrossRef]
- Holmgren, D.; Wåhlander, H.; Eriksson, B.O.; Oldfors, A.; Holme, E.; Tulinius, M. Cardiomyopathy in Children with Mitochondrial Disease: Clinical Course and Cardiological Findings. Eur. Heart J. 2003, 24, 280–288. [Google Scholar] [CrossRef]
- Sofou, K.; De Coo, I.F.M.; Isohanni, P.; Ostergaard, E.; Naess, K.; De Meirleir, L.; Tzoulis, C.; Uusimaa, J.; De Angst, I.B.; Lönnqvist, T.; et al. A Multicenter Study on Leigh Syndrome: Disease Course and Predictors of Survival. Orphanet. J. Rare Dis. 2014, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.L.; Bowron, A.; Gonzalez, I.L.; Groves, S.J.; Newbury-Ecob, R.; Clayton, N.; Martin, R.P.; Tsai-Goodman, B.; Garratt, V.; Ashworth, M.; et al. Barth Syndrome. Orphanet. J. Rare Dis. 2013, 8, 23. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Hatano, S.; Saha, M.; Rizzo, S.A.; Witko, R.L.; Gosiker, B.J.; Ramanathan, M.; Soustek, M.S.; Jones, M.D.; Kang, P.B.; Byrne, B.J.; et al. AAV-Mediated TAZ Gene Replacement Restores Mitochondrial and Cardioskeletal Function in Barth Syndrome. Hum. Gene Ther. 2019, 30, 139–154. [Google Scholar] [CrossRef]
- Kang, Y.; Stroud, D.A.; Baker, M.J.; De Souza, D.P.; Frazier, A.E.; Liem, M.; Tull, D.; Mathivanan, S.; McConville, M.J.; Thorburn, D.R.; et al. Sengers Syndrome-Associated Mitochondrial Acylglycerol Kinase Is a Subunit of the Human TIM22 Protein Import Complex. Mol. Cell 2017, 67, 457–470.e5. [Google Scholar] [CrossRef] [PubMed]
- Vukotic, M.; Nolte, H.; König, T.; Saita, S.; Ananjew, M.; Krüger, M.; Tatsuta, T.; Langer, T. Acylglycerol Kinase Mutated in Sengers Syndrome Is a Subunit of the TIM22 Protein Translocase in Mitochondria. Mol. Cell 2017, 67, 471–483.e7. [Google Scholar] [CrossRef] [PubMed]
- Enns, G.M. Pediatric Mitochondrial Diseases and the Heart. Curr. Opin. Pediatr. 2017, 29, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Kothari, S. Cardiac Manifestations of Primary Mitochondrial Disorders. Int. J. Cardiol. 2014, 177, 754–763. [Google Scholar] [CrossRef]
- Akaike, M.; Kawai, H.; Yokoi, K.; Kunishige, M.; Mine, H.; Nishida, Y.; Saito, S. Cardiac Dysfunction in Patients with Chronic Progressive External Ophthalmoplegia. Clin. Cardiol. 1997, 20, 239–243. [Google Scholar] [CrossRef]
- Kennedy, H.; Haack, T.B.B.; Hartill, V.; Mataković, L.; Baumgartner, E.R.; Potter, H.; Mackay, R.; Alston, C.L.L.; O’Sullivan, S.; McFarland, R.; et al. Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2. Am. J. Hum. Genet. 2016, 99, 674–682. [Google Scholar] [CrossRef]
- Quadir, A.; Pontifex, C.S.; Robertson, H.L.; Labos, C.; Pfeffer, G. Systematic Review and Meta-Analysis of Cardiac Involvement in Mitochondrial Myopathy. Neurol. Genet. 2019, 5, e339. [Google Scholar] [CrossRef]
- Fang, W.; Huang, C.-C.; Chu, N.-S.; Lee, C.-C.; Chen, R.-S.; Pang, C.-Y.; Shih, K.-D.; Wei, Y.-H. Myoclonic Epilepsy with Ragged-Red Fibers (MERRF) Syndrome: Report of a Chinese Family with Mitochondrial DNA Point Mutation in TRNALys Gene. Muscle Nerve 1994, 17, 52–57. [Google Scholar] [CrossRef]
- Lorenzoni, P.J.; Scola, R.H.; Kay, C.S.K.; Arndt, R.C.; Silvado, C.E.; Werneck, L.C. MERRF: Clinical Features, Muscle Biopsy and Molecular Genetics in Brazilian Patients. Mitochondrion 2011, 11, 528–532. [Google Scholar] [CrossRef]
- Catteruccia, M.; Sauchelli, D.; Della Marca, G.; Primiano, G.; Cuccagna, C.; Bernardo, D.; Leo, M.; Camporeale, A.; Sanna, T.; Cianfoni, A.; et al. “Myo-Cardiomyopathy” Is Commonly Associated with the A8344G “MERRF” Mutation. J. Neurol. 2015, 262, 701–710. [Google Scholar] [CrossRef] [PubMed]
- Santorelli, F.M.; Mak, S.C.; El-Schahawi, M.; Casali, C.; Shanske, S.; Baram, T.Z.; Madrid, R.E.; DiMauro, S. Maternally Inherited Cardiomyopathy and Hearing Loss Associated with a Novel Mutation in the Mitochondrial TRNA(Lys) Gene (G8363A). Am. J. Hum. Genet. 1996, 58, 933–939. [Google Scholar]
- Mollet, J.; Giurgea, I.; Schlemmer, D.; Dallner, G.; Chretien, D.; Delahodde, A.; Bacq, D.; De Lonlay, P.; Munnich, A.; Rötig, A. Prenyldiphosphate Synthase, Subunit 1 (PDSS1) and OH-Benzoate Polyprenyltransferase (COQ2) Mutations in Ubiquinone Deficiency and Oxidative Phosphorylation Disorders. J. Clin. Investig. 2007, 117, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Crow, Y.; Keshavan, N.; Barbet, J.P.; Bercu, G.; Bondet, V.; Boussard, C.; Dedieu, N.; Duffy, D.; Hully, M.; Giardini, A.; et al. Cardiac Valve Involvement in ADAR-Related Type I Interferonopathy. J. Med. Genet. 2020, 57, 475–478. [Google Scholar] [CrossRef]
- Bagnasco, S.; Good, D.; Balaban, R.; Burg, M. Lactate Production in Isolated Segments of the Rat Nephron. Am. J. Physiol. 1985, 248, F522–F526. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Yap, H.K.; Barshop, B.A.; Lee, Y.S.; Rajalingam, S.; Loke, K.Y. Mitochondrial Tubulopathy: The Many Faces of Mitochondrial Disorders. Pediatr. Nephrol. 2001, 16, 710–712. [Google Scholar] [CrossRef]
- Martín-Hernández, E.; García-Silva, M.T.; Vara, J.; Campos, Y.; Cabello, A.; Muley, R.; del Hoyo, P.; Martín, M.A.; Arenas, J. Renal Pathology in Children with Mitochondrial Diseases. Pediatr. Nephrol. 2005, 20, 1299–1305. [Google Scholar] [CrossRef]
- Rahman, S.; Hall, A.M. Mitochondrial Disease—An Important Cause of End-Stage Renal Failure. Pediatr. Nephrol. 2012, 28, 357–361. [Google Scholar] [CrossRef]
- Emma, F.; Bertini, E.; Salviati, L.; Montini, G. Renal Involvement in Mitochondrial Cytopathies. Pediatr. Nephrol. 2012, 27, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.M.; Vilasi, A.; Garcia-Perez, I.; Lapsley, M.; Alston, C.L.; Pitceathly, R.D.S.; McFarland, R.; Schaefer, A.M.; Turnbull, D.M.; Beaumont, N.J.; et al. The Urinary Proteome and Metabonome Differ from Normal in Adults with Mitochondrial Disease. Kidney Int. 2015, 87, 610–622. [Google Scholar] [CrossRef] [PubMed]
- Shayota, B.J.; Le, N.T.; Bekheirnia, N.; Rosenfeld, J.A.; Goldstein, A.C.; Moritz, M.; Bartholomew, D.W.; Pastore, M.T.; Xia, F.; Eng, C.; et al. Characterization of the Renal Phenotype in RMND1-Related Mitochondrial Disease. Mol. Genet. Genom. Med. 2019, 7, e973. [Google Scholar] [CrossRef] [PubMed]
- Ozaltin, F. Primary Coenzyme Q10 (CoQ10) Deficiencies and Related Nephropathies. Pediatr. Nephrol. 2014, 29, 961–969. [Google Scholar] [CrossRef]
- Chow, J.; Rahman, J.; Achermann, J.C.; Dattani, M.T.; Rahman, S. Mitochondrial Disease and Endocrine Dysfunction. Nat. Rev. Endocrinol. 2017, 13, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Maechler, P. Mitochondrial Function and Insulin Secretion. Mol. Cell. Endocrinol. 2013, 379, 12–18. [Google Scholar] [CrossRef]
- Karaa, A.; Goldstein, A. The Spectrum of Clinical Presentation, Diagnosis, and Management of Mitochondrial Forms of Diabetes. Pediatr. Diabetes 2015, 16, 1–9. [Google Scholar] [CrossRef]
- Pagnamenta, A.T.; Taanman, J.W.; Wilson, C.J.; Anderson, N.E.; Marotta, R.; Duncan, A.J.; Bitner-Glindzicz, M.; Taylor, R.W.; Laskowski, A.; Thorburn, D.R.; et al. Dominant Inheritance of Premature Ovarian Failure Associated with Mutant Mitochondrial DNA Polymerase Gamma. Hum. Reprod. 2006, 21, 2467–2473. [Google Scholar] [CrossRef] [PubMed]
- Dallabona, C.; Diodato, D.; Kevelam, S.H.; Haack, T.B.; Wong, L.-J.; Salomons, G.S.; Baruffini, E.; Melchionda, L.; Mariotti, C.; Strom, T.M.; et al. Novel (Ovario) Leukodystrophy Related to AARS2 Mutations. Neurology 2014, 82, 2063–2071. [Google Scholar] [CrossRef]
- Fassone, E.; Rahman, S. Complex I Deficiency: Clinical Features, Biochemistry and Molecular Genetics. J. Med. Genet. 2012, 49, 578–590. [Google Scholar] [CrossRef]
- Glamuzina, E.; Brown, R.; Hogarth, K.; Saunders, D.; Russell-Eggitt, I.; Pitt, M.; De Sousa, C.; Rahman, S.; Brown, G.; Grunewald, S. Further Delineation of Pontocerebellar Hypoplasia Type 6 Due to Mutations in the Gene Encoding Mitochondrial Arginyl-TRNA Synthetase, RARS2. J. Inherit. Metab. Dis. 2012, 35, 459–467. [Google Scholar] [CrossRef]
- Jackson, M.J.; Schaefer, J.A.; Johnson, M.A.; Morris, A.A.M.; Turnbull, D.M.; Bindoff, L.A. Presentation and Clinical Investigation of Mitochondrial Respiratory Chain Disease A Study of 51 Patients. Brain 1995, 118, 339–357. [Google Scholar] [CrossRef]
- Munnich, A.; Rotig, A.; Chretien, D.; Cormier, V.; Bourgeron, T.; Bonnefont, J.-R.; Saudubray, J.-M.; Rustin, P. Clinical Presentation of Mitochondrial Disorders in Childhood. Inherit. Metab. Dis. 1996, 19, 521–527. [Google Scholar] [CrossRef]
- Lamont, P.J.; Surtees, R.; Woodward, C.E.; Leonard, J.V.; Wood, N.W.; Harding, A.E. Clinical and Laboratory Findings in Referrals for Mitochondrial DNA Analysis. Arch. Dis. Child. 1998, 79, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Hutchesson, A.; Anne Preece, M.; Gray, G.; Green, A. Measurement of Lactate in Cerebrospinal Fluid in Investigation of Inherited Metabolic Disease. Clin. Chem. 1997, 43, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Poggi-Travert, F.; Martin, D.; Billette De Villemeur, T.; Bonnefont, J.P.; Vassault, A.; Rabier, D.; Charpentier, C.; Kamoun, P.; Munnich, A.; Saudubray, J.M. Metabolic Intermediates in Lactic Acidosis: Compounds, Samples and Interpretation. J. Inherit. Metab. Dis. 1996, 19, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer Cachexia: Understanding the Molecular Basis. Nat. Rev. Cancer. 2014, 14, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Fontes-Oliveira, C.C.; Busquets, S.; Toledo, M.; Penna, F.; Aylwin, M.P.; Sirisi, S.; Silva, A.P.; Orpí, M.; García, A.; Sette, A.; et al. Mitochondrial and Sarcoplasmic Reticulum Abnormalities in Cancer Cachexia: Altered Energetic Efficiency? Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 2770–2778. [Google Scholar] [CrossRef]
- Shum, A.M.Y.; Mahendradatta, T.; Taylor, R.J.; Painter, A.B.; Moore, M.M.; Tsoli, M.; Tan, T.C.; Clarke, S.J.; Robertson, G.R.; Polly, P. Disruption of MEF2C Signaling and Loss of Sarcomeric and Mitochondrial Integrity in Cancer-Induced Skeletal Muscle Wasting. Aging 2012, 4, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.L.; Rosa-Caldwell, M.E.; Lee, D.E.; Blackwell, T.A.; Brown, L.A.; Perry, R.A.; Haynie, W.S.; Hardee, J.P.; Carson, J.A.; Wiggs, M.P.; et al. Mitochondrial Degeneration Precedes the Development of Muscle Atrophy in Progression of Cancer Cachexia in Tumour-Bearing Mice. J. Cachexia Sarcopenia Muscle 2017, 8, 926–938. [Google Scholar] [CrossRef]
- Porporato, P.E. Understanding Cachexia as a Cancer Metabolism Syndrome. Oncogenesis 2016, 5, e200. [Google Scholar] [CrossRef] [PubMed]
- Aversa, Z.; Pin, F.; Lucia, S.; Penna, F.; Verzaro, R.; Fazi, M.; Colasante, G.; Tirone, A.; Fanelli, F.R.; Ramaccini, C.; et al. Autophagy Is Induced in the Skeletal Muscle of Cachectic Cancer Patients. Sci. Rep. 2016, 6, 30340. [Google Scholar] [CrossRef]
- Busquets, S.; Deans, C.; Figueras, M.; Moore-Carrasco, R.; López-Soriano, F.J.; Fearon, K.C.H.; Argilés, J.M. Apoptosis Is Present in Skeletal Muscle of Cachectic Gastro-Intestinal Cancer Patients. Clin. Nutr. 2007, 26, 614–618. [Google Scholar] [CrossRef]
- Musumeci, O.; Barca, E.; Lamperti, C.; Servidei, S.; Comi, G.P.; Moggio, M.; Mongini, T.; Siciliano, G.; Filosto, M.; Pegoraro, E.; et al. Lipomatosis Incidence and Characteristics in an Italian Cohort of Mitochondrial Patients. Front. Neurol. 2019, 10, 160. [Google Scholar] [CrossRef]
- Klopstock, T.; Naumann, M.; Schalke, B.; Bischof, F.; Seibel, P.; Kottlors, M.; Eckert, P.; Reiners, K.; Toyka, K.V.; Reichmann, H. Multiple Symmetric Lipomatosis: Abnormalities in Complex IV and Multiple Deletions in Mitochondrial DNA. Neurology 1994, 44, 862. [Google Scholar] [CrossRef]
- Naumann, M.; Kiefer, R.; Toyka, K.V.; Sommer, C.; Seibel, P.; Reichmann, H. Mitochondrial Dysfunction with Myoclonus Epilepsy and Ragged Red Fibers Point Mutation in Nerve, Muscle, and Adipose Tissue of a Patient with Multiple Symmetric Lipomatosis. Muscle Nerve 1997, 20, 833–839. [Google Scholar] [CrossRef]
- Coin, A.; Enzi, G.; Bussolotto, M.; Ceschin, E.; Difito, M.; Angelini, C. Multiple Symmetric Lipomatosis. J. Clin. Neuromuscul. Dis. 2000, 1, 124–130. [Google Scholar] [CrossRef]
- Sawyer, S.L.; Ng, A.C.H.; Micheil Innes, A.; Wagner, J.D.; Dyment, D.A.; Tetreault, M.; Majewski, J.; Boycott, K.M.; Screaton, R.A.; Nicholson, G.; et al. Homozygous Mutations in MFN2 Cause Multiple Symmetric Lipomatosis Associated with Neuropathy. Hum. Mol. Genet. 2015, 24, 5109–5114. [Google Scholar] [CrossRef]
- Wolny, S.; McFarland, R.; Chinnery, P.; Cheetham, T. Abnormal Growth in Mitochondrial Disease. Acta Paediatr. Int. J. Paediatr. 2009, 98, 553–554. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gago, M.; Gómez-Lado, C.; Pérez-Gay, L.; Eirís-Puñal, J. Abnormal Growth in Mitochondrial Disease. Acta Paediatr. Int. J. Paediatr. 2010, 99, 796. [Google Scholar] [CrossRef]
- Xia, C.Y.; Liu, Y.; Liu, H.; Zhang, Y.C.; Ma, Y.N.; Qi, Y. Clinical and Molecular Characteristics in 100 Chinese Pediatric Patients with m.3243a>G Mutation in Mitochondrial DNA. Chin. Med. J. 2016, 129, 1945–1949. [Google Scholar] [CrossRef]
- Koenig, M.K.; Grant, L. Neuropathy, Ataxia, and Retinitis Pigmentosa. In Mitochondrial Case Studies; Elsevier: Amsterdam, The Netherlands, 2016; pp. 69–73. [Google Scholar]
- Matsuzaki, M.; Izumi, T.; Shishikura, K.; Suzuki, H.; Hirayama, Y. Hypothalamic Growth Hormone Deficiency and Supplementary GH Therapy in Two Patients with Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis and Stroke-like Episodes. Neuropediatrics 2002, 33, 271–273. [Google Scholar] [CrossRef]
- Broomfield, A.; Sweeney, M.G.; Woodward, C.E.; Fratter, C.; Morris, A.M.; Leonard, J.V.; Abulhoul, L.; Grunewald, S.; Clayton, P.T.; Hanna, M.G.; et al. Paediatric Single Mitochondrial DNA Deletion Disorders: An Overlapping Spectrum of Disease. J. Inherit. Metab. Dis. 2015, 38, 445–457. [Google Scholar] [CrossRef]
- Shiraiwa, N.; Ishii, A.; Iwamoto, H.; Mizusawa, H.; Kagawa, Y.; Ohta, S. Content of Mutant Mitochondrial DNA and Organ Dysfunction in a Patient with a MELAS Subgroup of Mitochondrial Encephalomyopathies. J. Neurol. Sci. 1993, 120, 174–179. [Google Scholar] [CrossRef]
- De Laat, P.; Zweers, H.E.; Knuijt, S.; Smeitink, J.A.; Wanten, G.J.; Janssen, M.C. Dysphagia, Malnutrition and Gastrointestinal Problems in Patients with Mitochondrial Disease Caused by the M3243A>G Mutation. Neth. J. Med. 2015, 73, 30–36. [Google Scholar]
- Nooteboom, M.; Johnson, R.; Taylor, R.W.; Wright, N.A.; Lightowlers, R.N.; Kirkwood, T.B.L.; Mathers, J.C.; Turnbull, D.M.; Greaves, L.C. Age-Associated Mitochondrial DNA Mutations Lead to Small but Significant Changes in Cell Proliferation and Apoptosis in Human Colonic Crypts. Aging Cell 2010, 9, 96–99. [Google Scholar] [CrossRef]
- Gandhi, S.S.; Muraresku, C.; McCormick, E.M.; Falk, M.J.; McCormack, S.E. Risk Factors for Poor Bone Health in Primary Mitochondrial Disease. J. Inherit. Metab. Dis. 2017, 40, 673–683. [Google Scholar] [CrossRef]
- Wong, S.C.; Dobie, R.; Altowati, M.A.; Werther, G.A.; Farquharson, C.; Ahmed, S.F. Growth and the Growth Hormone-Insulin like Growth Factor 1 Axis in Children with Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr. Rev. 2016, 37, 62–110. [Google Scholar] [CrossRef]
- Schaefer, A.M.; Walker, M.; Turnbull, D.M.; Taylor, R.W. Endocrine Disorders in Mitochondrial Disease. Mol. Cell Endocrinol. 2013, 379, 2–11. [Google Scholar] [CrossRef]
- Carelli, V.; Musumeci, O.; Caporali, L.; Zanna, C.; La Morgia, C.; Del Dotto, V.; Porcelli, A.M.; Rugolo, M.; Valentino, M.L.; Iommarini, L.; et al. Syndromic Parkinsonism and Dementia Associated with OPA1 Missense Mutations. Ann. Neurol. 2015, 78, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Samocha-Bonet, D.; Wu, B.; Ryugo, D.K. Diabetes Mellitus and Hearing Loss: A Review. Ageing Res. Rev. 2021, 71, 101423. [Google Scholar] [CrossRef]
- Ali, A.S.; Ekinci, E.I.; Pyrlis, F. Maternally Inherited Diabetes and Deafness (MIDD): An Uncommon but Important Cause of Diabetes. Endocr. Metab. Sci. 2021, 2, 100074. [Google Scholar] [CrossRef]
- Urano, F. Wolfram Syndrome: Diagnosis, Management, and Treatment. Curr. Diab. Rep. 2016, 16, 6. [Google Scholar] [CrossRef]
- Sako, S.; Tsunogai, T.; Oishi, K. Thiamine-Responsive Megaloblastic Anemia Syndrome. In GeneReviews®; University of Washington, Seattle: Seattle, WA, USA, 2003. [Google Scholar]
- OMIM®—Online Mendelian Inheritance in Man®. Available online: http://www.omim.org/ (accessed on 26 July 2023).
- Alharbi, H.; Priestley, J.R.C.; Wilkins, B.J.; Ganetzky, R.D. Mitochondrial Hepatopathies. Clin. Liver. Dis. 2021, 18, 243–250. [Google Scholar] [CrossRef]
- Khurana, D.S.; Salganicoff, L.; Melvin, J.J.; Hobdell, E.F.; Valencia, I.; Hardison, H.H.; Marks, H.G.; Grover, W.D.; Legido, A. Epilepsy and Respiratory Chain Defects in Children with Mitochondrial Encephalopathies. Neuropediatrics 2008, 39, 8–13. [Google Scholar] [CrossRef]
- Bindoff, L.A.; Engelsen, B.A. Mitochondrial Diseases and Epilepsy. Epilepsia 2012, 53, 92–97. [Google Scholar] [CrossRef]
- Harris, S.R. Congenital Hypotonia: Clinical and Developmental Assessment. Dev. Med. Child. Neurol. 2008, 50, 889–892. [Google Scholar] [CrossRef]
- Pinto, M.; Pickrell, A.M.; Moraes, C.T. Regional Susceptibilities to Mitochondrial Dysfunctions in the CNS. Biol. Chem. 2012, 393, 275–281. [Google Scholar] [CrossRef]
- Turconi, A.C.; Benti, R.; Castelli, E.; Pochintesta, S.; Felisari, G.; Comi, G.; Gagliardi, C.; Del Piccolo, L.; Bresolin, N. Focal Cognitive Impairment in Mitochondrial Encephalomyopathies: A Neuropsychological and Neuroimaging Study. J. Neurol. Sci. 1999, 170, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, L.; Persico, A.M. Mitochondrial Dysfunction in Autism Spectrum Disorders: Cause or Effect? Bio-Chim. Biophys. Acta Bioenerg. 2010, 1797, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A. Mitochondrial Disorders in the Nervous System. Annu. Rev. Neurosci. 2008, 31, 91–123. [Google Scholar] [CrossRef] [PubMed]
- Parikh, S.; Goldstein, A.; Koenig, M.K.; Scaglia, F.; Enns, G.M.; Saneto, R.; Anselm, I.; Cohen, B.H.; Falk, M.J.; Greene, C.; et al. Diagnosis and Management of Mitochondrial Disease: A Consensus Statement from the Mitochondrial Medicine Society. Genet. Med. 2015, 17, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Mavraki, E.; Labrum, R.; Sergeant, K.; Alston, C.L.; Woodward, C.; Smith, C.; Knowles, C.V.Y.; Patel, Y.; Hodsdon, P.; Baines, J.P.; et al. Genetic Testing for Mitochondrial Disease: The United Kingdom Best Practice Guidelines. Eur. J. Hum. Genet. 2023, 31, 148–163. [Google Scholar] [CrossRef]
- Almannai, M.; El-Hattab, A.W.; Ali, M.; Soler-Alfonso, C.; Scaglia, F. Clinical Trials in Mitochondrial Disorders, an Update. Mol. Genet. Metab. 2020, 131, 1–13. [Google Scholar] [CrossRef]
- Lynch, D.R.; Chin, M.P.; Boesch, S.; Delatycki, M.B.; Giunti, P.; Goldsberry, A.; Hoyle, J.C.; Mariotti, C.; Mathews, K.D.; Nachbauer, W.; et al. Efficacy of Omaveloxolone in Friedreich’s Ataxia: Delayed-Start Analysis of the MOXIe Extension. Mov. Disord. 2023, 38, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-González, C.; Madruga-Garrido, M.; Mavillard, F.; Garone, C.; Aguirre-Rodríguez, F.J.; Donati, M.A.; Kleinsteuber, K.; Martí, I.; Martín-Hernández, E.; Morealejo-Aycinena, J.P.; et al. Deoxynucleoside Therapy for Thymidine Kinase 2-Deficient Myopathy. Ann. Neurol. 2019, 86, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Yu-Wai-Man, P.; Newman, N.J.; Carelli, V.; Moster, M.L.; Biousse, V.; Sadun, A.A.; Klopstock, T.; Vignal-Clermont, C.; Sergott, R.C.; Rudolph, G.; et al. Bilateral Visual Improvement with Unilateral Gene Therapy Injection for Leber Hereditary Optic Neuropathy. Sci. Transl. Med. 2020, 12, eaaz7423. [Google Scholar] [CrossRef]
- Soldatov, V.O.; Kubekina, M.V.; Skorkina, M.Y.; Belykh, A.E.; Egorova, T.V.; Korokin, M.V.; Pokrovskiy, M.V.; Deykin, A.V.; Angelova, P.R. Current Advances in Gene Therapy of Mitochondrial Diseases. J. Transl. Med. 2022, 20, 562. [Google Scholar] [CrossRef]
- Yamada, K.; Toribe, Y.; Yanagihara, K.; Mano, T.; Akagi, M.; Suzuki, Y. Diagnostic Accuracy of Blood and CSF Lactate in Identifying Children with Mitochondrial Diseases Affecting the Central Nervous System. Brain Dev. 2012, 34, 92–97. [Google Scholar] [CrossRef]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth Differentiation Factor 15 as a Useful Biomarker for Mitochondrial Disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef]
- Mancuso, M.; Orsucci, D.; Coppedè, F.; Nesti, C.; Choub, A.; Siciliano, G. Diagnostic approach to mitochondrial disorders: The need for a reliable biomarker. Curr. Mol. Med. 2009, 9, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A.; Elo, J.M.; Pietiläinen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. FGF-21 as a Biomarker for Muscle-Manifesting Mitochondrial Respiratory Chain Deficiencies: A Diagnostic Study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A. Fibroblast Growth Factor 21: A Novel Biomarker for Human Muscle-Manifesting Mitochondrial Disorders. Expert Opin. Med. Diagn. 2013, 7, 313–317. [Google Scholar] [CrossRef]
- Boenzi, S.; Diodato, D. Biomarkers for Mitochondrial Energy Metabolism Diseases. Essays Biochem. 2018, 62, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Pajares, S.; Arias, A.; García-Villoria, J.; Briones, P.; Ribes, A. Role of Creatine as Biomarker of Mitochondrial Diseases. Mol. Genet. Metab. 2013, 108, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mitochondrial Medicine Society’s Committee on Diagnosis; Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Wong, L.-J.; Cohen, B.H.; Naviaux, R.K. The In-Depth Evaluation of Suspected Mitochondrial Disease. Mol. Genet. Metab. 2008, 94, 16–37. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhao, L.; Ji, K.; Zhao, Y.; Li, W.; Zhang, R.; Hou, Y.; Lu, J.; Yan, C. Growth Differentiation Factor 15 Is a Novel Diagnostic Biomarker of Mitochondrial Diseases. Mol. Neurobiol. 2017, 54, 8110–8116. [Google Scholar] [CrossRef]
- Lehtonen, J.M.; Forsström, S.; Bottani, E.; Viscomi, C.; Baris, O.R.; Isoniemi, H.; Höckerstedt, K.; Österlund, P.; Hurme, M.; Jylhävä, J.; et al. FGF21 Is a Biomarker for Mitochondrial Translation and MtDNA Maintenance Disorders. Neurology 2016, 87, 2290–2299. [Google Scholar] [CrossRef]
- Davis, R.L.; Liang, C.; Sue, C.M. A Comparison of Current Serum Biomarkers as Diagnostic Indicators of Mitochondrial Diseases. Neurology 2016, 86, 2010–2015. [Google Scholar] [CrossRef]
- Kalko, S.G.; Paco, S.; Jou, C.; Rodríguez, M.A.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.; Moggio, M.; Fagiolari, G.; et al. Transcriptomic Profiling of TK2 Deficient Human Skeletal Muscle Suggests a Role for the P53 Signalling Pathway and Identifies Growth and Differentiation Factor-15 as a Potential Novel Biomarker for Mitochondrial Myopathies. BMC Genom. 2014, 15, 91. [Google Scholar] [CrossRef]
- Morovat, A.; Weerasinghe, G.; Nesbitt, V.; Hofer, M.; Agnew, T.; Quaghebeur, G.; Sergeant, K.; Fratter, C.; Guha, N.; Mirzazadeh, M.; et al. Use of FGF-21 as a Biomarker of Mitochondrial Disease in Clinical Practice. J. Clin. Med. 2017, 6, 80. [Google Scholar] [CrossRef]
- Baldacci, J.; Calderisi, M.; Fiorillo, C.; Santorelli, F.M.; Rubegni, A. Automatic Recognition of Ragged Red Fibers in Muscle Biopsy from Patients with Mitochondrial Disorders. Healthcare 2022, 10, 574. [Google Scholar] [CrossRef]
- Pfeffer, G.; Chinnery, P.F. Diagnosis and Treatment of Mitochondrial Myopathies. Ann. Med. 2013, 45, 4–16. [Google Scholar] [CrossRef]
PMD | Key Phenotype Features | Most Common Genotype |
---|---|---|
Well-defined syndromes | ||
cPEO | Bilateral ptosis, progressive external ophthalmoplegia, mild exercise intolerance | mtDNA single large-scale deletion, nuclear genes involved in mtDNA maintenance (e.g., POLG1) (autosomal cPEO associated with multiple mtDNA deletions) |
KSS | PEO (onset age < 20 years), pigmentary retinopathy, CSF protein >1 g/L, cerebellar ataxia, heart block | mtDNA single large-scale deletion |
Pearson syndrome | Sideroblastic anemia of childhood, pancytopenia, exocrine pancreatic failure | mtDNA single large-scale deletion |
MELAS | SLEs, epilepsy, lactic acidosis, dementia, diabetes mellitus, hearing loss, cardiomyopathy | m.3243A>G (MT-TL1) |
Leigh syndrome | Infantile onset, bilateral brainstem lesions with subacute relapsing encephalopathy, cerebellar and brain stem signs | MT-ATP6 >100 nuclear-encoded genes (e.g., SURF1) |
NARP | Peripheral neuropathy, sensitive ataxia, pigmentary retinopathy | MT-ATP6 |
MERRF | Myoclonus, epilepsy, cerebellar ataxia, myopathy | m.8344A>G (MT-TK) |
LHON | Subacute painless bilateral visual failure | m.11778G>A (MT-ND4), m.3460G>A (MT-ND1), m.14484T>C (MT-ND6) |
ADOA | Subacute painless bilateral visual failure | OPA1 |
MIDD | Hearing loss, diabetes mellitus | m.3243A>G (MT-TL1) |
MSL | Multiple lipomas, myopathy | m.8344A>G (MT-TK), MFN2 |
PMM | Proximal myopathy with or without PEO, exercise intolerance | mtDNA tRNAs (e.g., m.3243A>G in MT-TL1), mtDNA single large-scale deletion, POLG1, TWNK |
Specific groups of disorders associated with multiple mtDNA deletions or mtDNA depletion | ||
ANS | MIRAS: mitochondrial recessive ataxia syndrome SANDO: sensory ataxia, neuropathy, dysarthria, ophthalmoplegia | POLG1 |
MEMSA | Epilepsy, myopathy, and ataxia without ophthalmoplegia | POLG1 |
AHS | Encephalopathy with intractable epilepsy, neuropathy, hepatic failure | POLG1 |
MCHS | Developmental delay or dementia, lactic acidosis, myopathy with failure to thrive, hepatic failure | POLG1 |
MNGIE | Severe gastrointestinal dysmotility, cachexia, PEO, sensorimotor neuropathy | TYMP |
MDS | Myopathic forms: hypotonia, myopathy, feeding difficulty (“floppy infant”) Encephalomyopathic forms: hypotonia, global developmental delay Hepatocerebral forms: hepatic failure, developmental delay, abnormal eye movements, peripheral neuropathy (e.g., MCHS, POLG-related) Neurogastrointestinal forms: MNGIE | Mitochondrial nucleotide synthesis (TK2, SUCLA2, SUCLG1, RRM2B, DGUOK, TYMP, MPV17) mtDNA replication (POLG1, TWNK) |
Biomarker | Description | Samples | SP, SE, AUC | Reference |
---|---|---|---|---|
Lactate | Quantification of lactate, which results from anaerobic ATP production | Blood, CSF, urine | SE: 34–62% SP: 83–100% [220] AUC: 0.8–0.926 [227,228] | [229] |
Pyruvate | Quantification of pyruvate, which is a precursor of lactate | Blood, CSF, urine | SE: 63.6–83.3% SP: 87.2% [230] AUC: 0.907 [227] L/P ratio SP: 100% SE: 44% [231] | [232] |
Creatine kinase | Quantification of creatine kinase, an enzyme released from damaged muscle fibers | Blood, CSF, urine | AUC: 0.609 [228] | [233] |
Acylcarnitine | Quantification of acylcarnitine, which transports activated long-chain fatty acids to mitochondria, required for beta oxidation | Blood | - | [220] |
Amino acids | Quantification of amino acids, as well as alanine, glycine, proline, and threonine, synthetized following respiratory chain dysfunction and altered cellular redox state | Blood, CSF, urine | - | [234] |
GDF-15 | Quantification of GDF-15, a member of the transforming growth factor beta family, induced in response to cellular stress | Blood | AUC: 0.70–0.999 [235,236] SE: 77.8% [237] | [238] |
FGF-21 | Quantification of FGF-21, a growth factor which regulates lipid and glucose metabolism, correlated with mitochondrial dysfunction | Blood | AUC: 0.69–0.9 [230,239] SE: 41.7–95.7% SP: 91.7% [230] | [239] |
RRFs | Histological identification of RRFs, which represent the accumulation of abnormal mitochondria below the plasma membrane of the muscle fiber, linked with mitochondrial dysfunction (modified Gomori trichrome staining) | Muscle biopsy | - | [240] |
RBFs | Histological identification of RBFs, which represent muscle fibers with increased levels of succinate dehydrogenase activity in the subsarcolemmal region | Muscle biopsy | - | [241] |
COX-negative fibers | Histochemical identification of COX-deficient fibers, which represent a marker of mitochondrial respiratory chain deficiency | Muscle biopsy | - | [241] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, F.; Di Martino, S.; Drago, F.; Bucolo, C.; Micale, V.; Montano, V.; Siciliano, G.; Mancuso, M.; Lopriore, P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? Int. J. Mol. Sci. 2023, 24, 16746. https://doi.org/10.3390/ijms242316746
Conti F, Di Martino S, Drago F, Bucolo C, Micale V, Montano V, Siciliano G, Mancuso M, Lopriore P. Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? International Journal of Molecular Sciences. 2023; 24(23):16746. https://doi.org/10.3390/ijms242316746
Chicago/Turabian StyleConti, Federica, Serena Di Martino, Filippo Drago, Claudio Bucolo, Vincenzo Micale, Vincenzo Montano, Gabriele Siciliano, Michelangelo Mancuso, and Piervito Lopriore. 2023. "Red Flags in Primary Mitochondrial Diseases: What Should We Recognize?" International Journal of Molecular Sciences 24, no. 23: 16746. https://doi.org/10.3390/ijms242316746
APA StyleConti, F., Di Martino, S., Drago, F., Bucolo, C., Micale, V., Montano, V., Siciliano, G., Mancuso, M., & Lopriore, P. (2023). Red Flags in Primary Mitochondrial Diseases: What Should We Recognize? International Journal of Molecular Sciences, 24(23), 16746. https://doi.org/10.3390/ijms242316746