Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds
Abstract
:1. Introduction
2. Results
2.1. Adhesion of hDPSCs Grown on the PLCL and HYAFF-11™ Scaffolds
Scanning Electron Microscope (SEM)
2.2. Osteogenic Differentiation of hDPSCs on PLCL and HYAFF-11™ Scaffolds
2.2.1. Alizarin Red S Staining
2.2.2. Bone-Related Protein Expression
2.2.3. Bone-Related Gene Expression
3. Discussion
4. Materials and Methods
4.1. Biomaterials
4.1.1. Hyaluronan-Based Biomaterial (HYAFF-11™)
4.1.2. Poly(L-Lactide-Co-Caprolactone) (PLCL) Scaffold
4.2. Stem Cell Study-Related Methods
4.2.1. Patients
4.2.2. hDPSC Isolation and Culture
4.3. hDPSC Seeding on PLCL and HYAFF-11™ Scaffolds
4.3.1. Adhesion of hDPSCs to the PLCL and HYAFF-11™ Scaffolds
4.3.2. Scanning Electron Microscopy Analysis
4.3.3. Osteogenic Potential of hDPSCs Grown on PLCL and HYAFF-11™ Scaffolds
4.4. Alizarin Red S Staining
4.4.1. Antibodies
4.4.2. Immunohistochemical Staining (IHC)
4.4.3. Immunohistochemical Staining Interpretation
4.4.4. Quantitative Polymerase Chain Reaction (qPCR) for Osteogenic Gene Expression
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gugliandolo, A.; Fonticoli, L.; Trubiani, O.; Rajan, T.S.; Marconi, G.D.; Bramanti, P.; Mazzon, E.; Pizzicannella, J.; Diomede, F. Oral Bone Tissue Regeneration: Mesenchymal Stem Cells, Secretome, and Biomaterials. Int. J. Mol. Sci. 2021, 22, 5236. [Google Scholar] [CrossRef] [PubMed]
- Battafarano, G.; Rossi, M.; De Martino, V.; Marampon, F.; Borro, L.; Secinaro, A.; Del Fattore, A. Strategies for Bone Regeneration: From Graft to Tissue Engineering. Int. J. Mol. Sci. 2021, 22, 1128. [Google Scholar] [CrossRef]
- Lutzweiler, G.; Ndreu Halili, A.; Engin Vrana, N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Manzini, B.M.; Machado, L.M.R.; Noritomi, P.Y.; Da Silva, J.V.L. Advances in Bone Tissue Engineering: A Fundamental Review. J. Biosci. 2021, 46, 17. [Google Scholar] [CrossRef]
- Pereira, H.F.; Cengiz, I.F.; Silva, F.S.; Reis, R.L.; Oliveira, J.M. Scaffolds and Coatings for Bone Regeneration. J. Mater. Sci. Mater. Med. 2020, 31, 27. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.N.; Ren, G.; Young, K.; Pina, S.; Reis, R.L.; Oliveira, J.M. Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Adv. Funct. Mater. 2021, 31, 2010609. [Google Scholar] [CrossRef]
- Carluccio, M.; Ziberi, S.; Zuccarini, M.; Giuliani, P.; Caciagli, F.; Di Iorio, P.; Ciccarelli, R. Adult Mesenchymal Stem Cells: Is There a Role for Purine Receptors in Their Osteogenic Differentiation? Purinergic Signal 2020, 16, 263–287. [Google Scholar] [CrossRef]
- Chi, H.; Chen, G.; He, Y.; Chen, G.; Tu, H.; Liu, X.; Yan, J.; Wang, X. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair. Int. J. Nanomed. 2020, 15, 5825–5838. [Google Scholar] [CrossRef]
- Dixon, D.T.; Gomillion, C.T. Conductive Scaffolds for Bone Tissue Engineering: Current State and Future Outlook. J. Funct. Biomater. 2021, 13, 1. [Google Scholar] [CrossRef]
- Cardoso, L.M.d.F.; Barreto, T.; Gama, J.F.G.; Alves, L.A. Natural Biopolymers as Additional Tools for Cell Microencapsulation Applied to Cellular Therapy. Polymers 2022, 14, 2641. [Google Scholar] [CrossRef]
- Li, G.; Zhao, M.; Xu, F.; Yang, B.; Li, X.; Meng, X.; Teng, L.; Sun, F.; Li, Y. Synthesis and Biological Application of Polylactic Acid. Molecules 2020, 25, E5023. [Google Scholar] [CrossRef] [PubMed]
- Ferroni, L.; Gardin, C.; Sivolella, S.; Brunello, G.; Berengo, M.; Piattelli, A.; Bressan, E.; Zavan, B. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-like Tissue. Int. J. Mol. Sci. 2015, 16, 4666–4681. [Google Scholar] [CrossRef] [PubMed]
- Wuttisiriboon, K.; Tippayawat, P.; Daduang, J.; Limpaiboon, T. Three-Dimensional Silk Fibroin-Gelatin/Chondroitin Sulfate/Hyaluronic Acid-Aloe Vera Scaffold Supports in Vitro Chondrogenesis of Bone Marrow Mesenchymal Stem Cells and Reduces Inflammatory Effect. J. Biomed. Mater. Res. B Appl. Biomater. 2023, 111, 1557–1570. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, F.; Inchingolo, F.; Dipalma, G.; Postiglione, F.; Fulle, S.; Scarano, A. Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review. Int. J. Mol. Sci. 2020, 21, 9765. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.-Y.; Nien, C.-Y.; Hong, H.-H.; Cheng, M.-H.; Yen, T.-H. Application of Dental Stem Cells in Three-Dimensional Tissue Regeneration. World J. Stem Cells 2021, 13, 1610–1624. [Google Scholar] [CrossRef]
- Macdougall, L.; Culver, H.; Lin, C.-C.; Bowman, C.; Anseth, K. 1.3.2F—Degradable and Resorbable Polymers. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 167–190. ISBN 978-0-12-816137-1. [Google Scholar]
- Yousefzade, O.; Katsarava, R.; Puiggalí, J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics 2020, 5, E49. [Google Scholar] [CrossRef]
- Granz, C.L.; Gorji, A. Dental Stem Cells: The Role of Biomaterials and Scaffolds in Developing Novel Therapeutic Strategies. World J. Stem Cells 2020, 12, 897–921. [Google Scholar] [CrossRef]
- Xie, Z.; Shen, Z.; Zhan, P.; Yang, J.; Huang, Q.; Huang, S.; Chen, L.; Lin, Z. Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int. J. Mol. Sci. 2021, 22, 8991. [Google Scholar] [CrossRef]
- Ercal, P.; Pekozer, G.G. A Current Overview of Scaffold-Based Bone Regeneration Strategies with Dental Stem Cells. Adv. Exp. Med. Biol. 2020, 1288, 61–85. [Google Scholar] [CrossRef]
- Niklason, L.E. Understanding the Extracellular Matrix to Enhance Stem Cell-Based Tissue Regeneration. Cell Stem Cell 2018, 22, 302–305. [Google Scholar] [CrossRef]
- Bar, J.K.; Kowalczyk, T.; Grelewski, P.G.; Stamnitz, S.; Paprocka, M.; Lis, J.; Lis-Nawara, A.; An, S.; Klimczak, A. Characterization of Biological Properties of Dental Pulp Stem Cells Grown on an Electrospun Poly(l-Lactide-Co-Caprolactone) Scaffold. Materials 2022, 15, 1900. [Google Scholar] [CrossRef]
- Stamnitz, S.; Klimczak, A. Mesenchymal Stem Cells, Bioactive Factors, and Scaffolds in Bone Repair: From Research Perspectives to Clinical Practice. Cells 2021, 10, 1925. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Deng, C.; Li, Y.-P. TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int. J. Biol. Sci. 2012, 8, 272–288. [Google Scholar] [CrossRef] [PubMed]
- Gromolak, S.; Krawczenko, A.; Antończyk, A.; Buczak, K.; Kiełbowicz, Z.; Klimczak, A. Biological Characteristics and Osteogenic Differentiation of Ovine Bone Marrow Derived Mesenchymal Stem Cells Stimulated with FGF-2 and BMP-2. Int. J. Mol. Sci. 2020, 21, 9726. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Mozafari, M.; Hamzehlou, S.; Brouki Milan, P.; Kim, H.-W.; Baino, F. Bone Tissue Engineering Using Human Cells: A Comprehensive Review on Recent Trends, Current Prospects, and Recommendations. Appl. Sci. 2019, 9, 174. [Google Scholar] [CrossRef]
- Anitua, E.; Troya, M.; Zalduendo, M. Progress in the Use of Dental Pulp Stem Cells in Regenerative Medicine. Cytotherapy 2018, 20, 479–498. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, M.; Xie, Q.; Sun, H.; Huang, Y.; Zhang, D.; Yu, Z.; Bi, X.; Chen, J.; Wang, J.; et al. Electrospun Silk Fibroin/Poly(Lactide-Co-ε-Caprolactone) Nanofibrous Scaffolds for Bone Regeneration. Int. J. Nanomed. 2016, 11, 1483–1500. [Google Scholar] [CrossRef]
- Qiu, Y.-L.; Chen, X.; Hou, Y.-L.; Hou, Y.-J.; Tian, S.-B.; Chen, Y.-H.; Yu, L.; Nie, M.-H.; Liu, X.-Q. Characterization of Different Biodegradable Scaffolds in Tissue Engineering. Mol. Med. Rep. 2019, 19, 4043–4056. [Google Scholar] [CrossRef]
- Jiménez, N.T.; Carlos Munévar, J.; González, J.M.; Infante, C.; Lara, S.J.P. In Vitro Response of Dental Pulp Stem Cells in 3D Scaffolds: A Regenerative Bone Material. Heliyon 2018, 4, e00775. [Google Scholar] [CrossRef]
- Krieghoff, J.; Picke, A.-K.; Salbach-Hirsch, J.; Rother, S.; Heinemann, C.; Bernhardt, R.; Kascholke, C.; Möller, S.; Rauner, M.; Schnabelrauch, M.; et al. Increased Pore Size of Scaffolds Improves Coating Efficiency with Sulfated Hyaluronan and Mineralization Capacity of Osteoblasts. Biomater. Res. 2019, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Firouzi, N.; Aghazadeh, Z.; Samiei, M.; Montazersaheb, S.; Khoshfetrat, A.B.; Aghazadeh, M. The Osteogenic Differentiation of Human Dental Pulp Stem Cells in Alginate-Gelatin/Nano-Hydroxyapatite Microcapsules. BMC Biotechnol. 2021, 21, 6. [Google Scholar] [CrossRef] [PubMed]
- Gandhimathi, C.; Quek, Y.J.; Ezhilarasu, H.; Ramakrishna, S.; Bay, B.-H.; Srinivasan, D.K. Osteogenic Differentiation of Mesenchymal Stem Cells with Silica-Coated Gold Nanoparticles for Bone Tissue Engineering. Int. J. Mol. Sci. 2019, 20, 5135. [Google Scholar] [CrossRef] [PubMed]
- Luzuriaga, J.; García-Gallastegui, P.; García-Urkia, N.; Pineda, J.R.; Irastorza, I.; Fernandez-San-Argimiro, F.-J.; Briz, N.; Olalde, B.; Unda, F.; Madarieta, I.; et al. Osteogenic Differentiation of Human Dental Pulp Stem Cells in Decellularised Adipose Tissue Solid Foams. Eur. Cell Mater. 2022, 43, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Aghazadeh, M.; Akbarzadeh, A.; Vafajoo, Z.; Aghazadeh, Z.; Raeisdasteh Hokmabad, V. Towards Osteogenic Differentiation of Human Dental Pulp Stem Cells on PCL-PEG-PCL/Zeolite Nanofibrous Scaffolds. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3431–3437. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Yu, Y.; Liu, H.; Sun, W.; Lin, Z.; Liu, C.; Miao, L. Berberine-Releasing Electrospun Scaffold Induces Osteogenic Differentiation of DPSCs and Accelerates Bone Repair. Sci. Rep. 2021, 11, 1027. [Google Scholar] [CrossRef]
- Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C. Human Dental Pulp Stem Cell Adhesion and Detachment in Polycaprolactone Electrospun Scaffolds under Direct Perfusion. Braz. J. Med. Biol. Res. 2018, 51, e6754. [Google Scholar] [CrossRef]
- Rodrigues, A.A.; Batista, N.A.; Malmonge, S.M.; Casarin, S.A.; Agnelli, J.A.M.; Santos, A.R.; Belangero, W.D. Osteogenic Differentiation of Rat Bone Mesenchymal Stem Cells Cultured on Poly (Hydroxybutyrate-Co-Hydroxyvalerate), Poly (ε-Caprolactone) Scaffolds. J. Mater. Sci. Mater. Med. 2021, 32, 138. [Google Scholar] [CrossRef]
- Rozila, I.; Azari, P.; Munirah, S.; Safwani, W.K.Z.W.; Pingguan-Murphy, B.; Chua, K.H. Polycaprolactone-Based Scaffolds Facilitates Osteogenic Differentiation of Human Adipose-Derived Stem Cells in a Co-Culture System. Polymers 2021, 13, 597. [Google Scholar] [CrossRef]
- Asghari, F.; Salehi, R.; Agazadeh, M.; Alizadeh, E.; Adibkia, K.; Samiei, M.; Akbarzadeh, A.; Aval, N.A.; Davaran, S. The Odontogenic Differentiation of Human Dental Pulp Stem Cells on Hydroxyapatite-Coated Biodegradable Nanofibrous Scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 720–728. [Google Scholar] [CrossRef]
- Schlegel, W.; Nürnberger, S.; Hombauer, M.; Albrecht, C.; Vécsei, V.; Marlovits, S. Scaffold-Dependent Differentiation of Human Articular Chondrocytes. Int. J. Mol. Med. 2008, 22, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Behere, I.; Pardawala, Z.; Vaidya, A.; Kale, V.; Ingavle, G. Osteogenic Differentiation of an Osteoblast Precursor Cell Line Using Composite PCL-Gelatin-nHAp Electrospun Nanofiber Mesh. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 1281–1295. [Google Scholar] [CrossRef]
- Persson, M.; Lehenkari, P.P.; Berglin, L.; Turunen, S.; Finnilä, M.A.J.; Risteli, J.; Skrifvars, M.; Tuukkanen, J. Osteogenic Differentiation of Human Mesenchymal Stem Cells in a 3D Woven Scaffold. Sci. Rep. 2018, 8, 10457. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Qian, Y.; Li, L.; Yao, G.; Yang, L.; Sun, Y. Polycaprolactone Nanofiber Scaffold Enhances the Osteogenic Differentiation Potency of Various Human Tissue-Derived Mesenchymal Stem Cells. Stem Cell Res. Ther. 2017, 8, 148. [Google Scholar] [CrossRef]
- Campoccia, D.; Doherty, P.; Radice, M.; Brun, P.; Abatangelo, G.; Williams, D.F. Semisynthetic Resorbable Materials from Hyaluronan Esterification. Biomaterials 1998, 19, 2101–2127. [Google Scholar] [CrossRef]
Immunoreactivity ( percentage of positive cells, mean +SD) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cultured condition | No. of donors | Runx2 | Osx | Coll-I | BSP | DSPP | OPN | OCN | |||||||
[%] | p | [%] | p | [%] | p | [%] | p | [%] | p | [%] | p | [%] | p | ||
hDPSCs before differentiation | 3 | 13.9 ± 5.46 | 0.0026 * | 15.6 ± 7.26 | 0.0094 * | 20.0 ± 7.07 | 0.0006* | 18.3 ± 6.61 | 0.0061 * | 18.9 ± 8.94 | 0.0006 * | 13.3 ± 5.59 | 0.0041 * | 23,3 ± 5.59 | 0.0158 * |
hDPSCs on PLCL after differentiation | 3 | 21.7 ± 6.32 | 44.4 ± 10.14 | 69.4 ± 6.67 | 63.3 ± 4.17 | 51.1 ± 9.28 | 50.6 ± 7.5 | 64.4 ± 6.82 | |||||||
hDPSCs on HYAFF-11TM after differentiation | 3 | 21.1 ± 6.32 | 0.0115 ^ | 50.6 ± 7.26 | 0.0114 ^ | 54.4 ± 6.67 | 0.0037^ | 60.6 ± 4.17 | 0.0131 ^ | 53.3 ± 7.95 | 0.0154 ^ | 52.7 ± 7.5 | 0.0077 ^ | 63.9 ± 6.82 | 0.0027 ^ |
hDPSCs on PLCL after differentiation | 3 | 21.7 ± 6.32 | 0.8422 | 44.4 ± 10.14 | 0.1774 | 69.4 ± 6.67 | 0.0002 | 63.3 ± 4.17 | 0.5889 | 51.1 ± 9.28 | 0.6317 | 50.6 ± 7.5 | 0.7556 | 64.4 ± 6.82 | 0.9291 |
hDPSCs on HYAFF-11TM after differentiation | 3 | 21.1 ± 6.32 | 50.6 ± 7.26 | 54.4 ± 6.67 | 60.6 ± 4.17 | 53.3 ± 7.95 | 52.7 ± 7.5 | 63.9 ± 6.82 |
Gene | Primer Sequences (5′-3′) | Amplicon Length (bp) |
---|---|---|
β-actin | F:5′-AGGGCAGTGATCTCCTTCTGCATCCT-3′ R:5′-CCACACTGTGCCCATCTACGAGGGGT-3′ | 1852 |
Runt-related transcription factor 2 | F:5′-GTGGACGAGGCAAGAGTTTCA-3′ R:5′-CCGTGTCTGTCTTCGAACTAC-3′ | 187 |
Collagen type I | F:5′-AGGTGCTGATGGCTCTCCT-3′ R:5′-TGTTCCCACTTTCACCAGG-3′ | 178 |
Osterix | F:5′-ATCCAGCCCCCTTTACAAGC-3′ R:5′-TAGCATAGCCTGAGGTGGGT-3′ | 408 |
Osteocalcin | F:5′-GCAGGTGCGAAGCCCAGCGGTGCAGAG-3′ R:5′-GGGCTGGGAGGTCAGGGCAAGGGCAAG-3′ | 562 |
Osteopontin | F:5′-ATCACCTGTGCCATACCA-3′ R:5′-CATCTTCATCATCCATATCATCCA-3′ | 1823 |
Bone sialoprotein | F:5′-TCACTGGAGCCAATGCAGAA-3′ R:5′-TGGAGAGGTTGTTGTCTTCGAG-3′ | 1573 |
Dentin sialophosphoprotein | F:5′-GGCAGTGCATCAAAAGGAGC-3′ R:5′-TGCTGTCACTGTCACTGCTG-3′ | 4331 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bar, J.K.; Lis-Nawara, A.; Kowalczyk, T.; Grelewski, P.G.; Stamnitz, S.; Gerber, H.; Klimczak, A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds. Int. J. Mol. Sci. 2023, 24, 16747. https://doi.org/10.3390/ijms242316747
Bar JK, Lis-Nawara A, Kowalczyk T, Grelewski PG, Stamnitz S, Gerber H, Klimczak A. Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds. International Journal of Molecular Sciences. 2023; 24(23):16747. https://doi.org/10.3390/ijms242316747
Chicago/Turabian StyleBar, Julia K., Anna Lis-Nawara, Tomasz Kowalczyk, Piotr G. Grelewski, Sandra Stamnitz, Hanna Gerber, and Aleksandra Klimczak. 2023. "Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds" International Journal of Molecular Sciences 24, no. 23: 16747. https://doi.org/10.3390/ijms242316747
APA StyleBar, J. K., Lis-Nawara, A., Kowalczyk, T., Grelewski, P. G., Stamnitz, S., Gerber, H., & Klimczak, A. (2023). Osteogenic Potential of Human Dental Pulp Stem Cells (hDPSCs) Growing on Poly L-Lactide-Co-Caprolactone and Hyaluronic Acid (HYAFF-11TM) Scaffolds. International Journal of Molecular Sciences, 24(23), 16747. https://doi.org/10.3390/ijms242316747