Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension
Abstract
:1. Introduction
2. Pathogenic Mechanisms of Oxidative Stress
3. Overview of Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension
4. Oxidative Stress in Pathogenesis of Hyperdynamic Circulation
5. Oxidative Stress in the Humoral Theory
6. Oxidative Stress in Central Neural Dysregulation
7. Cirrhotic Cardiomyopathy
8. Role of Oxidative Mechanisms in Cardiac Arrhythmias
9. Acute Kidney Injury (AKI) and Hepatorenal Syndrome
10. Antioxidants as Potential Treatment Options in Cardiovascular Anomalies of Cirrhosis
11. Nonspecific Beta-Adrenergic Blockers (NSBBs)
12. Taurine
13. Spermidine
14. Direct Antioxidants
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Salete-Granado, D.; Carbonell, C.; Puertas-Miranda, D.; Vega-Rodriguez, V.J.; Garcia-Macia, M.; Herrero, A.B.; Marcos, M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants 2023, 12, 1425. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Savastano, S.; Colao, A.; Muscogiuri, G. Adherence to Mediterranean Diet: Any Association with NAFLD? Antioxidants 2023, 12, 1318. [Google Scholar] [CrossRef]
- Tanikawa, K.; Torimura, T. Studies on oxidative stress in liver diseases: Important future trends in liver research. Med. Mol. Morphol. 2006, 39, 22–27. [Google Scholar] [CrossRef]
- Boyer-Diaz, Z.; Morata, P.; Aristu-Zabalza, P.; Gibert-Ramos, A.; Bosch, J.; Gracia-Sancho, J. Oxidative Stress in Chronic Liver Disease and Portal Hypertension: Potential of DHA as Nutraceutical. Nutrients 2020, 12, 2627. [Google Scholar] [CrossRef]
- Mousavi, K.; Niknahad, H.; Ghalamfarsa, A.; Mohammadi, H.; Azarpira, N.; Ommati, M.M.; Heidari, R. Taurine mitigates cirrhosis-associated heart injury through mitochondrial-dependent and antioxidative mechanisms. Clin. Exp. Hepatol. 2020, 6, 207–219. [Google Scholar] [CrossRef]
- Nickovic, V.P.; Miric, D.; Kisic, B.; Kocic, H.; Stojanovic, M.; Buttice, S.; Kocic, G. Oxidative stress, NOx/l-arginine ratio and glutathione/glutathione S-transferase ratio as predictors of ‘sterile inflammation’ in patients with alcoholic cirrhosis and hepatorenal syndrome type II. Ren. Fail. 2018, 40, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Ommati, M.M.; Mobasheri, A.; Ma, Y.; Xu, D.; Tang, Z.; Manthari, R.K.; Abdoli, N.; Azarpira, N.; Lu, Y.; Sadeghian, I.; et al. Taurine mitigates the development of pulmonary inflammation, oxidative stress, and histopathological alterations in a rat model of bile duct ligation. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 1557–1572. [Google Scholar] [CrossRef]
- Bai, Y.; Li, K.; Li, X.; Chen, X.; Zheng, J.; Wu, F.; Chen, J.; Li, Z.; Zhang, S.; Wu, K.; et al. Effects of oxidative stress on hepatic encephalopathy pathogenesis in mice. Nat. Commun. 2023, 14, 4456. [Google Scholar] [CrossRef]
- Liu, H.; Alhassan, N.; Yoon, K.T.; Almutlaq, L.; Lee, S.S. Oxidative stress triggers hyperdynamic circulation via central neural activation in portal hypertensive rats. Hepatol. Int. 2023, 17, 689–697. [Google Scholar] [CrossRef]
- Ramachandran, A.; Prabhu, R.; Thomas, S.; Reddy, J.B.; Pulimood, A.; Balasubramanian, K.A. Intestinal mucosal alterations in experimental cirrhosis in the rat: Role of oxygen free radicals. Hepatology 2002, 35, 622–629. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Tsamandas, A.C.; Tsiaoussis, G.I.; Karatza, E.; Zisimopoulos, D.; Maroulis, I.; Kontogeorgou, E.; Georgiou, C.D.; Scopa, C.D.; Thomopoulos, K.C. Intestinal mucosal proliferation, apoptosis and oxidative stress in patients with liver cirrhosis. Ann. Hepatol. 2013, 12, 301–307. [Google Scholar] [CrossRef]
- Gilchrist, I.C. Dorsal Radial Access: Is the Back Door to the Arterial System Ready to Be the Workhorse Entry? Cardiovasc. Revasc. Med. 2019, 20, 735–736. [Google Scholar] [CrossRef]
- Danielsen, K.V.; Wiese, S.; Busk, T.; Nabilou, P.; Kronborg, T.M.; Petersen, C.L.; Hove, J.D.; Moller, S.; Bendtsen, F. Cardiovascular Mapping in Cirrhosis From the Compensated Stage to Hepatorenal Syndrome: A Magnetic Resonance Study. Am. J. Gastroenterol. 2022, 117, 1269–1278. [Google Scholar] [CrossRef]
- Dietrich, P.; Moleda, L.; Kees, F.; Muller, M.; Straub, R.H.; Hellerbrand, C.; Wiest, R. Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: Impact of exogenous neuropeptide Y. J. Hepatol. 2013, 58, 254–261. [Google Scholar] [CrossRef]
- Fialla, A.D.; Thiesson, H.C.; Bie, P.; Schaffalitzky de Muckadell, O.B.; Krag, A. Internal dysregulation of the renin system in patients with stable liver cirrhosis. Scand. J. Clin. Lab. Investig. 2017, 77, 298–309. [Google Scholar] [CrossRef]
- Hsu, S.J.; Lin, T.Y.; Wang, S.S.; Chuang, C.L.; Lee, F.Y.; Huang, H.C.; Hsin, I.F.; Lee, J.Y.; Lin, H.C.; Lee, S.D. Endothelin receptor blockers reduce shunting and angiogenesis in cirrhotic rats. Eur. J. Clin. Investig. 2016, 46, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Sola, E.; Gines, P. Challenges and Management of Liver Cirrhosis: Pathophysiology of Renal Dysfunction in Cirrhosis. Dig. Dis. 2015, 33, 534–538. [Google Scholar] [CrossRef] [PubMed]
- Ohara, N.; Jaspan, J.; Chang, S.W. Hyperglucagonemia and hyperdynamic circulation in rats with biliary cirrhosis. J. Lab. Clin. Med. 1993, 121, 142–147. [Google Scholar] [PubMed]
- Oberti, F.; Sogni, P.; Cailmail, S.; Moreau, R.; Pipy, B.; Lebrec, D. Role of prostacyclin in hemodynamic alterations in conscious rats with extrahepatic or intrahepatic portal hypertension. Hepatology 1993, 18, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Papagiouvanni, I.; Sarafidis, P.; Theodorakopoulou, M.P.; Sinakos, E.; Goulis, I. Endothelial and microvascular function in liver cirrhosis: An old concept that needs re-evaluation? Ann. Gastroenterol. 2022, 35, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Song, D.; Lee, S.S. Role of heme oxygenase-carbon monoxide pathway in pathogenesis of cirrhotic cardiomyopathy in the rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, G68–G74. [Google Scholar] [CrossRef] [PubMed]
- Moller, S.; Bendtsen, F. The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver Int. 2018, 38, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, J.H.; Ring-Larsen, H.; Christensen, N.J. Sympathetic nervous activity in cirrhosis. A survey of plasma catecholamine studies. J. Hepatol. 1985, 1, 55–65. [Google Scholar] [CrossRef]
- Vidal Gonzalez, D.; Perez Lopez, K.P.; Vera Nungaray, S.A.; Moreno Madrigal, L.G. Treatment of refractory ascites: Current strategies and new landscape of non-selective beta-blockers. Gastroenterol. Hepatol. 2022, 45, 715–723. [Google Scholar] [CrossRef]
- Gunarathne, L.S.; Rajapaksha, H.; Shackel, N.; Angus, P.W.; Herath, C.B. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J. Gastroenterol. 2020, 26, 6111–6140. [Google Scholar] [CrossRef] [PubMed]
- Hartl, L.; Rumpf, B.; Domenig, O.; Simbrunner, B.; Paternostro, R.; Jachs, M.; Poglitsch, M.; Marculescu, R.; Trauner, M.; Reindl-Schwaighofer, R.; et al. The systemic and hepatic alternative renin-angiotensin system is activated in liver cirrhosis, linked to endothelial dysfunction and inflammation. Sci. Rep. 2023, 13, 953. [Google Scholar] [CrossRef]
- Jimenez, W.; Rodes, J. Impaired responsiveness to endogenous vasoconstrictors and endothelium-derived vasoactive factors in cirrhosis. Gastroenterology 1994, 107, 1201–1203. [Google Scholar] [CrossRef]
- Wong, F.; Girgrah, N.; Graba, J.; Allidina, Y.; Liu, P.; Blendis, L. The cardiac response to exercise in cirrhosis. Gut 2001, 49, 268–275. [Google Scholar] [CrossRef]
- Izzy, M.; VanWagner, L.B.; Lin, G.; Altieri, M.; Findlay, J.Y.; Oh, J.K.; Watt, K.D.; Lee, S.S.; Cirrhotic Cardiomyopathy Consortium. Redefining Cirrhotic Cardiomyopathy for the Modern Era. Hepatology 2020, 71, 334–345. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Liu, H.; Nam, S.W.; Kunos, G.; Lee, S.S. Mechanisms of TNFalpha-induced cardiac dysfunction in cholestatic bile duct-ligated mice: Interaction between TNFalpha and endocannabinoids. J. Hepatol. 2010, 53, 298–306. [Google Scholar] [CrossRef]
- Teuber, J.P.; Essandoh, K.; Hummel, S.L.; Madamanchi, N.R.; Brody, M.J. NADPH Oxidases in Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. Antioxidants 2022, 11, 1822. [Google Scholar] [CrossRef]
- Groszmann, R.J. Hyperdynamic state in chronic liver diseases. J. Hepatol. 1993, 17 (Suppl. 2), S38–S40. [Google Scholar] [CrossRef]
- Bolognesi, M.; Di Pascoli, M.; Verardo, A.; Gatta, A. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J. Gastroenterol. 2014, 20, 2555–2563. [Google Scholar] [CrossRef]
- Ebrahimkhani, M.R.; Mani, A.R.; Moore, K. Hydrogen sulphide and the hyperdynamic circulation in cirrhosis: A hypothesis. Gut 2005, 54, 1668–1671. [Google Scholar] [CrossRef]
- Lee, P.C.; Yang, Y.Y.; Huang, C.S.; Hsieh, S.L.; Lee, K.C.; Hsieh, Y.C.; Lee, T.Y.; Lin, H.C. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol. Res. 2015, 45, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive Oxygen Species: The Dual Role in Physiological and Pathological Conditions of the Human Body. Eurasian J. Med. 2018, 50, 193–201. [Google Scholar] [CrossRef]
- Deng, W.; Duan, M.; Qian, B.; Zhu, Y.; Lin, J.; Zheng, L.; Zhang, C.; Qi, X.; Luo, M. NADPH oxidase 1/4 inhibition attenuates the portal hypertensive syndrome via modulation of mesenteric angiogenesis and arterial hyporeactivity in rats. Clin. Res. Hepatol. Gastroenterol. 2019, 43, 255–265. [Google Scholar] [CrossRef]
- Fernando, B.; Marley, R.; Holt, S.; Anand, R.; Harry, D.; Sanderson, P.; Smith, R.; Hamilton, G.; Moore, K. N-acetylcysteine prevents development of the hyperdynamic circulation in the portal hypertensive rat. Hepatology 1998, 28, 689–694. [Google Scholar] [CrossRef]
- Licks, F.; Marques, C.; Zetler, C.; Martins, M.I.; Marroni, C.A.; Marroni, N.P. Antioxidant effect of N-acetylcysteine on prehepatic portal hypertensive gastropathy in rats. Ann. Hepatol. 2014, 13, 370–377. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Cadelina, G.; Sessa, W.C.; Groszmann, R.J. Mice with targeted deletion of eNOS develop hyperdynamic circulation associated with portal hypertension. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1074–G1081. [Google Scholar] [CrossRef]
- Liu, H.; Schuelert, N.; McDougall, J.J.; Lee, S.S. Central neural activation of hyperdynamic circulation in portal hypertensive rats depends on vagal afferent nerves. Gut 2008, 57, 966–973. [Google Scholar] [CrossRef]
- Song, D.; Liu, H.; Sharkey, K.A.; Lee, S.S. Hyperdynamic circulation in portal-hypertensive rats is dependent on central c-fos gene expression. Hepatology 2002, 35, 159–166. [Google Scholar] [CrossRef]
- Lee, S.S.; Sharkey, K.A. Capsaicin treatment blocks development of hyperkinetic circulation in portal hypertensive and cirrhotic rats. Am. J. Physiol. 1993, 264 Pt 1, G868–G873. [Google Scholar] [CrossRef]
- Chen, W.; Liu, D.J.; Huo, Y.M.; Wu, Z.Y.; Sun, Y.W. Reactive oxygen species are involved in regulating hypocontractility of mesenteric artery to norepinephrine in cirrhotic rats with portal hypertension. Int. J. Biol. Sci. 2014, 10, 386–395. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Z.; Lee, S.S. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology 2000, 118, 937–944. [Google Scholar] [CrossRef]
- Nam, S.W.; Liu, H.; Wong, J.Z.; Feng, A.Y.; Chu, G.; Merchant, N.; Lee, S.S. Cardiomyocyte apoptosis contributes to pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated mice. Clin. Sci. 2014, 127, 519–526. [Google Scholar] [CrossRef]
- Glenn, T.K.; Honar, H.; Liu, H.; ter Keurs, H.E.; Lee, S.S. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats. J. Hepatol. 2011, 55, 1249–1255. [Google Scholar] [CrossRef]
- Liu, L.; Liu, H.; Nam, S.W.; Lee, S.S. Protective effects of erythropoietin on cirrhotic cardiomyopathy in rats. Dig. Liver Dis. 2012, 44, 1012–1017. [Google Scholar] [CrossRef]
- Manolis, A.S.; Manolis, A.A.; Manolis, T.A.; Apostolaki, N.E.; Apostolopoulos, E.J.; Melita, H.; Katsiki, N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med. Res. Rev. 2021, 41, 275–313. [Google Scholar] [CrossRef]
- Banerjee, P.; Gaddam, N.; Chandler, V.; Chakraborty, S. Oxidative Stress-Induced Liver Damage and Remodeling of the Liver Vasculature. Am. J. Pathol. 2023, 193, 1400–1414. [Google Scholar] [CrossRef]
- Szyller, J.; Jagielski, D.; Bil-Lula, I. Antioxidants in Arrhythmia Treatment-Still a Controversy? A Review of Selected Clinical and Laboratory Research. Antioxidants 2022, 11, 1109. [Google Scholar] [CrossRef]
- Gaskari, S.A.; Liu, H.; D’Mello, C.; Kunos, G.; Lee, S.S. Blunted cardiac response to hemorrhage in cirrhotic rats is mediated by local macrophage-released endocannabinoids. J. Hepatol. 2015, 62, 1272–1277. [Google Scholar] [CrossRef]
- Goracy, A.; Rosik, J.; Szostak, J.; Szostak, B.; Retfinski, S.; Machaj, F.; Pawlik, A. Improving mitochondrial function in preclinical models of heart failure: Therapeutic targets for future clinical therapies? Expert Opin. Ther. Targets 2023, 27, 593–608. [Google Scholar] [CrossRef]
- Vandenberk, B.; Altieri, M.H.; Liu, H.; Raj, S.R.; Lee, S.S. Review article: Diagnosis, pathophysiology and management of atrial fibrillation in cirrhosis and portal hypertension. Aliment. Pharmacol. Ther. 2023, 57, 290–303. [Google Scholar] [CrossRef]
- Corradi, D.; Callegari, S.; Manotti, L.; Ferrara, D.; Goldoni, M.; Alinovi, R.; Pinelli, S.; Mozzoni, P.; Andreoli, R.; Asimaki, A.; et al. Persistent lone atrial fibrillation: Clinicopathologic study of 19 cases. Heart Rhythm 2014, 11, 1250–1258. [Google Scholar] [CrossRef]
- Bezna, M.C.; Danoiu, S.; Bezna, M.; Voisneanu, I.A.; Genunche-Dumitrescu, A.; Istratoaie, O. The Importance of Oxidative Stress Biomarkers and the Need of Antioxidant Therapy in the Control of Cardiac Arrhythmias. Eur. Cardiol. 2023, 18, e32. [Google Scholar] [CrossRef]
- Morita, N.; Lee, J.H.; Xie, Y.; Sovari, A.; Qu, Z.; Weiss, J.N.; Karagueuzian, H.S. Suppression of re-entrant and multifocal ventricular fibrillation by the late sodium current blocker ranolazine. J. Am. Coll. Cardiol. 2011, 57, 366–375. [Google Scholar] [CrossRef]
- Arroyo, V.; Gines, P.; Gerbes, A.L.; Dudley, F.J.; Gentilini, P.; Laffi, G.; Reynolds, T.B.; Ring-Larsen, H.; Scholmerich, J. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 1996, 23, 164–176. [Google Scholar] [CrossRef]
- Angeli, P.; Garcia-Tsao, G.; Nadim, M.K.; Parikh, C.R. News in pathophysiology, definition and classification of hepatorenal syndrome: A step beyond the International Club of Ascites (ICA) consensus document. J. Hepatol. 2019, 71, 811–822. [Google Scholar] [CrossRef]
- Salerno, F.; Gerbes, A.; Gines, P.; Wong, F.; Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007, 56, 1310–1318. [Google Scholar] [CrossRef]
- Chinnasamy, V.; Dhande, S.K.; Kumar, K.M.; M, J. Precipitating Factors and Outcome of Hepatorenal Syndrome in Liver Cirrhosis. J. Assoc. Physicians India 2023, 71, 1. [Google Scholar]
- Gines, P.; Sola, E.; Angeli, P.; Wong, F.; Nadim, M.K.; Kamath, P.S. Hepatorenal syndrome. Nat. Rev. Dis. Primers 2018, 4, 23. [Google Scholar] [CrossRef]
- Peng, J.L.; Techasatian, W.; Hato, T.; Liangpunsakul, S. Role of endotoxemia in causing renal dysfunction in cirrhosis. J. Investig. Med. 2020, 68, 26–29. [Google Scholar] [CrossRef]
- Yoon, K.T.; Liu, H.; Lee, S.S. Cirrhotic Cardiomyopathy. Curr. Gastroenterol. Rep. 2020, 22, 45. [Google Scholar] [CrossRef]
- Taprantzi, D.; Zisimopoulos, D.; Thomopoulos, K.C.; Spiliopoulou, I.; Georgiou, C.D.; Tsiaoussis, G.; Triantos, C.; Gogos, C.A.; Labropoulou-Karatza, C.; Assimakopoulos, S.F. Propranolol reduces systemic oxidative stress and endotoxemia in cirrhotic patients with esophageal varices. Ann. Gastroenterol. 2018, 31, 224–230. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Trebicka, J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep. 2021, 3, 100316. [Google Scholar] [CrossRef]
- Reiberger, T.; Ferlitsch, A.; Payer, B.A.; Mandorfer, M.; Heinisch, B.B.; Hayden, H.; Lammert, F.; Trauner, M.; Peck-Radosavljevic, M.; Vogelsang, H.; et al. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J. Hepatol. 2013, 58, 911–921. [Google Scholar] [CrossRef]
- Lee, W.; Vandenberk, B.; Raj, S.R.; Lee, S.S. Prolonged QT Interval in Cirrhosis: Twisting Time? Gut Liver 2022, 16, 849–860. [Google Scholar] [CrossRef]
- Silvestre, O.M.; Farias, A.Q.; Ramos, D.S.; Furtado, M.S.; Rodrigues, A.C.; Ximenes, R.O.; de Campos Mazo, D.F.; Yoshimura Zitelli, P.M.; Diniz, M.A.; Andrade, J.L.; et al. beta-Blocker therapy for cirrhotic cardiomyopathy: A randomized-controlled trial. Eur. J. Gastroenterol. Hepatol. 2018, 30, 930–937. [Google Scholar] [CrossRef]
- Krag, A.; Wiest, R.; Albillos, A.; Gluud, L.L. The window hypothesis: Haemodynamic and non-haemodynamic effects of beta-blockers improve survival of patients with cirrhosis during a window in the disease. Gut 2012, 61, 967–969. [Google Scholar] [CrossRef]
- Baliou, S.; Adamaki, M.; Ioannou, P.; Pappa, A.; Panayiotidis, M.I.; Spandidos, D.A.; Christodoulou, I.; Kyriakopoulos, A.M.; Zoumpourlis, V. Protective role of taurine against oxidative stress (Review). Mol. Med. Rep. 2021, 24, 605. [Google Scholar] [CrossRef]
- Ito, T.; Oishi, S.; Takai, M.; Kimura, Y.; Uozumi, Y.; Fujio, Y.; Schaffer, S.W.; Azuma, J. Cardiac and skeletal muscle abnormality in taurine transporter-knockout mice. J. Biomed. Sci. 2010, 17 (Suppl. 1), S20. [Google Scholar] [CrossRef]
- Ozsarlak-Sozer, G.; Sevin, G.; Ozgur, H.H.; Yetik-Anacak, G.; Kerry, Z. Diverse effects of taurine on vascular response and inflammation in GSH depletion model in rabbits. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 1360–1372. [Google Scholar]
- Schaffer, S.W.; Jong, C.J.; Ramila, K.C.; Azuma, J. Physiological roles of taurine in heart and muscle. J. Biomed. Sci. 2010, 17 (Suppl. 1), S2. [Google Scholar] [CrossRef]
- Goodman, C.A.; Horvath, D.; Stathis, C.; Mori, T.; Croft, K.; Murphy, R.M.; Hayes, A. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J. Appl. Physiol. (1985) 2009, 107, 144–154. [Google Scholar] [CrossRef]
- Liu, J.; Ai, Y.; Niu, X.; Shang, F.; Li, Z.; Liu, H.; Li, W.; Ma, W.; Chen, R.; Wei, T.; et al. Taurine protects against cardiac dysfunction induced by pressure overload through SIRT1-p53 activation. Chem. Biol. Interact. 2020, 317, 108972. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, X.; Zhou, X.; Wang, Z.; Li, S.; Sun, Q.; Jiang, Y.; Ji, C.; Ling, W.; An, X.; et al. Spermidine alleviating oxidative stress and apoptosis by inducing autophagy of granulosa cells in Sichuan white geese. Poult. Sci. 2023, 102, 102879. [Google Scholar] [CrossRef]
- Sheibani, M.; Nezamoleslami, S.; Mousavi, S.E.; Faghir-Ghanesefat, H.; Yousefi-Manesh, H.; Rezayat, S.M.; Dehpour, A. Protective Effects of Spermidine Against Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats. J. Cardiovasc. Pharmacol. 2020, 76, 286–295. [Google Scholar] [CrossRef]
- Omar, E.M.; Omar, R.S.; Shoela, M.S.; El Sayed, N.S. A study of the cardioprotective effect of spermidine: A novel inducer of autophagy. Chin. J. Physiol. 2021, 64, 281–288. [Google Scholar] [CrossRef]
- Faghfouri, A.H.; Zarezadeh, M.; Tavakoli-Rouzbehani, O.M.; Radkhah, N.; Faghfuri, E.; Kord-Varkaneh, H.; Tan, S.C.; Ostadrahimi, A. The effects of N-acetylcysteine on inflammatory and oxidative stress biomarkers: A systematic review and meta-analysis of controlled clinical trials. Eur. J. Pharmacol. 2020, 884, 173368. [Google Scholar] [CrossRef]
- Saengsin, K.; Sittiwangkul, R.; Chattipakorn, S.C.; Chattipakorn, N. Hydrogen therapy as a potential therapeutic intervention in heart disease: From the past evidence to future application. Cell. Mol. Life Sci. 2023, 80, 174. [Google Scholar] [CrossRef]
- Graves, J.; Mason, M.; Laws, D. A case of orthodeoxia platypnoea in a patient with adult polycystic kidney and liver disease with a patent foramen ovale. Acute Med. 2007, 6, 126–127. [Google Scholar] [CrossRef]
- Ohta, S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef]
- Yao, L.; Chen, H.; Wu, Q.; Xie, K. Hydrogen-rich saline alleviates inflammation and apoptosis in myocardial I/R injury via PINK-mediated autophagy. Int. J. Mol. Med. 2019, 44, 1048–1062. [Google Scholar] [CrossRef]
- Sun, Q.; Kang, Z.; Cai, J.; Liu, W.; Liu, Y.; Zhang, J.H.; Denoble, P.J.; Tao, H.; Sun, X. Hydrogen-rich saline protects myocardium against ischemia/reperfusion injury in rats. Exp. Biol. Med. 2009, 234, 1212–1219. [Google Scholar] [CrossRef]
- Noda, K.; Tanaka, Y.; Shigemura, N.; Kawamura, T.; Wang, Y.; Masutani, K.; Sun, X.; Toyoda, Y.; Bermudez, C.A.; Nakao, A. Hydrogen-supplemented drinking water protects cardiac allografts from inflammation-associated deterioration. Transpl. Int. 2012, 25, 1213–1222. [Google Scholar] [CrossRef]
- Breuss, J.M.; Atanasov, A.G.; Uhrin, P. Resveratrol and Its Effects on the Vascular System. Int. J. Mol. Sci. 2019, 20, 1523. [Google Scholar] [CrossRef]
- Ma, X.; Wang, S.; Cheng, H.; Ouyang, H.; Ma, X. Melatonin Attenuates Ischemia/Reperfusion-Induced Oxidative Stress by Activating Mitochondrial Fusion in Cardiomyocytes. Oxid. Med. Cell. Longev. 2022, 2022, 7105181. [Google Scholar] [CrossRef]
- Bortoluzzi, A.; Ceolotto, G.; Gola, E.; Sticca, A.; Bova, S.; Morando, F.; Piano, S.; Fasolato, S.; Rosi, S.; Gatta, A.; et al. Positive cardiac inotropic effect of albumin infusion in rodents with cirrhosis and ascites: Molecular mechanisms. Hepatology 2013, 57, 266–276. [Google Scholar] [CrossRef]
Systolic Dysfunction | Advanced Diastolic Dysfunction | Areas for Future Research |
---|---|---|
Any of the following: | ≥3 of the following: |
|
|
|
|
|
|
|
|
| |
TR velocity > 2.8 m/s |
| |
| ||
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Nguyen, H.H.; Hwang, S.Y.; Lee, S.S. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. Int. J. Mol. Sci. 2023, 24, 16805. https://doi.org/10.3390/ijms242316805
Liu H, Nguyen HH, Hwang SY, Lee SS. Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. International Journal of Molecular Sciences. 2023; 24(23):16805. https://doi.org/10.3390/ijms242316805
Chicago/Turabian StyleLiu, Hongqun, Henry H. Nguyen, Sang Youn Hwang, and Samuel S. Lee. 2023. "Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension" International Journal of Molecular Sciences 24, no. 23: 16805. https://doi.org/10.3390/ijms242316805
APA StyleLiu, H., Nguyen, H. H., Hwang, S. Y., & Lee, S. S. (2023). Oxidative Mechanisms and Cardiovascular Abnormalities of Cirrhosis and Portal Hypertension. International Journal of Molecular Sciences, 24(23), 16805. https://doi.org/10.3390/ijms242316805