Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies
Abstract
:1. Introduction
2. Search Strategy
3. HPV—PC Genome Integration Patterns
4. DNA Alterations
4.1. HPVDNA Variations
4.2. HPV+ PC Genome Alterations
5. Epigenetic Regulation
5.1. Methylated Modification
5.1.1. HPV DNA Methylation
5.1.2. HPV+ PC Genome Methylation
5.2. miRNA/mRNA Regulation in HPV+ PC
6. Immune Microenvironment Reprogramming of PC with HPV Infection
7. HPV Vaccine in PC
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Kirrander, P.; Sherif, A.; Friedrich, B.; Lambe, M.; Håkansson, U. Swedish National Penile Cancer Register: Incidence, tumourcharacteristics, management and survival. BJU Int. 2015, 117, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Leijte, J.A.P.; Kerst, J.M.; Bais, E.; Antonini, N.; Horenblas, S. Neoadjuvant Chemotherapy in Advanced Penile Carcinoma. Eur. Urol. 2007, 52, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Deng, C.Z.; Yao, K.; Tang, Y.; Liu, N.; Chen, P.; Wang, B.; Li, X.; Chen, X.-F.; Liao, H.; et al. Bilateral pelvic lymph nodedissection for Chinese patients with penile cancer: A multicenter collaboration study. J. Cancer Res. Clin. Oncol. 2016, 143, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Douglawi, A.; Masterson, T.A. Updates on the epidemiology and risk factors for penile cancer. Transl. Androl. Urol. 2017, 6, 785–790. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Urinary and Male Genital Tumours, 5th ed.; WHO Classification of Tumours, International Agency for Research on Cancer: Lyon, France, 2022; Volume 82022, Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Urinary-And-Male-Genital-Tumours-2022 (accessed on 22 November 2023).
- Olesen, T.B.; Sand, F.L.; Rasmussen, C.L.; Albieri, V.; Toft, B.G.; Norrild, B.; Munk, C.; Kjær, S.K. Prevalence of humanpapillomavirus DNA and p16INK4a in penile cancer and penile intraepithelial neoplasia: A systematic review and meta-analysis. Lancet Oncol. 2019, 20, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.; Naghavi, A.O.; Tang, D.; Kim, Y.; Ahmed, K.A.; Dhillon, J.; Giuliano, A.R.; Spiess, P.E.; Johnstone, P.A. The relationship between HPV status and chemoradiotherapy in the locoregional control of penile cancer. World J. Urol. 2018, 36, 1431–1440. [Google Scholar] [CrossRef]
- Bandini, M.; Ross, J.S.; Zhu, Y.; Ye, D.-W.; Ornellas, A.A.; Watkin, N.; Ayres, B.A.; Hakenberg, O.W.; Heidenreich, A.; Salvioni, R.; et al. Association between Human Papillomavirus Infection and Outcome of Perioperative Nodal Radiotherapy for Penile Carcinoma. Eur. Urol. Oncol. 2021, 4, 802–810. [Google Scholar] [CrossRef]
- de Vries, H.M.; Rafael, T.S.; Gil-Jimenez, A.; de Feijter, J.M.; Bekers, E.; van der Laan, E.; Lopez-Yurda, M.; Hooijberg, E.; Broeks, A.; Peters, D.; et al. Atezolizumab with or without Radiotherapy for Advanced Squamous Cell Carcinoma of the Penis (The PERICLES Study): A Phase II Trial. J. Clin. Oncol. 2023, 24, JCO2202894. [Google Scholar] [CrossRef]
- Preti, M.; Bucchi, L.; Micheletti, L.; Privitera, S.; Corazza, M.; Cosma, S.; Gallio, N.; Borghi, A.; Bevilacqua, F.; Benedetto, C. Four-decade trends in lymph node status of patients with vulvar squamous cell carcinoma in northern Italy. Sci. Rep. 2021, 11, 5661. [Google Scholar] [CrossRef]
- Preti, M.; Rotondo, J.C.; Holzinger, D.; Micheletti, L.; Gallio, N.; McKay-Chopin, S.; Carreira, C.; Privitera, S.S.; Watanabe, R.; Ridder, R.; et al. Role of human papillomavirus infection in the etiology of vulvar cancer in Italian women. Infect. Agent. Cancer 2020, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Ao, M.; Zheng, D.; Wang, J.; Gu, X.; Xi, M. A retrospective study of cytology and HPV genotypes results of 3229 vaginal intraepithelial neoplasia patients. J. Med. Virol. 2022, 94, 737–744. [Google Scholar] [CrossRef] [PubMed]
- de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.-U.; zur Hausen, H. Classification of papillomaviruses. Virology 2004, 324, 17–27. [Google Scholar] [CrossRef] [PubMed]
- de Sanjosé, S.; Serrano, B.; Tous, S.; Alejo, M.; Lloveras, B.; Quirós, B.; Clavero, O.; Vidal, A.; Ferrándiz-Pulido, C.; Pavón, M.Á.; et al. Burden of Human Papillomavirus (HPV)-Related Cancers Attributable to HPVs 6/11/16/18/31/33/45/52 and 58. JNCI Cancer Spectr. 2019, 2, pky045. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.; Glueck, R.; Patel, P.R. HPV vaccines: Global perspectives. Hum. Vaccines Immunother. 2017, 13, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Akagi, K.; Symer, D.E.; Mahmoud, M.; Jiang, B.; Goodwin, S.; Wangsa, D.; Li, Z.; Xiao, W.; Dunn, J.D.; Ried, T.; et al. Intratumoral Heterogeneity and Clonal Evolution Induced by HPV Integration. Cancer Discov. 2023, 13, 910–927. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Sato, N.; Kodama, T.; Okano, T.; Isaka, S.; Shirasawa, H.; Simizu, B.; Shimazaki, J. Detection of human papillomavirus DNA and state of p53 gene in Japanese penile cancer. Jpn. J. Clin. Oncol. 1994, 24, 1–6. [Google Scholar] [PubMed]
- Tornesello, M.L.; Buonaguro, F.M.; Beth-Giraldo, E.; Kyalwazi, S.K.; Giraldo, G. Human papillomavirus (HPV) DNA in penile carcinomas and in two cell lines from high-incidence areasfor genital cancers in Africa. Int. J. Cancer. 1992, 51, 587–592. [Google Scholar] [CrossRef]
- Scinicariello, F.; Rady, P.; Saltzstein, D.; Orihuela, E.; Tyring, S.K. Human papillomavirus 16 exhibits a similar integration pattern in primary squamous cell carcinoma of the penis and in its metastasis. Cancer 1992, 70, 2143–2148. [Google Scholar] [CrossRef]
- McCance, D.J.; Kalache, A.; Ashdown, K.; Andrade, L.; Menezes, F.; Smith, P.; Doll, R. Human papillomavirus types 16 and 18 in carcinomas of the penis from Brazil. Int. J. Cancer 1986, 37, 55–59. [Google Scholar] [CrossRef]
- Demeter, L.M.; Stoler, M.H.; Bonnez, W.; Corey, L.; Pappas, P.; Strussenberg, J.; Reichman, R.C. Penile intraepithelial neoplasia clinical presentation and an analysis of the physical state of human papillomavirus DNA. J. Infect. Dis. 1993, 168, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, M.L.; Buonaguro, F.M.; Meglio, A.; Buonaguro, L.; Beth-Giraldo, E.; Giraldo, G. Sequence variations and viral genomic state of human papillomavirus type 16 in penile carcinomas from Ugandan patients. J. Gen. Virol. 1997, 78, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.I.; Constandinou-Williams, C.; Wen, K.; Young, L.S.; Roberts, S.; Murray, P.G.; Woodman, C.B.J. Disruption of the E2 Gene Is a Common and Early Event in the Natural History of Cervical Human Papillomavirus Infection: A Longitudinal Cohort Study. Cancer Res. 2009, 69, 3828–3832. [Google Scholar] [CrossRef] [PubMed]
- Gudleviciene, Z.; Kanopiene, D.; Stumbryte, A.; Bausyte, R.; Kirvelaitis, E.; Simanaviciene, V.; Zvirbliene, A. Integration of human papillomavirus type 16 in cervical cancer cells. Open Med. (Wars) 2014, 10, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wells, S.I.; Francis, D.A.; Karpova, A.Y.; Dowhanick, J.J.; Benson, J.D.; Howley, P.M. Papillomavirus E2 induces senescence in HPV-positive cells via pRB- and p21(CIP)-dependent pathways. EMBO J. 2000, 19, 5762–5771. [Google Scholar] [CrossRef] [PubMed]
- Vernon, S.D.; Unger, E.R.; Miller, D.L.; Lee, D.R.; Reeves, W.C. Association of human papillomavirus type 16 integration in the E2 gene with poor disease-free survival from cervical cancer. Int. J. Cancer 1997, 74, 50–56. [Google Scholar] [CrossRef]
- Do, H.T.T.; Koriyama, C.; Khan, N.A.; Higashi, M.; Kato, T.; Le, N.T.; Matsushita, S.; Kanekura, T.; Akiba, S. The etiologic role of human papillomavirus in penile cancers: A study in Vietnam. Br. J. Cancer 2013, 108, 229–233. [Google Scholar] [CrossRef]
- Kalantari, M.; Villa, L.L.; Calleja-Macias, I.E.; Bernard, H.-U. Human papillomavirus-16 and -18 in penile carcinomas: DNA methylation, chromosomal recombination and genomic variation. Int. J. Cancer 2008, 123, 1832–1840. [Google Scholar] [CrossRef]
- Bernhard, M.C.; Zwick, A.; Mohr, T.; Gasparoni, G.; Khalmurzaev, O.; Matveev, V.B.; Loertzer, P.; Pryalukhin, A.; Hartmann, A.; Geppert, C.I. The HPV and p63 Status in Penile Cancer Are Linked with the Infiltration and Therapeutic Availability of Neutrophils. Mol. Cancer Ther. 2021, 20, 423–437. [Google Scholar] [CrossRef]
- Alcaniz Boada, E.; Cuschieri, K.; Graham, C.; Moncur, S.; Bhatia, R. Agreement between L1 and E6/E7-based assays for detection of high-risk HPV in cervical, oropharyngeal and penile cancers. J. Clin. Pathol. 2023, 76, 467–473. [Google Scholar] [CrossRef]
- Senba, M.; Buziba, N.; Mori, N.; Wada, A.; Irie, S.; Toriyama, K. Detection of Humanpapillomavirus and cellular regulators p16INK4a, p53, and NF-kappaB in penile cancer cases in Kenya. Acta Virol. 2009, 53, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.Y.; Chan, A.C.; Chan, K.W.; Leung, M.L.; Srivastava, G. Expression of p53 and its relationship with human papillomavirus in penile carcinomas. Eur. J. Surg. Oncol. 1995, 21, 613–616. [Google Scholar] [CrossRef] [PubMed]
- Stankiewicz, E.; Prowse, D.M.; Ktori, E.; Cuzick, J.; Ambroisine, L.; Zhang, X.; Kudahetti, S.; Watkin, N.; Corbishley, C.; Berney, D.M. The retinoblastoma protein/p16INK4A pathway but not p53 is disrupted by human papillomavirus in penile squamous cell carcinoma. Histopathology 2011, 58, 433–439. [Google Scholar] [CrossRef]
- Huang, K.B.; Guo, S.J.; Li, Y.H.; Zhang, X.K.; Chen, D.; Spiess, P.E.; Li, Z.S.; Deng, C.Z.; Chen, J.P.; Zhou, Q.H.; et al. Genome-Wide Profiling Reveals HPV Integration Pattern and Activated Carcinogenic Pathways in Penile Squamous Cell Carcinoma. Cancers 2021, 13, 6104. [Google Scholar] [CrossRef] [PubMed]
- Lang, B.; Dong, D.; Zhao, T.; Zhong, R.; Qin, H.; Cao, C.; Wang, Y.; Liu, T.; Liang, W.; Tian, X.; et al. A cross-sectional study ofhuman papillomavirus genotype distribution and integration status in penile cancer among Chinese population. Virology 2023, 584, 53–57. [Google Scholar] [CrossRef]
- Hebner, C.M.; Laimins, L.A. Human papillomaviruses: Basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol. 2006, 16, 83–97. [Google Scholar] [CrossRef]
- Romanczuk, H.; Howley, P.M. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc. Natl. Acad. Sci. USA 1992, 89, 3159–3163. [Google Scholar] [CrossRef]
- Kalantari, M.; Karlsen, F.; Kristensen, G.; Holm, R.; Hagmar, B.; Johansson, B. Disruption of the E1 and E2 reading frames of HPV 16 in cervical carcinoma is associated with poor prognosis. Int. J. Gynecol. Pathol. 1998, 17, 146–153. [Google Scholar] [CrossRef]
- Bernard, H.U.; Calleja-Macias, I.E.; Dunn, S.T. Genome variation of human papillomavirus types: Phylogenetic and medical implications. Int. J. Cancer 2006, 118, 1071–1076. [Google Scholar] [CrossRef]
- Zehbe, I.; Lichtig, H.; Westerback, A.; Lambert, P.F.; Tommasino, M.; Sherman, L. Rarehuman papillomavirus 16 E6 variants reveal significant oncogenic potential. Mol. Cancer 2011, 10, 77. [Google Scholar] [CrossRef]
- Yamada, T.; Manos, M.M.; Peto, J.; Greer, C.E.; Munoz, N.; Bosch, F.X.; Wheeler, C.M. Human papillomavirus type 16 sequence variation in cervical cancers: A worldwide perspective. J. Virol. 1997, 71, 2463–2472. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Chen, H.C.; Pan, M.H.; Lee, B.H.; You, S.L.; Lin, C.Y.; Chou, Y.C.; Hsieh, C.Y.; Cheng, Y.J.; Liaw, K.L.; et al. Intratypic variants of human papillomavirus type 16 and risk of cervical Neoplasia in Taiwan. J. Med. Virol. 2013, 85, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.K.; Lam, C.W.; Cheung, T.H.; Li, W.W.; Lo, K.W.; Chan, M.Y.; Cheung, J.L.; Xu, L.Y.; Cheng, A.F. Human papillomavirus type 16 intratypic variant infection and risk for cervical neoplasia in southern China. J. Infect. Dis. 2002, 186, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Pista, A.; Oliveira, A.; Barateiro, A.; Costa, H.; Verdasca, N.; Paixão, M.T. Molecular variants of human papillomavirus type 16 and 18 and risk for cervical Neoplasia in Portugal. J. Med. Virol. 2007, 79, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Berumen, J.; Ordoñez, R.M.; Lazcano, E.; Salmeron, J.; Galvan, S.C.; Estrada, R.A.; Yunes, E.; Garcia-Carranca, A.; Gonzalez-Lira, G.; Madrigal-de la Campa, A. Asian-American variants of human papillomavirus 16 and risk for cervical cancer: A case-control study. J. Natl. Cancer Inst. 2001, 93, 1325–1330. [Google Scholar] [CrossRef] [PubMed]
- Kämmer, C.; Tommasino, M.; Syrjänen, S.; Delius, H.; Hebling, U.; Warthorst, U.; Pfister, H.; Zehbe, I. Variants of the long control region and the E6 oncogene in European human papillomavirus type 16 isolates: Implications for cervical disease. Br. J. Cancer 2002, 86, 269–273. [Google Scholar] [CrossRef]
- Larsson, G.L.; Helenius, G.; Andersson, S.; Elgh, F.; Sorbe, B.; Karlsson, M.G. Human Papillomavirus (HPV) and HPV 16–Variant Distribution in Vulvar Squamous Cell Carcinoma in Sweden. Int. J. Gynecol. Cancer 2012, 22, 1413–1419. [Google Scholar] [CrossRef]
- Tornesello, M.L.; Duraturo, M.L.; Losito, S.; Botti, G.; Pilotti, S.; Stefanon, B.; Palo, G.D.; Gallo, A.; Buonaguro, L.; Buonaguro, F.M. Human papillomavirus genotypes and HPV16 variants in penile carcinoma. Int. J. Cancer 2008, 122, 132–137. [Google Scholar] [CrossRef]
- Sichero, L.; Ferreira, S.; Trottier, H.; Duarte-Franco, E.; Ferenczy, A.; Franco, E.L.; Villa, L.L. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int. J. Cancer 2007, 120, 1763–1768. [Google Scholar] [CrossRef]
- Villa, L.L.; Sichero, L.; Rahal, P.; Caballero, O.; Ferenczy, A.; Rohan, T.; Franco, E.L. Molecular variants of human papillomavirus types 16 and 18 preferentially associated with cervical neoplasia. J. Gen. Virol. 2000, 81, 2959–2968. [Google Scholar] [CrossRef]
- Xi, L.F.; Koutsky, L.A.; Hildesheim, A.; Galloway, D.A.; Wheeler, C.M.; Winer, R.L.; Ho, J.; Kiviat, N.B. Risk for High-Grade Cervical Intraepithelial Neoplasia Associated with Variants of Human Papillomavirus Types 16 and 18. Cancer Epidemiol. Biomark. Prev. 2007, 16, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Mitamura, T.; Watari, H.; Yamashiro, K.; Kato, T.; Hosaka, M.; Shimada, C.; Fukumoto, S.; Noshiro, K.; Sasaki, T.; Sakuragi, N. Human Papillomavirus Type 16 Sequence Variation in Concurrent Vulvar and Penile Carcinoma in a Married Couple. Sex Transm. Dis. 2015, 42, 342–343. [Google Scholar] [CrossRef] [PubMed]
- López-Romero, R.; Iglesias-Chiesa, C.; Alatorre, B.; Vázquez, K.; Piña-Sánchez, P.; Alvarado, I.; Lazos, M.; Peralta, R.; González-Yebra, B.; Romero, A.; et al. HPV frequency in penile carcinoma of Mexican patients: Important contribution of HPV16 European variant. Int. J. Clin. Exp. Pathol. 2013, 6, 1409–1415. [Google Scholar] [PubMed]
- Tornesello, M.L.; Buonaguro, F.M.; Buonaguro, L.; Salatiello, I.; Beth-Giraldo, E.; Giraldo, G. Identification and functional analysis of sequence rearrangements in the long control region of human papillomavirus type 16 Af-1 variants isolated from Ugandan penile carcinomas. J. Gen. Virol. 2000, 81, 2969–2982. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Storthz, K.A.; Shillitoe, E.J. Mutations in the long control region of human papillomavirus DNA in oral cancer cells, and their functional consequences. Cancer Res. 1997, 57, 1614–1619. [Google Scholar] [PubMed]
- Martincorena, I.; Campbell, P.J. Somatic mutation in cancer and normal cells. Science 2015, 349, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The Biology and Life-Cycle of Human Papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; de Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primers 2016, 2, 16086. [Google Scholar] [CrossRef]
- Zhang, Y.; Koneva, L.A.; Virani, S.; Arthur, A.E.; Virani, A.; Hall, P.B.; Warden, C.D.; Carey, T.E.; Chepeha, D.B.; Prince, M.E.; et al. Subtypes of HPV-Positive Head and Neck Cancers Are Associated with HPV Characteristics, Copy Number Alterations, PIK3CA Mutation, and Pathway Signatures. Clin. Cancer Res. 2016, 22, 4735–4745. [Google Scholar] [CrossRef]
- Cao, C.H.; Liu, R.; Lin, X.R.; Luo, J.Q.; Cao, L.J.; Zhang, Q.J.; Lin, S.R.; Geng, L.; Sun, Z.Y.; Ye, S.K.; et al. LRP1B mutation is associated with tumor HPV status and promotes poor disease outcomes with a higher mutation count in HPV-related cervical carcinoma and head & neck squamous cell carcinoma. Int. J. Biol. Sci. 2021, 17, 1744–1756. [Google Scholar]
- Leis, P.F.; Stevens, K.R.; Baer, S.C.; Kadmon, D.; Goldberg, L.H.; Wang, X.J. A c-rasHa mutation in the metastasis of a human papillomavirus (HPV)-18 positive penile squamous cell carcinoma suggests a cooperative effect between HPV-18 and c-rasHa activation in malignant progression. Cancer 1998, 83, 122–129. [Google Scholar] [CrossRef]
- Levi, J.E.; Rahal, P.; Sarkis, A.S.; Villa, L. Human papillomavirus DNA and p53 status in penile carcinomas. Int. J. Cancer 1998, 76, 779–783. [Google Scholar] [CrossRef]
- da Silva, J.; Nogueira, L.; Coelho, R.; Deus, A.; Khayat, A.; Marchi, R.; de Oliveira, E.; dos Santos, A.P.; Cavalli, L.; Pereira, S. HPV-associated penile cancer: Impact of copy number alterations in miRNA/mRNA interactions and potential druggable targets. Cancer Biomark. 2021, 32, 147–160. [Google Scholar] [CrossRef] [PubMed]
- Canto, L.M.; da Silva, J.M.; Castelo-Branco, P.V.; da Silva, I.M.; Nogueira, L.; Fonseca-Alves, C.E.; Khayat, A.; Birbrair, A.; Pereira, S.R. Mutational Signature and Integrative Genomic Analysis of Human Papillomavirus-Associated Penile Squamous Cell Carcinomas from Latin American Patients. Cancers 2022, 14, 3514. [Google Scholar] [CrossRef] [PubMed]
- Nazha, B.; Zhuang, T.; Wu, S.; Brown, J.T.; Magee, D.; Carthon, B.C.; Kucuk, O.; Nabhan, C.; Barata, P.C.; Heath, E.I.; et al. Comprehensive genomic profiling of penile squamous cell carcinoma and the impact of human papillomavirus status on immune-checkpoint inhibitor-related biomarkers. Cancer, 2023, online ahead of print.
- Annunziata, C.; Buonaguro, L.; Losito, S.; Buonaguro, F.M.; Tornesello, M.L. Somatic mutations of STK11 gene in human papillomavirus positive and negative penile cancer. Infect. Agents Cancer 2013, 8, 2. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Kim, J.-H.; Han, J.H.; Cho, N.H.; Kim, S.J.; Kim, S.I.; Choo, S.H.; Kim, J.S.; Park, B.; Kwon, J.E. TERT promoter mutations in penile squamous cell carcinoma: High frequency in non-HPV-related type and association with favorable clinicopathologic features. J. Cancer Res. Clin. Oncol. 2021, 147, 1125–1135. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Das, P.M.; Singal, R. DNA Methylation and Cancer. J. Clin. Oncol. 2004, 22, 4632–4642. [Google Scholar] [CrossRef]
- Kawakami, K.; Brabender, J.; Lord, R.V.; Groshen, S.; Greenwald, B.D.; Krasna, M.J.; Yin, J.; Fleisher, A.S.; Abraham, J.M.; Beer, D.G.; et al. Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J. Natl. Cancer Inst. 2000, 92, 1805–1811. [Google Scholar] [CrossRef]
- Dobrovic, A.; Simpfendorfer, D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997, 57, 3347–3350. [Google Scholar]
- Li, L.C.; Chui, R.; Nakajima, K.; Oh, B.R.; Au, H.C.; Dahiya, R. Frequent methylation of estrogen receptor in prostate cancer: Correlation with tumor progression. Cancer Res. 2000, 60, 702–706. [Google Scholar] [PubMed]
- Jacquin, E.; Baraquin, A.; Ramanah, R.; Carcopino, X.; Morel, A.; Valmary-Degano, S.; Bravo, I.G.; de Sanjosé, S.; Riethmuller, D.; Mougin, C.; et al. Methylation of Human Papillomavirus Type 16 CpG Sites at E2-Binding Site 1 (E2BS1), E2BS2, and the Sp1-Binding Site in Cervical Cancer Samples as Determined by High-Resolution Melting Analysis–PCR. J. Clin. Microbiol. 2013, 51, 3207–3215. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Sengupta, S. CpG methylation of HPV 16 LCR at E2 binding site proximal to P97 is associated with cervical cancer in presence of intact E2. Virology 2006, 354, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, L.; Hu, S.-Y.; Feng, R.-M.; Zhao, X.-L.; Zhang, Q.; Pan, Q.-J.; Zhang, X.; Qiao, Y.-L.; Zhao, F.-H. Risk stratification of HPV 16 DNA methylation combined with E6 oncoprotein in cervical cancer screening: A 10-year prospective cohort study. Clin. Epigenetics 2020, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Kalantari, M.; Calleja-Macias, I.E.; Tewari, D.; Hagmar, B.; Lie, K.; Barrera-Saldana, H.A.; Wiley, D.J.; Bernard, H.-U. Conserved Methylation Patterns of Human Papillomavirus Type 16 DNA in Asymptomatic Infection and Cervical Neoplasia. J. Virol. 2004, 78, 12762–12772. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wang, Y.; Liu, B.; Rao, X.; Cao, C.; Peng, F.; Zhi, W.; Wu, P.; Peng, T.; Wei, Y.; et al. Multi-omics data reveals novel impacts of human papillomavirus integration on the epigenomic and transcriptomic signatures of cervical tumorigenesis. J. Med. Virol. 2023, 95, e28789. [Google Scholar] [CrossRef]
- Bryant, D.; Onions, T.; Raybould, R.; Jones, S.; Tristram, A.; Hibbitts, S.; Fiander, A.; Powell, N. Increased methylation of Human Papillomavirus type 16 DNA correlates with viral integration in Vulval Intraepithelial Neoplasia. J. Clin. Virol. 2014, 61, 393–399. [Google Scholar] [CrossRef]
- Li, Y.; Nichols, M.A.; Shay, J.W.; Xiong, Y. Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p16 by the retinoblastoma susceptibility gene product pRb. Cancer Res. 1994, 54, 6078–6082. [Google Scholar]
- Hara, E.; Smith, R.; Parry, D.; Tahara, H.; Stone, S.; Peters, G. Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol. 1996, 16, 859–867. [Google Scholar] [CrossRef]
- Alemany, L.; Cubilla, A.; Halec, G.; Kasamatsu, E.; Quirós, B.; Masferrer, E.; Tous, S.; Lloveras, B.; Hernández-Suarez, G.; Lonsdale, R.; et al. Role of Human Papillomavirus in Penile Carcinomas Worldwide. Eur. Urol. 2016, 69, 953–961. [Google Scholar] [CrossRef]
- Chahoud, J.; Zacharias, N.M.; Pham, R.; Qiao, W.; Guo, M.; Lu, X.; Alaniz, A.; Segarra, L.; Martinez-Ferrer, M.; Gleber-Netto, F.O.; et al. Prognostic Significance of p16 and Its Relationship with Human Papillomavirus Status in Patients with Penile Squamous Cell Carcinoma: Results of 5 Years Follow-Up. Cancers 2022, 14, 6024. [Google Scholar] [CrossRef]
- Muresu, N.; Sotgiu, G.; Saderi, L.; Sechi, I.; Cossu, A.; Marras, V.; Meloni, M.; Martinelli, M.; Cocuzza, C.; Tanda, F.; et al. Italian observational study on HPV infection, E6, and p16 expression in men with penile cancer. Virol. J. 2020, 17, 161. [Google Scholar] [CrossRef]
- Afonso, L.A.; Carestiato, F.N.; Ornellas, A.A.; Ornellas, P.; Rocha, W.M.; Cordeiro, T.I.; Lisboa, D.C.; Alves, G.B.; Cavalcanti, S.M.B. Human papillomavirus, Epstein-Barr virus, and methylation status of p16ink4a in penile cancer. J. Med. Virol. 2017, 89, 1837–1843. [Google Scholar] [CrossRef]
- Ferreux, E.; Lont, A.P.; Horenblas, S.; Gallee, M.P.; Raaphorst, F.M.; von Knebel Doeberitz, M.; Meijer, C.J.; Snijders, P.J. Evidence for at least three alternative mechanisms targeting the p16INK4A/cyclin D/Rb pathway in penile carcinoma, one of which is mediated by high-risk human papillomavirus. J. Pathol. 2003, 201, 109–118. [Google Scholar] [CrossRef]
- Poetsch, M.; Hemmerich, M.; Kakies, C.; Kleist, B.; Wolf, E.; vom Dorp, F.; Hakenberg, O.W.; Protzel, C. Alterations in the tumor suppressor gene p16INK4A are associated with aggressive behavior of penile carcinomas. Virchows Arch. 2010, 458, 221–229. [Google Scholar] [CrossRef]
- Lin, Y.C.; Diccianni, M.B.; Kim, Y.; Lin, H.H.; Lee, C.H.; Lin, R.J.; Joo, S.H.; Li, J.; Chuang, T.J.; Yang, A.S.; et al. Human p16γ, a novel transcriptional variant of p16INK4A, coexpresses with p16INK4A in cancer cells and inhibits cell-cycle progression. Oncogene 2007, 26, 7017–7027. [Google Scholar] [CrossRef]
- da Silva Santos, R.; Hirth, C.G.; Pinheiro, D.P.; Bezerra, M.J.B.; de Lima Silva-Fernandes, I.J.; de Paula, D.S.; Alves, A.P.N.N.; de Moraes Filho, M.O.; de Alencar Araripe Moura, A.; Lima, M.V.A.; et al. HPV infection and 5 mC/5 hmC epigenetic markers in penile squamous cell carcinoma: New insights into prognostics. Clin. Epigenetics 2022, 14, 133. [Google Scholar] [CrossRef]
- Rodríguez-Paredes, M.; Esteller, M. Cancer epigenetics reaches mainstream oncology. Nat. Med. 2011, 17, 330–339. [Google Scholar] [CrossRef]
- Romero-Garcia, S.; Prado-Garcia, H.; Carlos-Reyes, A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front. Oncol. 2020, 10, 1152. [Google Scholar] [CrossRef]
- Kuasne, H.; Cólus, I.M.d.S.; Busso, A.F.; Hernandez-Vargas, H.; Barros-Filho, M.C.; Marchi, F.A.; Scapulatempo-Neto, C.; Faria, E.F.; Lopes, A.; Guimarães, G.C.; et al. Genome-wide methylation and transcriptome analysis in penile carcinoma: Uncovering new molecular markers. Clin. Epigenetics 2015, 7, 46. [Google Scholar] [CrossRef]
- Jacobs, J.; Deschoolmeester, V.; Zwaenepoel, K.; Rolfo, C.; Silence, K.; Rottey, S.; Lardon, F.; Smits, E.; Pauwels, P. CD70: An emerging target in cancer immunotherapy. Pharmacol. Ther. 2015, 155, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, B.; Lu, S.; Zhao, Y.; Liu, P. HN1 contributes to migration, invasion, and tumorigenesis of breast cancer by enhancing MYC activity. Mol. Cancer 2017, 16, 90. [Google Scholar] [CrossRef]
- Dong, D.; Na, L.; Zhou, K.; Wang, Z.; Sun, Y.; Zheng, Q.; Gao, J.; Zhao, C.; Wang, W. FZD5 prevents epithelial-mesenchymal transition in gastric cancer. Cell Commun. Signal. 2021, 19, 21. [Google Scholar] [CrossRef]
- Chiyomaru, T.; Enokida, H.; Tatarano, S.; Kawahara, K.; Uchida, Y.; Nishiyama, K.; Fujimura, L.; Kikkawa, N.; Seki, N.; Nakagawa, M. miR-145 and miR-133a function as tumour suppressors and directly regulate FSCN1 expression in bladder cancer. Br. J. Cancer 2010, 102, 883–891. [Google Scholar] [CrossRef]
- Guerrero, D.; Guarch, R.; Ojer, A.; Casas, J.M.; Ropero, S.; Mancha, A.; Pesce, C.; Lloveras, B.; Garcia-Bragado, F.; Puras, A. Hypermethylation of the thrombospondin-1 gene is associated with poor prognosis in penile squamous cell carcinoma. BJU Int. 2008, 102, 747–755. [Google Scholar] [CrossRef]
- Yoshida, J.; Abe, H.; Watanabe, T.; Kawada, M. Intervenolin suppresses gastric cancer cell growth through the induction of TSP-1 secretion from fibroblast-like stromal cells. Oncol. Lett. 2018, 16, 6777–6785. [Google Scholar] [CrossRef]
- Tian, C.; Lang, T.; Qiu, J.; Han, K.; Zhou, L.; Min, D.; Zhang, Z.; Qi, D. SKP1 promotes YAP-mediated colorectal cancer stemness via suppressing RASSF1. Cancer Cell Int. 2020, 20, 579. [Google Scholar] [CrossRef]
- Yanagawa, N.; Osakabe, M.; Hayashi, M.; Tamura, G.; Motoyama, T. Frequent epigenetic silencing of the FHIT gene in penile squamous cell carcinomas. Virchows Arch. 2008, 452, 377–382. [Google Scholar] [CrossRef]
- Tuoya, A.D.; Wang, D.X.; Xing, Y.S.; Liu, R.J.; Hu, Y.X.; Zhang, M.D.; Bai, T.Y.; Lv, X.; Li, J.; Chang, F.H. Relationship between Methylation of FHIT and CDH13 Gene Promoter Region and Liver Cancer. Curr. Med. Sci. 2020, 40, 502–509. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016, 6, 235–246. [Google Scholar] [CrossRef]
- Sannigrahi, M.K.; Sharma, R.; Singh, V.; Panda, N.K.; Rattan, V.; Khullar, M. Role of Host miRNA Hsa-miR-139-3p in HPV-16-Induced Carcinomas. Clin. Cancer Res. 2017, 23, 3884–3895. [Google Scholar] [CrossRef]
- Myklebust, M.P.; Bruland, O.; Fluge, Ø.; Skarstein, A.; Balteskard, L.; Dahl, O. MicroRNA-15b is induced with E2F-controlled genes in HPV-related cancer. Br. J. Cancer 2011, 105, 1719–1725. [Google Scholar] [CrossRef]
- Martinez, I.; Gardiner, A.S.; Board, K.F.; Monzon, F.A.; Edwards, R.P.; Khan, S.A. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene 2007, 27, 2575–2582. [Google Scholar] [CrossRef]
- Au Yeung, C.L.; Tsang, T.Y.; Yau, P.L.; Kwok, T.T. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 2011, 30, 2401–2410. [Google Scholar] [CrossRef]
- Kumaraswamy, E.; Wendt, K.L.; Augustine, L.A.; Stecklein, S.R.; Sibala, E.C.; Li, D.; Gunewardena, S.; Jensen, R.A. BRCA1 regulation of epidermal growth factor receptor (EGFR) expression in human breast cancer cells involves microRNA-146a and is critical for its tumor suppressor function. Oncogene 2014, 34, 4333–4346. [Google Scholar] [CrossRef]
- Mei, J.; Bachoo, R.; Zhang, C.-L. MicroRNA-146a Inhibits Glioma Development by Targeting Notch1. Mol. Cell. Biol. 2023, 31, 3584–3592. [Google Scholar] [CrossRef]
- Peta, E.; Cappellesso, R.; Masi, G.; Sinigaglia, A.; Trevisan, M.; Grassi, A.; Di Camillo, B.; Vassarotto, E.; Fassina, A.; Palù, G.; et al. Down-regulation of microRNA-146a is associated with high-risk human papillomavirus infection and epidermal growth factor receptor overexpression in penile squamous cell carcinoma. Hum. Pathol. 2017, 61, 33–40. [Google Scholar] [CrossRef]
- da Silva, J.; da Costa, C.C.; de Farias Ramos, I.; Laus, A.C.; Sussuchi, L.; Reis, R.M.; Khayat, A.S.; Cavalli, L.R.; Pereira, S.R. Upregulated miRNAs on the TP53 and RB1 Binding Seedless Regions in High-Risk HPV-Associated Penile Cancer. Front. Genet. 2022, 13, 875939. [Google Scholar] [CrossRef]
- Tindle, R.W. Immune evasion in human papillomavirus-associated cervical cancer. Nat. Rev. Cancer 2002, 2, 59–65. [Google Scholar] [CrossRef]
- Guo, C.; Qu, X.; Tang, X.; Song, Y.; Wang, J.; Hua, K.; Qiu, J. Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clin. Transl. Med. 2023, 13, e1219. [Google Scholar] [CrossRef]
- Martin, D.; Rödel, F.; Balermpas, P.; Rödel, C.; Fokas, E. The immune microenvironment and HPV in anal cancer: Rationale to complement chemoradiation with immunotherapy. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 221–230. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, X.; Diao, W.; Liang, Z.; Gao, Z.; Chen, X. Correlation of immune makers with HPV 16 infections and the prognosis in oropharyngeal squamous cell carcinoma. Clin. Oral Investig. 2023, 27, 1423–1433. [Google Scholar] [CrossRef]
- Morelli, A.E.; Ronchetti, R.D.; Secchi, A.D.; Cufré, M.A.; Paredes, A.; Fainboim, L. Assessment by Planimetry of Langerhans’ Cell Density in Penile Epithelium with Human Papillomavirus Infection: Changes Observed after Topical Treatment. J. Urol. 1992, 147, 1268–1273. [Google Scholar] [CrossRef]
- Zhang, L.; Zirakzadeh, A.A.; Rosvall, J.; Hedlund, M.; Hu, P.S.; Riklund, K.; Sherif, A.; Winqvist, O. Immune responses against autologous tumor and human papilloma virus in lymph nodes from patients with penile cancer. Investig. Clin. Urol. 2021, 62, 39–46. [Google Scholar] [CrossRef]
- Chu, C.; Yao, K.; Lu, J.; Zhang, Y.; Chen, K.; Lu, J.; Zhang, C.Z.; Cao, Y. Immunophenotypes Based on the Tumor Immune Microenvironment Allow for Unsupervised Penile Cancer Patient Stratification. Cancers 2020, 12, 1796. [Google Scholar] [CrossRef]
- Lohneis, P.; Boral, S.; Kaufmann, A.M.; Lehmann, A.; Schewe, C.; Dietel, M.; Anagnostopoulos, I.; Jöhrens, K. Human papilloma virus status of penile squamous cell carcinoma is associated with differences in tumour-infiltrating T lymphocytes. Virchows Arch. 2014, 466, 323–331. [Google Scholar] [CrossRef]
- Ottenhof, S.R.; Djajadiningrat, R.S.; Thygesen, H.H.; Jakobs, P.J.; Jóźwiak, K.; Heeren, A.M.; de Jong, J.; Sanders, J.; Horenblas, S.; Jordanova, E.S. The Prognostic Value of Immune Factors in the Tumor Microenvironment of Penile Squamous Cell Carcinoma. Front. Immunol. 2018, 9, 1253. [Google Scholar] [CrossRef]
- Montella, M.; Sabetta, R.; Ronchi, A.; De Sio, M.; Arcaniolo, D.; De Vita, F.; Tirino, G.; Caputo, A.; D’Antonio, A.; Fiorentino, F.; et al. Immunotherapy in Penile Squamous Cell Carcinoma: Present or Future? Multi-Target Analysis of Programmed Cell Death Ligand 1 Expression and Microsatellite Instability. Front. Med. 2022, 9, 874213. [Google Scholar] [CrossRef]
- Shen, X.; Zhao, B. Efficacy of PD-1 or PD-L1 inhibitors and PD-L1 expression status in cancer: Meta-analysis. BMJ 2018, 362, k3529. [Google Scholar] [CrossRef]
- Yu, W.; Hua, Y.; Qiu, H.; Hao, J.; Zou, K.; Li, Z.; Hu, S.; Guo, P.; Chen, M.; Sui, S.; et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020, 11, 506. [Google Scholar] [CrossRef]
- Udager, A.M.; Liu, T.Y.; Skala, S.L.; Magers, M.J.; McDaniel, A.S.; Spratt, D.E.; Feng, F.Y.; Siddiqui, J.; Cao, X.; Fields, K.L.; et al. Frequent PD-L1 expression in primary and metastatic penile squamous cell carcinoma: Potential opportunities for immunotherapeutic approaches. Ann. Oncol. 2016, 27, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Yan, R.; Ma, H.; Jiang, L.; Guo, S.; Shi, Y.; Sheng, X.; Zhang, Y.; Spiess, P.E.; Liu, T.; Xue, T.; et al. First-line programmed death receptor-1 (PD-1) inhibitor and epidermal growth factor receptor (EGFR) blockade, combined with platinum-based chemotherapy, for stage IV penile cancer. BJU Int. 2022, 131, 198–207. [Google Scholar] [CrossRef]
- Sayinzoga, F.; Tenet, V.; Heideman, D.A.M.; Sibomana, H.; Umulisa, M.-C.; Franceschi, S.; de Dieu Hakizimana, J.; Clifford, G.M.; Baussano, I. Human papillomavirus vaccine effect against human papillomavirus infection in Rwanda: Evidence from repeated cross-sectional cervical-cell-based surveys. Lancet Glob. Health 2023, 11, e1096–e1104. [Google Scholar] [CrossRef] [PubMed]
- Meites, E.; Winer, R.L.; Newcomb, M.E.; Gorbach, P.M.; Querec, T.D.; Rudd, J.; Collins, T.; Lin, J.; Moore, J.; Remble, T.; et al. Vaccine Effectiveness against Prevalent Anal and Oral Human Papillomavirus Infection among Men Who Have Sex with Men—United States, 2016–2018. J. Infect. Dis. 2020, 222, 2052–2060. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Meites, E.; Kempe, A.; Markowitz, L.E. Use of a 2-Dose Schedule for Human Papillomavirus Vaccination—Updated Recommendations of the Advisory Committee on Immunization Practices. Morb. Mortal. Wkly. Rep. 2016, 65, 1405–1408. [Google Scholar] [CrossRef]
- Winer, R.L.; Lin, J.; Querec, T.D.; Unger, E.R.; Stern, J.E.; Rudd, J.M.; Golden, M.R.; Swanson, F.; Markowitz, L.E.; Meites, E. Effectiveness of Human Papillomavirus (HPV) Vaccination against Penile HPV Infection in Men Who Have Sex with Men and Transgender Women. J. Infect. Dis. 2022, 225, 422–430. [Google Scholar] [CrossRef]
- Giuliano, A.R.; Palefsky, J.M.; Goldstone, S.; Moreira, E.D., Jr.; Penny, M.E.; Aranda, C.; Vardas, E.; Moi, H.; Jessen, H.; Hillman, R.; et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N. Engl. J. Med. 2011, 364, 401–411. [Google Scholar] [CrossRef]
- Mikamo, H.; Yamagishi, Y.; Murata, S.; Yokokawa, R.; Han, S.R.; Wakana, A.; Sawata, M.; Tanaka, Y. Efficacy, safety, and immunogenicity of a quadrivalent HPV vaccine in Japanese men: A randomized, Phase 3, placebo-controlled study. Vaccine 2019, 37, 1651–1658. [Google Scholar] [CrossRef]
- Goldstone, S.E.; Giuliano, A.R.; Palefsky, J.M.; Lazcano-Ponce, E.; Penny, M.E.; Cabello, R.E.; Moreira, E.D.; Baraldi, E.; Jessen, H.; Ferenczy, A.; et al. Efficacy, immunogenicity, and safety of a quadrivalent HPV vaccine in men: Results of an open-label, long-term extension of a randomised, placebo-controlled, phase 3 trial. Lancet Infect. Dis. 2022, 22, 413–425. [Google Scholar] [CrossRef]
- Trimble, C.L.; Morrow, M.P.; Kraynyak, K.A.; Shen, X.; Dallas, M.; Yan, J.; Edwards, L.; Parker, R.L.; Denny, L.; Giffear, M.; et al. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: A randomised, double-blind, placebo-controlled phase 2b trial. Lancet 2015, 386, 2078–2088. [Google Scholar] [CrossRef] [PubMed]
- Gosens, K.C.M.; van der Burg, S.H.; Welters, M.J.P.; Boekestijn, S.; Loof, N.M.; Quint, W.G.V.; van Noesel, C.J.M.; van der Wal, A.C.; Richel, O.; Krebber, W.J.T.A.; et al. Therapeutic Vaccination against Human Papillomavirus Type 16 for the Treatment of High-Grade Anal Intraepithelial Neoplasia in HIV+ Men. Clin. Cancer Res. 2023, 29, 4109–4117. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.Y.; Das, M.; Poppito, N.; Jarrett, P. Immunotherapy for the treatment of penile intraepithelial neoplasia associated with human papilloma virus type 16 using topical imiquimod and human papilloma virus vaccination. Australas. J Dermatol. 2021, 62, e589–e591. [Google Scholar] [CrossRef] [PubMed]
Detecting Techniques | Sample Type and Number | HPV Type | Disrupting Region in HPV DNA | Breaking Site in PC DNA | Regulation of Molecular Environment, Phenotype, and Clinical Significance | References |
---|---|---|---|---|---|---|
PCR and Southern blot | 5 freshly frozen PC samples in Ugandan | 16 (5 cases) | E2 region | - | Increasing levels of E6/E7 proteins and activation of cellular growth | [23] |
Real-time PCR | 120 formalin-fixed, paraffin-embedded PC samples in Vietnam | 16 (24 cases), 18 (1 case), 11 (1 case), 33 (1 case), 58 (1 case) | E2 region (7 cases with E2/E6 ratio = 0 and 9 cases with 0 < E2/E6 ratio < 1) | - | Potentially lower viral loads | [28] |
Reverse ligation inverted PCR | 24 formalin-fixed, paraffin-embedded PC samples in Brazil | 16 (19 cases), 16/18 (3 cases), Others (2 cases) | E2 region (6 cases with single genome integration and 5 cases with concatemeric genome integration) | - | Association with HPV DNA methylation | [29] |
PCR assay with specific primers amplifying full length of E2 genes | 3 human PC cell lines (Ki-PeCa-P2, -L2, and -L3) in Germany | 16 (3 cell lines) | E2 region in Ki-PeCa-P2 and -L2 | p63 open reading frame | Release of CXCL8 leading to antibody-dependent neutrophil-mediated cytotoxicity | [30] |
High-throughput viral integration analysis | 108 formalin-fixed, paraffin-embedded PC samples in China | 16 (33 cases), 51 (4 cases), 33 (3 cases), 56 (2 cases), 6/18/44/58/62/66/68 (1 case) | E1 region involving the most integration, followed by L1, L2, and E2 E6, E7, and LCR regions seldom involving integration | Most sites: chromosome 8/13/19 (8p12, 13q22.1, and 19p13.11), intragenic regions (intronic and 3′ untranslated regions), and 240 hotspot genes Less sites: chromosome 22/x/y, intergenic regions | Worse disease-specific survival in HPV+ patients with disrupted E2 region. 2277 integrated genes enriched in cancer-associated pathways (MAPK, Wnt, and JAK/STAT) and inflammation pathways (chemokine and cytokine–cytokine receptor interaction) Down-regulation expression of CADM2 and up-regulation expression of KLF5 validated with immunohistochemistry, inducing PC proliferation and Invasion in vitro | [35] |
HPV hybridization capture sequencing | 139 formalin-fixed, paraffin-embedded PC samples in China | 16 (52 cases), 39 (24 cases), 18 (16 cases), 73 (15 cases), Others (13 cases) | E1 region involving the most integration with scarce integration in L1, E6, and E7 | 17 chromosomes with 61 integrated sites (without integration in chromosome 13/14/15/20/21/22/X), main integration sites detected in intragenic regions (42/61) | Increasing histopathologic grading (average 2.7 integration sites per patient in grading G1 patients, and average 3.83 integration sites in grading G2 patients) | [36] |
Sample Type and Number | HPV Type | Variants, Mutations, and CNVs | Regulation of Molecular Environment, Phenotype, and Clinical Significance | References |
---|---|---|---|---|
HPV DNA alterations | ||||
24 formalin-fixed, paraffin-embedded PC samples in Brazil | 16 (19 cases), 16/18 (3 cases), Others (2 cases) | HPV 16 AA variants (53%), HPV 16 E variants (47%) | AA variants indicating higher risk of cancer progression than E variants | [29] |
41 formalin-fixed, paraffin-embedded PC samples in Italy | 16 (18 cases), 18 (1 case) | HPV 16 AA and Af-1 variants (55.6%), HPV 16 E-G-350 variants (44.4%) | More oncogenic in AA/Af-1 variants than E variants | [49] |
1 PC sample in Japan | 16 (1 case) | HPV16 As variant (T178G) | Increased carcinogenicity of Asian variants | [53] |
86 formalin-fixed, paraffin-embedded PC samples in Mexico | 16 (57 cases), 31 (3 cases), 11 (3 cases), Others (4 cases) | HPV 16 AA variants (8.0%), HPV 16 E variants (92.0%) | Essential contribution of HPV16 E variant in Mexican population with PC | [54] |
5 freshly frozen PC samples in Ugandan | 16 (5 cases) | HPV 16 Af-1 variants (100.0%) Mutations at nt 7714 (T→A), 7461 (C→G), 7489 (G→A), 7521 (G→A), 7764 (C→T), 7786 (C→T), 7833 (G→T) in LCR, at nt 132 (G→C), 143 (C→G), 145 (G→T), 286 (T→A), 289 (A→G) and 335 (C→T) in E6, as well as at nt 789 (T→C) and 795 (T→G) in E7 | Increasing CAT expression and E6/E7 transforming activity in mutated Af-1 compared to classical Af-1 in vitro | [55] |
HPV+ PC DNA alterations | ||||
Formalin-fixed, paraffin-embedded primary lesion and corresponding inguinal metastases from one PC patient in America | HPV 18 (1 case) | Missense mutation of c-rasHa at codon 61 (G→C) in the relapsing inguinal metastases after 7 years | activation of c-rasHa by point mutation as a late event to cause the malignant progression of HPV 18+ PC | [62] |
64 formalin-fixed, paraffin-embedded and 50 freshly frozen PC samples in Brazil | 16 (25 cases), 18 (5 cases), 6/11 (9 cases), Others (11 cases) | P53 point mutations detected at codon 272 in HPV16+ patients (G→A) and at codon 273 (G→A) in HPV6/11+ patients | Suggestion of an additional HPV-mediated tumorigenic mechanism besides E6–p53 interaction | [63] |
28 PC samples in Brazil | 16 (14 cases), 35 (3 cases), 59 (4 cases), Others (18 cases) | 38 altered cytobands with 2314 CNAs: CNA gain events within 2p16.3, 2p12-p11.2, 3q26.1, 7p22.3-p11, 7q21.11, 9p21, 11q24-q25, 14q12, 15q11.2-q13.3, 15q26.2-q26.3, and 22q11.21; CNA loss events within 4p14-p13, 4q13.2, 8p23.1, and 14q11.2 | Association with miRNA expression regulation, HPV multiple infections, HPV host genome integration, tumor size, pathological type/grading, perineural invasion, age and clinical stage | [64] |
30 PC samples in Brazil | 16 (23 cases) Others (7 cases) | 3277 genes with 4942 variants: Most in chromosome 1/2/19; exonic regions (3199 variants), intronic regions (902 variants), upstream regions (36 variants), UTR (218 variants); nonsynonymous SNV (1971 variants), and synonymous SNV (891 variants); most point mutation by C→T (28.3%) and G→A (27.2%); 160 cancer-associated genes, with 11 most frequently mutated genes (NOTCH1, TERT, TTN, FAT1, TP53, CDKN2A, RYR2, CASP8, FBXW7, HMCN2, and ITGA8) and 10 novel genes (KMT2C, SMARCA4, PTPRB, AJUBA, CR1, KMT2D, NBEA, FAM135B, GTF2I, and CIC) CNV analysis: 558 genes with ≥3 copies; CNV gain events most in NOTCH1, MYC, NUMA1, PLAG1, and RAD21; CNV loss events most in SMARCA4 UTRs variants analysis: 5.5% variants in UTRs of all altered genes; 14 UTR-alteration genes regulated by miRNAs, with 4 cancer-associated genes (CARD11, CSMD3, KDR, and TLX3) | Discovery of top 20 KEGG pathways with 12 cancer-related pathways in addition to another 8 pathways (human papillomavirus infection, endocrine resistance, human T-cell leukemia virus 1 infection, human cytomegalovirus Infection, PI3K-Akt signaling pathway, cellular senescence, ErbB signaling pathway, and hepatitis C) | [65] |
29 formalin-fixed, paraffin-embedded PC samples in America | 16/18 (13 cases) | The most common genomic alterations in HPV+ samples: TP53 (7.7%), CREBBP (23.1%), FBXW7 (23.1%), TERT (25.0%), FGF3 (30.8%), PIK3CA (30.8%), and KMT2C (33%) Tumor mutational burden–high (≥10 mutations/Mb) in 30.8% of HPV+ samples | Detection of unique genetic and immunogenic signatures in HPV16/18+ PC patients, inducing patient stratification in immunotherapy | [66] |
6 freshly frozen and 20 formalin-fixed, paraffin-embedded PC samples in Ugandan and Italy, respectively | 16 (12 cases); Others (2 cases) | Deletions of STK11 exon 1 and 2 in 14.3% of HPV+ patients Point mutation at position 17,587 in the intronic region 2 of STK11 (C→T) in one HPV+ patients | Potential association with pathogenesis and accelerated disease progression of PC | [67] |
Sample Type and Number | HPV Type | Methylated Sites in HPV DNA and HPV+ PC DNA | Regulation of Molecular Environment, Phenotype, and Clinical Significance | References |
---|---|---|---|---|
HPV DNA methylations | ||||
24 formalin-fixed, paraffin-embedded PC samples in Brazil | 16 (19 cases), 16/18 (3 cases), Others (2 cases) | HPV 16 DNA methylation: 95 methylation molecules in most PC samples (17/19); 58% CpGs islands methylated in three positions within L1 (position 7091, 7136, and 7145), 22% CpGs islands methylated in seven positions within the 5′ part of the LCR (position 7270, 7428, 7434, 7455, and 7461), 23 methylation events in five CpGs (position 7535, 7554, 7677, 7683, and 7695) overlapping with transcriptional enhancer and 49 methylation events in six CpGs (position 31, 37, 43, 52, and 58) overlapping with promotor including E2BS and Sp1-biding site. HPV 18 DNA methylation: Patient 1 presenting mostly unmethylated within the 3′ part of the L1 gene, the enhancer, promoter, and the 5′ part of the E6 gene; Patient 2 presenting hypermethylated L1 and promoter-E6 segments. Patient 3 presenting hypermethylated L1 segments | Indication of single copy genome integration in host genome, oncogene expression stimulation and progression event prediction | [29] |
HPV+ PC DNA methylations | ||||
227 PC samples in Brazil, Netherlands, and Germany | 16 (64 cases), Others (51 cases) | p16ink4a methylation ranging from 10% to 46.8% in HPV+ PC samples | Association with p16INK4 expression suppression and pathological type | [85,86,87] |
224 PC samples in Brazil | High risk type (100 cases) | Global 5-methylcytosine in HPV+ PC samples: 0% of lower level (<30%), 12% of intermediate level (30–60%), and 88% of increased level (>60%) Global 5-hydroxymethylcytosine in HPV+ PC samples: 31.7% of lower level (<30%), 24.4% of intermediate level (30–60%), and 30.4% of increased level (>60%) | Global 5-methylcytosine as a stable epigenetic marker and prognostic predictor rather than global 5-hydroxymethylcytosine Increased global 5-methylcytosine contributing to genomic stability, tumor invasion, and chemotherapy resistance | [89] |
44 PC samples in Brazil | 16 (39 cases), Others (5 cases) | 3049 differentially methylated probes detected in the HPV+ samples compared to HPV− samples, leading to 65 negatively associated genes including CD70, HN1, FZD5, FSCN1, and PRR16 | Potential influences of tumor migration, invasion, and immunotherapy sensitivity | [92] |
24 PC samples in Spain | 16 (11 cases) | Methylation of thrombospondin-1 in HPV+ PC samples: 54.5% Methylation of RAS association domain family 1A in HPV+ PC samples: 27.3% Methylation of p16ink4a in HPV+ PC samples: 27.3% | Association of thrombospondin-1 methylation with poor histological grade, vascular invasion, and worse 5-year disease-free survival and overall survival Association of RAS association domain family 1A with pT1 classification and better 5-year disease-free survival | [97] |
25 PC samples in Japan | 16 (3 cases) | FHIT, p14, and RUNX3 methylations in 100%, 33.3%, and 33.3% of HPV+ samples No methylated DAPK, MGMT, p16ink4a, RAR-β, and RASS occurring in HPV+ samples | Association with FHIT expression suppression and possible tumorigenicity inhibition | [100] |
Sample Type and Number | HPV Type | Up-Regulated and Down-Regulated miRNA | Targeting mRNA | Regulation of Molecular Environment, Phenotype, and Clinical Significance | References |
---|---|---|---|---|---|
59 formalin-fixed, paraffin-embedded PC samples in Italy | 16 (15 cases), Others (2 cases) | Lower levels of miR-146a in HPV+ samples (1.16 ± 0.66 copies) than in HPV− samples (2.40 ± 0.38 copies) | EGFR | high-risk HPV16 E6 suppressing the expression of miR-146a in human foreskin keratinocytes, causing dose-dependent increase in EGFR protein and cell proliferation in vitro | [109] |
22 PC samples in Brazil | 16 (16 cases) Others (6 cases) | 507 differentially expressed miRNAs in HPV+ PC tissues compared to normal tissues: 494 down-regulation miRNAs; 13 up-regulation miRNAs (let-7a-5p, miR-130a-3p, miR-142-3p, miR-15b-5p, miR-16-5p, miR-200c-3p, miR-205-5p, miR-21-5p, miR-223-3p, miR-22-3p, miR-25-3p, miR-31-5p, and miR-93-5p) | TP53 targeted by all 13 up-regulation miRNAs with 131 target sites RB1 targeted by all 13 up-regulation miRNAs with 490 target sites | Down-regulated expression of TP53 and RB1 Detection of the top six signaling pathways involving miRNAs-TP53/RB1 regulations (viral carcinogenesis, central carbon metabolism in cancer, chronic myeloid leukemia, glioma, melanoma, and cell cycle) | [110] |
28 PC samples in Brazil | 16 (14 cases), 35 (3 cases), 59 (4 cases), Others (18 cases) | 269 miRNAs mapped in 30 cytobands with the CNAs with the top three miRNAs harboring a higher number of targets: miR-30d (229 genes), miR-30b (224 genes), and miR-548d (134 genes) | 898 genes targeted by miRNAs with 13 genes simultaneously negatively regulated by HPV E5/E6/E7 (ATP6V0D1, CCNA2, CDK2, CDKN1B, CHD4, EP300, IRF3, JUN, PKM, RB1, RBL2, TBP, and UBR4) | Identification of five pathways influenced by miRNA/mRNA regulation (Hippo signaling pathway, lysine degradation, mucin type O-Glycan biosynthesis, prion diseases, and proteoglycans in cancer) Drug prediction for PC effective treatment (cisplatin, doxorubicin, imatinib, cetuximab, and celecoxib) | [64] |
30 PC samples in Brazil | 16 (23 cases) Others (7 cases) | Potential miRNAs with impaired regulatory capacity of cancer-associated genes due to mRNA UTRs variants (miR-93-5p, miR-106b-5p, miR-20b-5p, miR-1237-3p, miR-224-5p, miR-132-3p, miR-331-3p, and miR-346) | 4 cancer-associated genes with UTRs variants (CARD11, CSMD3, KDR, and TLX3) | Activation of these oncogenes, promoting tumor cell survival and disease progression | [65] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Huang, K.; Han, H.; Liu, R.-y. Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies. Int. J. Mol. Sci. 2023, 24, 16808. https://doi.org/10.3390/ijms242316808
Wei L, Huang K, Han H, Liu R-y. Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies. International Journal of Molecular Sciences. 2023; 24(23):16808. https://doi.org/10.3390/ijms242316808
Chicago/Turabian StyleWei, Lichao, Kangbo Huang, Hui Han, and Ran-yi Liu. 2023. "Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies" International Journal of Molecular Sciences 24, no. 23: 16808. https://doi.org/10.3390/ijms242316808
APA StyleWei, L., Huang, K., Han, H., & Liu, R. -y. (2023). Human Papillomavirus Infection in Penile Cancer: Multidimensional Mechanisms and Vaccine Strategies. International Journal of Molecular Sciences, 24(23), 16808. https://doi.org/10.3390/ijms242316808