Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid
Abstract
:1. Introduction
2. Results
2.1. Identification of VcUSP Gene Family Members in the Blueberry Genome
2.2. Phylogenetic Analysis of the VcUSP Family
2.3. Multiple Sequence Alignment of VcUSPs
2.4. Gene Structures of VcUSPs
2.5. cis-Regulatory Elements of VcUSPs
2.6. VcUSP Expression Patterns in Response to UV-B Radiation
2.7. VcUSP Expression Patterns in Response to ABA
2.8. Identification of VcUSPs Co-Expressed with Transcription Factor Genes under UV-B and ABA Treatments Using WGCNA
3. Discussion
3.1. Structural Diversity of the VcUSP Family
3.2. The Evolutionary Relationships of VcUSPs
3.3. VcUSPs Play Important Roles in Plant Responses to UV-B Radiation and ABA Treatments
3.4. Functional Analysis of VcUSPs under UV-B Radiation and ABA Treatments
3.5. VcUSPs May Be Involved in UV-B-Induced Flavonoid Biosynthesis
4. Materials and Methods
4.1. Identification of Putative VcUSPs
4.2. Phylogenetic Analysis and Multiple Sequence Alignment
4.3. Analysis of the Major Characteristics of VcUSP Family Members
4.4. Differentially Expressed VcUSPs under UV-B Radiation or ABA Treatment
4.5. WGCNA
4.6. Validation of RNA-Seq Data Using RT-qPCR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, D.; Wu, Z.; Bai, Q.; Zhang, Y.; Huang, M.; Huang, Y.; Li, X. Universal stress proteins: From gene to function. Int. J. Mol. Sci. 2023, 24, 4725. [Google Scholar] [CrossRef] [PubMed]
- Nachin, L.; Nannmark, U.; Nyström, T. Differential roles of the universal stress proteins of Escherichia coli in oxidative stress resistance, adhesion, and motility. J. Bacteriol. 2005, 187, 6256–6272. [Google Scholar] [CrossRef] [PubMed]
- Tkaczuk, K.L.; Shumilin, A.; Chruszcz, M.; Evdokimova, A.S.; Minor, W. Structural and functional insight into the universal stress protein family. Evol. Appl. 2013, 6, 434–449. [Google Scholar] [CrossRef] [PubMed]
- Nachin, L.; Brive, L.; Persson, K.; Svensson, P.; Nyström, T. Heterodimer formation within universal stress protein classes revealed by an in silico and experimental approach. J. Mol. Biol. 2008, 380, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Nystrom, T.; Neidhardt, F.C. Cloning, mapping and nucleotide sequencing of a gene encoding a universal stress protein in Escherichia coli. Mol. Microbiol. 1992, 6, 3187–3198. [Google Scholar] [CrossRef]
- Freestone, P.; Nyström, T.; Trinei, M.; Norris, V. The universal stress protein, UspA, of Escherichia coli is phosphorylated in response to stasis. J. Mol. Biol. 1997, 274, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Kvint, K.; Nachin, L.; Diez, A.; Nyström, T. The bacterial universal stress protein: Function and regulation. Curr. Opin. Microbiol. 2003, 6, 140–145. [Google Scholar] [CrossRef]
- Sousa, M.C.; McKay, D.B. Structure of the universal stress protein of Haemophilus influenzae. Structure 2001, 9, 1135–1141. [Google Scholar] [CrossRef]
- Zarembinski, T.I.; Hung, L.W.; Mueller-Dieckmann, H.J.; Kim, K.K.; Yokota, H.; Kim, R.; Kim, S.S. Structure-based assignment of the biochemical function of a hypothetical protein: A test case of structural genomics. Proc. Natl. Acad. Sci. USA 1998, 95, 15189–15193. [Google Scholar] [CrossRef]
- Aravind, L.; Anantharaman, V.; Koonin, E.V. Monophyly of class I aminoacyl tRNA synthetase, USPA, ETFP, photolyase, and PP-ATPase nucleotide-binding domains: Implications for protein evolution in the RNA world. Proteins 2002, 48, 1–14. [Google Scholar] [CrossRef]
- Hassan, S.; Ahmad, A.; Batool, F.; Rashid, B.; Husnain, T. Genetic modification of Gossypium arboreum universal stress protein (GUSP1) improves drought tolerance in transgenic cotton (Gossypium hirsutum). Physiol. Mol. Biol. Plants 2021, 27, 1779–1794. [Google Scholar] [CrossRef] [PubMed]
- Sauter, M.; Rzewuski, G.; Marwedel, T.; Lorbiecke, R. The novel ethylene-regulated gene OsUsp1 from rice encodes a member of a plant protein family related to prokaryotic universal stress proteins. J. Exp. Bot. 2002, 53, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jung, Y.J.; Lee, Y.; Kim, I.R.; Seol, M.; Kim, E.; Jang, M.; Lee, J.R. Functional characterization of the Arabidopsis universal stress protein AtUSP with an antifungal activity. Biochem. Biophys. Res. Commun. 2017, 486, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Loukehaich, R.; Wang, T.; Ouyang, B.; Ziaf, K.; Li, H.; Zhang, J.; Lu, Y.; Ye, Z. SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J. Exp. Bot. 2012, 63, 5593–5606. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Che, S.; Zhang, Y.; Wang, H.; Wei, T.; Yan, G.; Song, W.; Yu, W. Universal stress protein in Malus sieversii confers enhanced drought tolerance. J. Plant Res. 2019, 132, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, P.; Chen, C.; Zhang, J. VyUSPA3, a universal stress protein from the Chinese wild grape Vitis yeshanensis, confers drought tolerance to transgenic V. vinifera. Plant Cell Rep. 2023, 42, 181–196. [Google Scholar] [CrossRef]
- Bhuria, M.; Goel, P.; Kumar, S.; Singh, A.K. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. Physiol. Plantarum 2022, 174, e13635. [Google Scholar] [CrossRef]
- Jung, Y.J.; Melencion, S.M.B.; Lee, E.S.; Park, J.H.; Alinapon, C.V.; Oh, H.T.; Yun, D.; Chi, Y.H.; Lee, S.Y. Universal stress protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress. Front. Plant Sci. 2015, 6, 1141. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, P.; Hu, Y.; Chen, C.; Liu, Q.; Guan, P.; Zhang, J. Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress. Plant Physiol. Biochem. 2021, 165, 57–70. [Google Scholar] [CrossRef]
- Bhuria, M.; Goel, P.; Kumar, S.; Singh, A.K. Genome-wide identification and expression profiling of genes encoding universal stress proteins (USP) identify multi-stress responsive USP genes in Arabidopsis thaliana. Plant Physiol. Rep. 2019, 24, 434–445. [Google Scholar] [CrossRef]
- Phan, K.A.T.; Paeng, S.K.; Chae, H.B.; Park, J.H.; Lee, E.S.; Wi, S.D.; Bae, S.B.; Kim, M.G.; Yun, D.; Kim, W.; et al. Universal stress protein regulates the circadian rhythm of central oscillator genes in Arabidopsis. FEBS Lett. 2022, 596, 1871–1880. [Google Scholar] [CrossRef]
- Gou, L.; Zhou, C.; Lu, S.; Guo, Z. A Universal Stress Protein from Medicago falcata (MfUSP1) confers multiple stress tolerance by regulating antioxidant defense and proline accumulation. Environ. Exp. Bot. 2020, 178, 104168. [Google Scholar] [CrossRef]
- Berli, F.J.; Moreno, D.; Piccoli, P.; Hespanhol-Viana, L.; Silva, M.F.; Bressan-Smith, R.; Cavagnaro, J.B.; Bottini, R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet- absorbing compounds, antioxidant enzymes and membrane sterols. Plant Cell Environ. 2010, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Xuan, Z.; Zhang, X.; Korpelainen, H.; Li, C. Interactions between drought, ABA application and supplemental UV-B in Populus yunnanensis. Physiol. Plantarum 2008, 134, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Rakitin, V.Y.; Karyagin, V.V.; Rakitina, T.Y.; Prudnikova, O.N.; Vlasov, P.V. UV-B stress-induced ABA production in Arabidopsis thaliana mutants defective in ethylene signal transduction pathway. Russ. J. Plant Physiol. 2008, 55, 854–856. [Google Scholar] [CrossRef]
- Berli, F.J.; Fanzone, M.; Piccoli, P.; Bottini, R. Solar UV-B and ABA are involved in phenol metabolism of Vitis vinifera L. increasing biosynthesis of berry skin polyphenols. J. Agric. Food Chem. 2011, 59, 4874–4884. [Google Scholar] [CrossRef] [PubMed]
- Tran, P.H.L.; Tran, T.T.D. Blueberry supplementation in neuronal health and protective technologies for efficient delivery of blueberry anthocyanins. Biomolecules 2021, 11, 102. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Che, F. Structure and function of blueberry anthocyanins: A review of recent advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
- Nguyen, C.T.T.; Lim, S.; Lee, J.G.; Lee, E.J. VcBBX, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-induced anthocyanin biosynthesis in the peel of harvested blueberry fruit. J. Agric. Food Chem. 2017, 65, 2066–2073. [Google Scholar] [CrossRef]
- Oh, H.D.; Yu, D.J.; Chung, S.W.; Chea, S.; Lee, H.J. Abscisic acid stimulates anthocyanin accumulation in ‘Jersey’ highbush blueberry fruits during ripening. Food Chem. 2018, 244, 403–407. [Google Scholar] [CrossRef]
- González-Villagra, J.; Marjorie, R.; Alberdi, M.; Acevedo, P.; Loyola, R.; Tighe-Neira, R.; Arce-Johnson, P. Solar UV irradiation effects on photosynthetic performance, biochemical markers, and gene expression in highbush blueberry (Vaccinium corymbosum L.) cultivars. Sci. Hortic. 2020, 259, 108816. [Google Scholar] [CrossRef]
- Karppinen, K.; Tegelberg, P.; Häggman, H.; Jaakola, L. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front. Plant Sci. 2018, 9, 1259. [Google Scholar] [CrossRef] [PubMed]
- Riechmann, J.L.; Heard, J.; Martin, G.; Reuber, L.; Jiang, C.; Keddie, J.; Adam, L.; Pineda, O.; Ratcliffe, O.J.; Samaha, R.R. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science 2000, 290, 2105–2110. [Google Scholar] [CrossRef] [PubMed]
- Kerk, D.; Bulgrien, J.; Smith, D.W.; Gribskov, M. Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol. 2003, 131, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wei, Y.; Wang, J.; Liu, C.; Lan, X.; Jiang, Q.; Pu, Z.; Zheng, Y. Identification, localization, and characterization of putative USP genes in barley. Theor. Appl. Genet. 2010, 121, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Arabia, S.; Sami, A.A.; Akhter, S.; Sarker, R.H.; Islam, T. Comprehensive in silico characterization of universal stress proteins in rice (Oryza sativa L.) with insight into their stress-specific transcriptional modulation. Front. Plant Sci. 2021, 12, 712607. [Google Scholar] [CrossRef]
- Colle, M.; Leisner, C.P.; Wai, C.M.; Ou, S.; Bird, K.A.; Wang, J.; Wisecaver, J.H.; Yocca, A.E.; Alger, E.I.; Tang, H.; et al. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 2019, 8, giz012. [Google Scholar] [CrossRef]
- Song, Y.; Ma, B.; Guo, Q.; Zhou, L.; Zhou, X.; Ming, Z.; You, H.; Zhang, C. MYB pathways that regulate UV-B-induced anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). Front. Plant Sci. 2023, 14, 1125382. [Google Scholar] [CrossRef]
- Cannon, S.B.; Mitra, A.; Baumgarten, A.; Young, N.D.; May, G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004, 4, 10. [Google Scholar] [CrossRef]
- Bahieldin, A.; Atef, A.; Shokry, A.M.; Al-Karim, S.; Attas, S.G.A.; Gadallah, N.O.; Edris, S.; Al-Kordy, M.A.; Omer, A.M.S.; Sabir, J.S.M.; et al. Structural identification of putative USPs in Catharanthus roseus. Comptes Rendus Biol. 2015, 338, 643–649. [Google Scholar] [CrossRef]
- Giovane, A.; Servillo, L.; Balestrieri, C.; Raiola, A.; D’Avino, R.; Tamburrini, M.; Ciardiello, M.A.; Camardella, L. Pectin methylesterase inhibitor. Biochim. Biophys. Acta 2004, 1696, 245–252. [Google Scholar] [CrossRef]
- Das, A.; Liang, Y.; Mariano, J.; Li, J.; Huang, T.; King, A.; Tarasov, S.G.; Weissman, A.M.; Ji, X.; Byrd, R.A. Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine. EMBO J. 2013, 32, 2504–2516. [Google Scholar] [CrossRef]
- Joo, H.; Lim, C.W.; Lee, S.C. Roles of pepper bZIP transcription factor CaATBZ1 and its interacting partner RING-type E3 ligase CaASRF1 in modulation of ABA signalling and drought tolerance. Plant J. 2019, 100, 399–410. [Google Scholar] [CrossRef]
- Lim, S.D.; Cho, H.Y.; Park, Y.C.; Ham, D.J.; Lee, J.K.; Jang, C.S. The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermo tolerance. J. Exp. Bot. 2013, 64, 2899–2914. [Google Scholar] [CrossRef]
- Cozzone, A.J. ATP-dependent protein kinase in bacteria. J. Cell Biochem. 1993, 51, 7–13. [Google Scholar] [CrossRef]
- Levengood-freyermuth, S.K.; Click, E.M.; Webster, R.E. Role of the carboxyl-terminal domain of TolA in protein import and integrity of the outer membrane. J. Bacteriol. 1993, 175, 222–228. [Google Scholar] [CrossRef]
- Gustavsson, N.; Diez, A.A.; Nyström, T. The universal stress protein paralogues of Escherichia coli are co-ordinately regulated and co-operate in the defence against DNA damage. Mol. Microbiol. 2002, 43, 107–117. [Google Scholar] [CrossRef]
- Diez, A.; Gustavsson, N.; Nyström, T. The universal stress protein A of Escherichia coli is required for resistance to DNA damaging agents and is regulated by a RecA/FtsK-dependent regulatory pathway. Mol. Microbiol. 2000, 36, 1494–1503. [Google Scholar] [CrossRef]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef]
- Ooka, H.; Satoh, K.; Doi, K.; Nagata, T.; Otomo, Y.; Murakami, K.; Matsubara, K.; Osato, N.; Kawai, J.; Carninci, P.; et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003, 10, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef] [PubMed]
- Rozema, J.; van de Stanij, J.; Björn, L.O.; Caldwell, M. UV-B as an environmental factor in plant life: Stress and regulation. Trends Ecol. Evol. 1997, 12, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Beltrán, E.; Personat, J.M.; de la Torre, F.; del Pozo, O. A universal stress protein involved in oxidative stress is a phosphrylation target for protein kinase CIPK6. Plant Physiol. 2017, 173, 836–852. [Google Scholar] [CrossRef] [PubMed]
- Bahieldin, A.; Atef, A.; Shokry, A.M.; Al-Karim, S.; Attas, S.G.A.; Gadallah, N.O.; Edris, S.; Al-kordy, M.A.; Hassan, S.M.; Abo-Aba, S.; et al. Transcription factors regulating uspA genes in Catharanthus roseus. Comptes Rendus Biol. 2017, 340, 1–6. [Google Scholar] [CrossRef]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, C.; Fan, B.; Chen, Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 2006, 18, 1310–1326. [Google Scholar] [CrossRef]
- Eulgem, T.; Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, N.; Xu, H.; Jiang, S.; Fang, H.; Su, M.; Zhang, Z.; Zhang, T.; Chen, X. Auxin regulates anthocyanin biosynthesis through the Aux/IAA-ARF signaling pathway in apple. Hortic. Res. 2018, 5, 59. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.; Bressan, R.A.; Song, C.; Zhu, J.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Nakamichi, N.; Kiba, T.; Henriques, R.; Mizuno, T.; Chua, N.; Sakakibara, H. PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 2010, 22, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kim, J.; Somers, D.E. Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc. Natl. Acad. Sci. USA 2013, 110, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Rizzini, L.; Favory, J.J.; Cloix, C.; Faggionato, D.; O’Hara, A.; Kaiserli, E.; Baumeister, R.; Schäfer, E.; Nagy, F.; Jenkins, G.I.; et al. Perception of UV-B by the Arabidopsis UVR8 protein. Science 2011, 332, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Favory, J.; Stec, A.; Gruber, H.; Rizzini, L.; Oravecz, A.; Funk, M.; Albert, A.; Cloix, C.; Jenkins, G.I.; Oakeley, E.J.; et al. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J. 2009, 28, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, C.; Gaddam, S.R.; Pandey, A.; Trivedi, P.K. COP1 mediates light-dependent regulation of flavonol biosynthesis through HY5 in Arabidopsis. Plant Sci. 2021, 303, 110760. [Google Scholar] [CrossRef] [PubMed]
- Stracke, R.; Favory, J.; Gruber, H.; Bartelniewoehner, L.; Bartels, S.; Binkert, M.; Funk, M.; Weisshaar, B.; Ulm, R. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 2010, 33, 88–103. [Google Scholar] [CrossRef]
- Mehrtens, F.; Kranz, H.; Bednarek, P.; Weisshaar, B. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol. 2005, 138, 1083–1096. [Google Scholar] [CrossRef]
- Luo, J.; Butelli, E.; Hill, L.; Parr, A.; Niggeweg, R.; Bailey, P.; Weissharr, B.; Martin, C. AtMYB12 regulates caffeoyl quinic acid and flavonol synthesis in tomato: Expression in fruit results in very high levels of both types of polyphenol. Plant J. 2008, 56, 316–326. [Google Scholar] [CrossRef]
- Holtan, H.E.; Bandong, S.; Marion, C.M.; Adam, L.; Tiwari, S.; Shen, Y.; Maloof, J.N.; Maszle, D.R.; Ohto, M.; Preuss, S.; et al. BBX32, an Arabidopsis B-Box protein, functions in light signaling by suppressing HY5-regulated gene expression and interacting with STH2/BBX21. Plant Physiol. 2011, 156, 2109–2123. [Google Scholar] [CrossRef]
- Xu, D.; Jiang, Y.; Li, J.; Lin, F.; Holm, M.; Deng, X.W. BBX21, an Arabidopsis B-box protein, directly activates HY5 and is targeted by COP1 for 26S proteasome-mediated degradation. Proc. Natl. Acad. Sci. USA 2016, 113, 7655–7660. [Google Scholar] [CrossRef]
- Gonzalez, A.; Zhao, M.; Leavitt, J.M.; Lloyd, A.M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J. 2007, 53, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Baudry, A.; Heim, M.A.; Dubreucq, B.; Caboche, M.; Weisshaar, B.; Lepiniec, L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004, 39, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Stracke, R.; Jahns, O.; Keck, M.; Tohge, T.; Niehaus, K.; Fernie, A.R.; Weisshaar, B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol. 2010, 188, 985–1000. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.; Mendenhall, J.; Huo, Y.; Lloyd, A. TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev. Biol. 2009, 325, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ma, B.; Guo, Q.; Zhou, L.; Lv, C.; Liu, X.; Wang, J.; Zhou, X.; Zhang, C. UV-B induces the expression of favonoid biosynthetic pathways in blueberry (Vaccinium corymbosum) calli. Front. Plant Sci. 2022, 13, 1079087. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinf. 2008, 9, 559. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Li, J.; Wu, S.; Zhu, Y.; Chen, Y.; Fuchu, H.E. Integrated nr database in protein annotation system and its localization. Comput. Eng. 2006, 32, 71–74. [Google Scholar] [CrossRef]
- Finn, R.D.; Bateman, A.; Clements, J.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Andreas, H.; Kirstie, H.; Lilisa, H.; Jaina, M. Pfam: The protein families database. Nucleic Acids Res. 2014, 42, D222–D230. [Google Scholar] [CrossRef] [PubMed]
- Apweiler, R.; Bairoch, A.; Wu, C.H.; Barker, W.C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M.; et al. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2004, 32, D115–D119. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Forslund, K.; Coelho, L.P.; Szklarczyk, D.; Jensen, L.J.; von Mering, C.; Bork, P. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 2017, 34, 2115–2122. [Google Scholar] [CrossRef]
Gene Name | Protein Length (aa) | MW 1 (kDa) | pI 2 | USP Domains | Other Domains | ATP-Binding Site | Group 9 |
---|---|---|---|---|---|---|---|
VcUSP1 | 162 | 17.85 | 5.71 | UspA | -- | ATP | Ⅰ |
VcUSP2 | 404 | 43.48 | 5.31 | UspA | PMEI-like_2 3 | ATP | Ⅰ |
VcUSP3 | 229 | 25.38 | 8.9 | UspA | -- | ATP | Ⅰ |
VcUSP4 | 432 | 46.37 | 5.35 | UspA | PMEI-like_2 | ATP | Ⅰ |
VcUSP5 | 163 | 18.15 | 5.5 | UspA | -- | ATP | Ⅰ |
VcUSP6 | 344 | 36.57 | 4.68 | UspA | PMEI-like | ATP | Ⅰ |
VcUSP7 | 355 | 37.67 | 4.62 | UspA | PMEI-like | ATP | Ⅰ |
VcUSP8 | 150 | 16.22 | 6.41 | UspA | -- | ATP | Ⅰ |
VcUSP9 | 164 | 17.66 | 8.76 | UspA | -- | ATP | Ⅰ |
VcUSP10 | 164 | 18.43 | 6.75 | UspA | -- | ATP | Ⅰ |
VcUSP11 | 177 | 19.74 | 5.43 | UspA | -- | ATP | Ⅰ |
VcUSP12 | 173 | 19.26 | 5.88 | UspA | -- | ATP | Ⅰ |
VcUSP13 | 225 | 24.64 | 4.85 | UspA | -- | ATP | Ⅰ |
VcUSP14 | 253 | 27.87 | 5.34 | UspA | -- | ATP | Ⅰ |
VcUSP15 | 232 | 25.81 | 4.93 | UspA | -- | ATP | Ⅰ |
VcUSP16 | 262 | 29.01 | 5.1 | UspA | -- | ATP | Ⅰ |
VcUSP17 | 235 | 25.69 | 5.14 | UspA | -- | ATP | Ⅰ |
VcUSP18 | 328 | 35.73 | 5.1 | UspA | PME 4 | ATP | Ⅰ |
VcUSP19 | 296 | 32.24 | 4.99 | UspA | -- | ATP | Ⅰ |
VcUSP20 | 321 | 35.13 | 5.72 | UspA | -- | ATP | Ⅰ |
VcUSP21 | 251 | 27.24 | 5.21 | UspA | -- | ATP | Ⅰ |
VcUSP22 | 249 | 27.41 | 8.68 | UspA | -- | No | Ⅱ |
VcUSP23 | 234 | 25.68 | 7.66 | UspA/UspE | -- | No | Ⅱ |
VcUSP24 | 170 | 18.58 | 5.3 | UspA/UspE | -- | ATP | Ⅱ |
VcUSP25 | 173 | 18.55 | 8.14 | UspA | -- | No | Ⅱ |
VcUSP26 | 183 | 20.33 | 5.96 | UspA | -- | ATP | Ⅱ |
VcUSP27 | 219 | 24.3 | 6.16 | UspA | -- | ATP | Ⅱ |
VcUSP28 | 180 | 20.1 | 5.86 | UspA/UspE | -- | ATP | Ⅱ |
VcUSP29 | 265 | 28.58 | 5.88 | UspA | -- | No | Ⅱ |
VcUSP30 | 170 | 18.04 | 6.95 | UspA/UspF | -- | No | Ⅱ |
VcUSP31 | 268 | 29.76 | 6.07 | UspA | -- | No | Ⅱ |
VcUSP32 | 466 | 50.22 | 6.72 | UspA + UspA + UspA | -- | 2ATP | Ⅱ |
VcUSP33 | 419 | 44.73 | 6.38 | UspA + UspA + UspA | -- | 2ATP | Ⅱ |
VcUSP34 | 347 | 37.45 | 7.35 | UspA + UspA | -- | ATP | Ⅱ |
VcUSP35 | 524 | 56.94 | 6.17 | UspA | RING_Ubox 5 | No | Ⅱ |
VcUSP36 | 561 | 61.16 | 6.25 | UspA | RING_H2 6 | No | Ⅱ |
VcUSP37 | 587 | 63.69 | 6.15 | UspA | RING_Ubox | ATP | Ⅱ |
VcUSP38 | 584 | 63.66 | 6.24 | UspA | RING_Ubox | ATP | Ⅱ |
VcUSP39 | 161 | 17.08 | 6.49 | UspA/UspF | -- | ATP | Ⅱ |
VcUSP40 | 212 | 23.03 | 6.39 | UspA/UspF | -- | ATP | Ⅱ |
VcUSP41 | 178 | 19.64 | 7.61 | UspA/UspF | -- | No | Ⅲ |
VcUSP42 | 172 | 18.67 | 6.72 | UspA/UspF | -- | ATP | Ⅲ |
VcUSP43 | 168 | 18.35 | 6.73 | UspA/UspF | -- | ATP | Ⅲ |
VcUSP44 | 307 | 33.87 | 5.87 | UspA/UspF + UspA/UspF | -- | ATP | Ⅲ |
VcUSP45 | 160 | 17.8 | 6.2 | UspA | -- | No | Ⅲ |
VcUSP46 | 160 | 17.69 | 6.59 | UspA/UspF | -- | ATP | Ⅲ |
VcUSP47 | 96 | 10.65 | 4.87 | UspA | -- | No | Ⅲ |
VcUSP48 | 170 | 18.71 | 6.31 | UspA/UspF | -- | ATP | Ⅲ |
VcUSP49 | 147 | 16.76 | 5.38 | UspA/UspF | -- | No | Ⅲ |
VcUSP50 | 144 | 16.24 | 5.82 | UspA/UspF | -- | No | Ⅲ |
VcUSP51 | 145 | 16.09 | 5.08 | UspA/UspF | -- | No | Ⅲ |
VcUSP52 | 423 | 47.02 | 5.4 | UspA/UspF + UspA + UspA/UspF | -- | ATP | Ⅲ |
VcUSP53 | 132 | 14.81 | 5.12 | UspA/UspE | -- | No | Ⅲ |
VcUSP54 | 195 | 21.58 | 4.95 | UspA + UspA | -- | No | Ⅲ |
VcUSP55 | 323 | 35.68 | 7.47 | (UspA + UspA)/UspE | -- | ATP | Ⅲ |
VcUSP56 | 132 | 14.57 | 5.11 | UspA/UspF | -- | No | Ⅲ |
VcUSP57 | 234 | 25.63 | 9.53 | UspA | STK_N 7 | No | Ⅳ |
VcUSP58 | 208 | 22.73 | 9.17 | UspA | STK_N | No | Ⅳ |
VcUSP59 | 99 | 10.92 | 10.09 | UspA | -- | No | Ⅳ |
VcUSP60 | 375 | 42.34 | 6.26 | UspA | tolA 8 | No | Ⅳ |
VcUSP61 | 410 | 46.17 | 5.58 | UspA | -- | No | Ⅳ |
VcUSP62 | 261 | 28.58 | 5.55 | UspA | -- | No | Ⅳ |
VcUSP63 | 224 | 24.49 | 4.98 | UspA | -- | No | Ⅳ |
VcUSP64 | 274 | 29.93 | 5.82 | UspA | -- | No | Ⅳ |
VcUSP65 | 146 | 16.85 | 7 | UspA | -- | No | Ⅴ |
VcUSP66 | 200 | 22.62 | 10.51 | UspA | -- | No | Ⅴ |
VcUSP67 | 240 | 26.76 | 7.01 | UspA | -- | No | Ⅴ |
VcUSP68 | 267 | 28.56 | 9.05 | UspA | -- | No | Ⅴ |
VcUSP69 | 218 | 24.12 | 10.18 | UspA | -- | No | Ⅴ |
VcUSP70 | 232 | 26.4 | 10.22 | UspA | -- | No | Ⅴ |
VcUSP71 | 151 | 16.04 | 5.68 | UspA | -- | No | Ⅴ |
VcUSP72 | 201 | 21.61 | 7.81 | UspA | -- | No | Ⅴ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Ma, B.; Feng, X.; Guo, Q.; Zhou, L.; Zhang, X.; Zhang, C. Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. Int. J. Mol. Sci. 2023, 24, 16819. https://doi.org/10.3390/ijms242316819
Song Y, Ma B, Feng X, Guo Q, Zhou L, Zhang X, Zhang C. Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. International Journal of Molecular Sciences. 2023; 24(23):16819. https://doi.org/10.3390/ijms242316819
Chicago/Turabian StyleSong, Yan, Bin Ma, Xinghua Feng, Qingxun Guo, Lianxia Zhou, Xinsheng Zhang, and Chunyu Zhang. 2023. "Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid" International Journal of Molecular Sciences 24, no. 23: 16819. https://doi.org/10.3390/ijms242316819
APA StyleSong, Y., Ma, B., Feng, X., Guo, Q., Zhou, L., Zhang, X., & Zhang, C. (2023). Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. International Journal of Molecular Sciences, 24(23), 16819. https://doi.org/10.3390/ijms242316819