Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro
Abstract
:1. Introduction
2. Results
2.1. Cellular Uptake
2.2. The Effect of Hypericin and Hypericin-Based PDT on HaCaT, SCC-25, and MUG-Mel2 Cells in the MTT Assay
2.3. The Effect of Hypericin and Hypericin-Based PDT on HaCaT, SCC-25, and MUG-Mel2 Cells in the SRB Assay
2.4. The Effect of Hypericin and Hypericin-Based PDT on HaCaT, SCC-25, and MUG-Mel2 Cells in the Resazurin Assay
2.5. The Effect of Hypericin and Hypericin-Based PDT on HaCaT, SCC-25, and MUG-Mel2—Cell Morphology
2.6. TUNEL Assay—Hypericin and PDT Based on Hypericin on SCC-25 and MUG-Mel2 Cell Lines Induces Cell Apoptosis
3. Discussion
4. Materials and Methods
4.1. Cell Culture
4.2. Hypericin Solution Preparation
4.3. PDT Experiment
4.4. Cell Viability Assay—MTT Assay
4.5. Cell Viability Assay—SRB Assay
4.6. Metabolic Activity—Resazurin Assay (Alamar Blue Assay)
4.7. Flow Cytometry—Cellular Uptake
4.8. Cell Morphology
4.9. TUNEL Assay—Apoptosis Assay
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Gao, L.; Hu, J.; Wang, C.; Hagedoorn, P.-L.; Li, N.; Zhou, X. Hypericin: Source, Determination, Separation, and Properties. Sep. Purif. Rev. 2022, 51, 1–10. [Google Scholar] [CrossRef]
- Sun, L.; Shang, H.; Wu, Y.; Xin, X. Hypericin-Mediated Photodynamic Therapy Enhances Gemcitabine Induced Capan-2 Cell Apoptosis via Inhibiting NADPH Level. J. Pharm. Pharmacol. 2022, 74, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Foglietta, F.; Canaparo, R.; Cossari, S.; Panzanelli, P.; Dosio, F.; Serpe, L. Ultrasound Triggers Hypericin Activation Leading to Multifaceted Anticancer Activity. Pharmaceutics 2022, 14, 1102. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wackenhut, F.; Hauler, O.; Scholz, M.; zur Oven-Krockhaus, S.; Ritz, R.; Adam, P.-M.; Brecht, M.; Meixner, A.J. Hypericin: Single Molecule Spectroscopy of an Active Natural Drug. J. Phys. Chem. A 2020, 124, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zeng, Y.; Zhang, Z.; Fu, J.; You, L.; He, Y.; Hao, Y.; Gu, Z.; Yu, Z.; Qu, C.; et al. Hypericin-Mediated Photodynamic Therapy for the Treatment of Cancer: A Review. J. Pharm. Pharmacol. 2021, 73, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Gusmão, L.A.; Machado, A.E.H.; Perussi, J.R. Improved Hypericin Solubility via β-Cyclodextrin Complexation: Photochemical and Theoretical Study for PDT Applications. Photodiagnosis Photodyn. Ther. 2022, 40, 103073. [Google Scholar] [CrossRef]
- Ji, B.; Wei, M.; Yang, B. Recent Advances in Nanomedicines for Photodynamic Therapy (PDT)-Driven Cancer Immunotherapy. Theranostics 2022, 12, 434–458. [Google Scholar] [CrossRef]
- Warrier, A.; Mazumder, N.; Prabhu, S.; Satyamoorthy, K.; Murali, T.S. Photodynamic Therapy to Control Microbial Biofilms. Photodiagnosis Photodyn. Ther. 2021, 33, 102090. [Google Scholar] [CrossRef]
- Gustalik, J.; Aebisher, D.; Bartusik-Aebisher, D. Photodynamic Therapy in Breast Cancer Treatment. J. Appl. Biomed. 2022, 20, 98–105. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, X.; Liu, R.; Zhao, D.; Guo, C.; Zhu, A.; Wen, M.; Liu, Z.; Qu, G.; Meng, H. Pathological Mechanism of Photodynamic Therapy and Photothermal Therapy Based on Nanoparticles. Int. J. Nanomed. 2020, 15, 6827–6838. [Google Scholar] [CrossRef]
- Kolarikova, M.; Hosikova, B.; Dilenko, H.; Barton-Tomankova, K.; Valkova, L.; Bajgar, R.; Malina, L.; Kolarova, H. Photodynamic Therapy: Innovative Approaches for Antibacterial and Anticancer Treatments. Med. Res. Rev. 2023, 43, 717–774. [Google Scholar] [CrossRef] [PubMed]
- de Souza da Fonseca, A.; de Paoli, F.; Mencalha, A.L. Photodynamic Therapy for Treatment of Infected Burns. Photodiagnosis Photodyn. Ther. 2022, 38, 102831. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Lei, S.; Pan, K.; Chen, T.; Lin, J.; Ni, G.; Liu, J.; Zeng, X.; Chen, Q.; Dan, H. Application of Photodynamic Therapy in Immune-Related Diseases. Photodiagnosis Photodyn. Ther. 2021, 34, 102318. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Xing, F.; Braun, J.; Traub, F.; Rommens, P.M.; Xiang, Z.; Ritz, U. Progress of Phototherapy Applications in the Treatment of Bone Cancer. Int. J. Mol. Sci. 2021, 22, 11354. [Google Scholar] [CrossRef] [PubMed]
- da Silva Gonçalves, J.L.; Bernal, C.; Imasato, H.; Perussi, J.R. Hypericin Cytotoxicity in Tumor and Non-Tumor Cell Lines: A Chemometric Study. Photodiagnosis Photodyn. Ther. 2017, 20, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Ocker, L.; Adamus, A.; Hempfling, L.; Wagner, B.; Vahdad, R.; Verburg, F.A.; Luster, M.; Schurrat, T.; Bier, D.; Frank, M.; et al. Hypericin and Its Radio Iodinated Derivatives—A Novel Combined Approach for the Treatment of Pediatric Alveolar Rhabdomyosarcoma Cells in Vitro. Photodiagnosis Photodyn. Ther. 2020, 29, 101588. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, G.P.; de Souza, T.F.M.; Cerchiaro, G.; da Silva Pinhal, M.A.; Ribeiro, A.O.; Girão, M.J.B.C. Hypericin in Photobiological Assays: An Overview. Photodiagnosis Photodyn. Ther. 2021, 35, 102343. [Google Scholar] [CrossRef]
- Roland, N.; Memon, A. Non-Melanoma Skin Cancer of the Head and Neck. Br. J. Hosp. Med. 2023, 84, 1–10. [Google Scholar] [CrossRef]
- Perez, M.; Abisaad, J.A.; Rojas, K.D.; Marchetti, M.A.; Jaimes, N. Skin Cancer: Primary, Secondary, and Tertiary Prevention. Part I. J. Am. Acad. Dermatol. 2022, 87, 255–268. [Google Scholar] [CrossRef]
- Brandt, M.G.; Moore, C.C. Nonmelanoma Skin Cancer. Facial Plast. Surg. Clin. N. Am. 2019, 27, 1–13. [Google Scholar] [CrossRef]
- Key Statistics for Melanoma Skin Cancer. Available online: https://amp.cancer.org/cancer/types/melanoma-skin-cancer/about/key-statistics.html (accessed on 15 June 2023).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Khan, M.Q.; Hussain, A.; Rehman, S.U.; Khan, U.; Maqsood, M.; Mehmood, K.; Khan, M.A. Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer. IEEE Access 2019, 7, 90132–90144. [Google Scholar] [CrossRef]
- Villani, A.; Potestio, L.; Fabbrocini, G.; Troncone, G.; Malapelle, U.; Scalvenzi, M. The Treatment of Advanced Melanoma: Therapeutic Update. Int. J. Mol. Sci. 2022, 23, 6388. [Google Scholar] [CrossRef]
- Shalhout, S.Z.; Emerick, K.S.; Kaufman, H.L.; Miller, D.M. Immunotherapy for Non-Melanoma Skin Cancer. Curr. Oncol. Rep. 2021, 23, 125. [Google Scholar] [CrossRef] [PubMed]
- Zhi, D.; Yang, T.; Zhang, T.; Yang, M.; Zhang, S.; Donnelly, R.F. Microneedles for Gene and Drug Delivery in Skin Cancer Therapy. J. Control. Release 2021, 335, 158–177. [Google Scholar] [CrossRef] [PubMed]
- Rashid, S.; Shaughnessy, M.; Tsao, H. Melanoma Classification and Management in the Era of Molecular Medicine. Dermatol. Clin. 2023, 41, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, C.; Kruger, C.A.; Abrahamse, H. Simultaneous Photodiagnosis and Photodynamic Treatment of Metastatic Melanoma. Molecules 2019, 24, 3153. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, C.; George, B.P.; Balachandran, I.; Abrahamse, H. Photoactive Herbal Compounds: A Green Approach to Photodynamic Therapy. Molecules 2022, 27, 5084. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhang, X.; Cheng, W.; Wang, Y.; Yi, K.; Wang, Z.; Zhang, Y.; Shao, L.; Zhao, T. Hypericin-Photodynamic Therapy Inhibits the Growth of Adult T-Cell Leukemia Cells through Induction of Apoptosis and Suppression of Viral Transcription. Retrovirology 2019, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Jendželovský, R.; Jendželovská, Z.; Kuchárová, B.; Fedoročko, P. Breast Cancer Resistance Protein Is the Enemy of Hypericin Accumulation and Toxicity of Hypericin-Mediated Photodynamic Therapy. Biomed. Pharmacother. 2019, 109, 2173–2181. [Google Scholar] [CrossRef]
- Theodossiou, T.A.; Ali, M.; Grigalavicius, M.; Grallert, B.; Dillard, P.; Schink, K.O.; Olsen, C.E.; Wälchli, S.; Inderberg, E.M.; Kubin, A.; et al. Simultaneous Defeat of MCF7 and MDA-MB-231 Resistances by a Hypericin PDT–Tamoxifen Hybrid Therapy. NPJ Breast Cancer 2019, 5, 13. [Google Scholar] [CrossRef]
- Popovic, A.; Wiggins, T.; Davids, L.M. Differential Susceptibility of Primary Cultured Human Skin Cells to Hypericin PDT in an in Vitro Model. J. Photochem. Photobiol. B 2015, 149, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Davids, L.M.; Kleemann, B.; Kacerovská, D.; Pizinger, K.; Kidson, S.H. Hypericin Phototoxicity Induces Different Modes of Cell Death in Melanoma and Human Skin Cells. J. Photochem. Photobiol. B 2008, 91, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Piryaei, M.; Mehrparvar, B.; Mohammadian, A.; Shahriari, F.; Javidi, M.A. Anti-Cancer Impact of Hypericin in B-CPAP Cells: Extrinsic Caspase Dependent Apoptosis Induction and Metastasis Obstruction. Eur. J. Pharmacol. 2021, 910, 174454. [Google Scholar] [CrossRef] [PubMed]
- Nowak-Perlak, M.; Bromke, M.A.; Ziółkowski, P.; Woźniak, M. The Comparison of the Efficiency of Emodin and Aloe-Emodin in Photodynamic Therapy. Int. J. Mol. Sci. 2022, 23, 6276. [Google Scholar] [CrossRef] [PubMed]
- Damke, G.M.Z.F.; Damke, E.; de Souza Bonfim-Mendonça, P.; Ratti, B.A.; de Freitas Meirelles, L.E.; da Silva, V.R.S.; Gonçalves, R.S.; César, G.B.; de Oliveira Silva, S.; Caetano, W.; et al. Selective Photodynamic Effects on Cervical Cancer Cells Provided by P123 Pluronic®-Based Nanoparticles Modulating Hypericin Delivery. Life Sci. 2020, 255, 117858. [Google Scholar] [CrossRef] [PubMed]
- Sattler, S.; Schaefer, U.; Schneider, W.; Hoelzl, J.; Lehr, C.-M. Binding, Uptake, and Transport of Hypericin by Caco-2 Cell Monolayers. J. Pharm. Sci. 1997, 86, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Siboni, G.; Weitman, H.; Freeman, D.; Mazur, Y.; Malik, Z.; Ehrenberg, B. The Correlation between Hydrophilicity of Hypericins and Helianthrone: Internalization Mechanisms, Subcellular Distribution and Photodynamic Action in Colon Carcinoma Cells. Photochem. Photobiol. Sci. 2002, 1, 483–491. [Google Scholar] [CrossRef]
- Dayyih, A.A.; Gutberlet, B.; Preis, E.; Engelhardt, K.H.; Amin, M.U.; Abdelsalam, A.M.; Bonsu, M.; Bakowsky, U. Thermoresponsive Liposomes for Photo-Triggered Release of Hypericin Cyclodextrin Inclusion Complex for Efficient Antimicrobial Photodynamic Therapy. ACS Appl. Mater. Interfaces 2022, 14, 31525–31540. [Google Scholar] [CrossRef]
- de Morais, F.A.P.; Gonçalves, R.S.; Vilsinski, B.H.; Lazarin-Bidóia, D.; Balbinot, R.B.; Tsubone, T.M.; Brunaldi, K.; Nakamura, C.V.; Hioka, N.; Caetano, W. Hypericin Photodynamic Activity in DPPC Liposomes—Part II: Stability and Application in Melanoma B16-F10 Cancer Cells. Photochem. Photobiol. Sci. 2020, 19, 620–630. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, M.; Nowak-Perlak, M. Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. Int. J. Mol. Sci. 2023, 24, 16897. https://doi.org/10.3390/ijms242316897
Woźniak M, Nowak-Perlak M. Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. International Journal of Molecular Sciences. 2023; 24(23):16897. https://doi.org/10.3390/ijms242316897
Chicago/Turabian StyleWoźniak, Marta, and Martyna Nowak-Perlak. 2023. "Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro" International Journal of Molecular Sciences 24, no. 23: 16897. https://doi.org/10.3390/ijms242316897
APA StyleWoźniak, M., & Nowak-Perlak, M. (2023). Hypericin-Based Photodynamic Therapy Displays Higher Selectivity and Phototoxicity towards Melanoma and Squamous Cell Cancer Compared to Normal Keratinocytes In Vitro. International Journal of Molecular Sciences, 24(23), 16897. https://doi.org/10.3390/ijms242316897