Pharmacological Inhibition of PIP4K2 Potentiates Venetoclax-Induced Apoptosis in Acute Myeloid Leukemia
Abstract
:1. Introduction
2. Results
2.1. Expression of PIP4K2 Genes in Normal and Leukemic Hematopoiesis
2.2. PIP4K2 mRNA Levels Are Associated with Drug Sensitivity in Silico Analysis from Ex Vivo Assays Data in Acute Myeloid Leukemia
2.3. THZ-P1-2, a PIP4K2 Pan-Inhibitor, Augments Venetoclax-Induced Apoptosis
2.4. Differential Gene Expression upon THZ-P1-2 and/or Venetoclax Exposure in Kasumi-1 Cells
3. Discussion
4. Materials and Methods
4.1. Expression Data in Normal and Malignant Hematopoietic Cells
4.2. Cell Lines and Inhibitors
4.3. Primary Cells
4.4. Quantitative RT-PCR (qRT-PCR)
4.5. Western Blotting
4.6. Drug Sensitivity Prediction
4.7. Cell Viability Assay
4.8. Apoptosis Assay
4.9. Mitochondrial Membrane Potential Evaluation
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Short, N.J.; Rytting, M.E.; Cortes, J.E. Acute myeloid leukaemia. Lancet 2018, 392, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Dohner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef]
- Liersch, R.; Muller-Tidow, C.; Berdel, W.E.; Krug, U. Prognostic factors for acute myeloid leukaemia in adults—Biological significance and clinical use. Br. J. Haematol. 2014, 165, 17–38. [Google Scholar] [CrossRef]
- Kayser, S.; Levis, M.J. Updates on targeted therapies for acute myeloid leukaemia. Br. J. Haematol. 2022, 196, 316–328. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Erba, H.P.; Freeman, S.D.; Wei, A.H. Acute myeloid leukaemia. Lancet 2023, 401, 2073–2086. [Google Scholar] [CrossRef]
- Lima, K.; Pereira-Martins, D.A.; de Miranda, L.B.L.; Coelho-Silva, J.L.; Leandro, G.D.S.; Weinhauser, I.; Cavaglieri, R.C.; Leal, A.M.; da Silva, W.F.; Lange, A.; et al. The PIP4K2 inhibitor THZ-P1-2 exhibits antileukemia activity by disruption of mitochondrial homeostasis and autophagy. Blood Cancer J. 2022, 12, 151. [Google Scholar] [CrossRef]
- Arora, G.K.; Palamiuc, L.; Emerling, B.M. Expanding role of PI5P4Ks in cancer: A promising druggable target. FEBS Lett. 2022, 596, 3–16. [Google Scholar] [CrossRef]
- Fiume, R.; Stijf-Bultsma, Y.; Shah, Z.H.; Keune, W.J.; Jones, D.R.; Jude, J.G.; Divecha, N. PIP4K and the role of nuclear phosphoinositides in tumour suppression. Biochim. Biophys. Acta 2015, 1851, 898–910. [Google Scholar] [CrossRef] [PubMed]
- Jude, J.G.; Spencer, G.J.; Huang, X.; Somerville, T.D.D.; Jones, D.R.; Divecha, N.; Somervaille, T.C.P. A targeted knockdown screen of genes coding for phosphoinositide modulators identifies PIP4K2A as required for acute myeloid leukemia cell proliferation and survival. Oncogene 2015, 34, 1253–1262. [Google Scholar] [CrossRef]
- Lima, K.; Coelho-Silva, J.L.; Kinker, G.S.; Pereira-Martins, D.A.; Traina, F.; Fernandes, P.; Markus, R.P.; Lucena-Araujo, A.R.; Machado-Neto, J.A. PIP4K2A and PIP4K2C transcript levels are associated with cytogenetic risk and survival outcomes in acute myeloid leukemia. Cancer Genet. 2019, 233–234, 56–66. [Google Scholar] [CrossRef]
- Tyner, J.W.; Tognon, C.E.; Bottomly, D.; Wilmot, B.; Kurtz, S.E.; Savage, S.L.; Long, N.; Schultz, A.R.; Traer, E.; Abel, M.; et al. Functional genomic landscape of acute myeloid leukaemia. Nature 2018, 562, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Bottomly, D.; Long, N.; Schultz, A.R.; Kurtz, S.E.; Tognon, C.E.; Johnson, K.; Abel, M.; Agarwal, A.; Avaylon, S.; Benton, E.; et al. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 2022, 40, 850–864.e9. [Google Scholar] [CrossRef]
- Bruzzese, A.; Martino, E.A.; Mendicino, F.; Lucia, E.; Olivito, V.; Neri, A.; Morabito, F.; Vigna, E.; Gentile, M. Venetoclax in acute myeloid leukemia. Expert Opin. Investig. Drugs 2023, 32, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Sivakumaren, S.C.; Shim, H.; Zhang, T.; Ferguson, F.M.; Lundquist, M.R.; Browne, C.M.; Seo, H.S.; Paddock, M.N.; Manz, T.D.; Jiang, B.; et al. Targeting the PI5P4K Lipid Kinase Family in Cancer Using Covalent Inhibitors. Cell Chem. Biol. 2020, 27, 525–537.e6. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.E.; Schulz, J.T.; Cantley, L.C. Characterization and purification of membrane-associated phosphatidylinositol-4-phosphate kinase from human red blood cells. J. Biol. Chem. 1989, 264, 5080–5088. [Google Scholar] [CrossRef]
- Wenning, M.R.; Mello, M.P.; Andrade, T.G.; Lanaro, C.; Albuquerque, D.M.; Saad, S.T.; Costa, F.F.; Sonati, M.F. PIP4KIIA and beta-globin: Transcripts differentially expressed in reticulocytes and associated with high levels of Hb H in two siblings with Hb H disease. Eur. J. Haematol. 2009, 83, 490–493. [Google Scholar] [CrossRef]
- Zaccariotto, T.R.; Lanaro, C.; Albuquerque, D.M.; Santos, M.N.; Bezerra, M.A.; Cunha, F.G.; Lorand-Metze, I.; Araujo, A.S.; Costa, F.F.; Sonati, M.F. Expression profiles of phosphatidylinositol phosphate kinase genes during normal human in vitro erythropoiesis. Genet. Mol. Res. 2012, 11, 3861–3868. [Google Scholar] [CrossRef]
- Zhang, Y.; Xie, H.; Liang, G.; Qin, Y.; Wei, X.; Ning, S.; Liang, Y.; Liang, X.; Xie, Y.; Lin, Z.; et al. A novel gain-of-function PIP4K2A mutation elevates the expression of beta-globin and aggravates the severity of alpha-thalassemia. Br. J. Haematol. 2023, 202, 1018–1023. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Yan, X.; Bao, L.; Deng, Y.; Zeng, F.; Wang, P.; Zhu, J.; Yin, D.; Liao, F.; et al. Regulatory Network and Prognostic Effect Investigation of PIP4K2A in Leukemia and Solid Cancers. Front. Genet. 2018, 9, 721. [Google Scholar] [CrossRef]
- Foa, R.; Bassan, R.; Vitale, A.; Elia, L.; Piciocchi, A.; Puzzolo, M.C.; Canichella, M.; Viero, P.; Ferrara, F.; Lunghi, M.; et al. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults. N. Engl. J. Med. 2020, 383, 1613–1623. [Google Scholar] [CrossRef]
- Hughes, T.P.; Mauro, M.J.; Cortes, J.E.; Minami, H.; Rea, D.; DeAngelo, D.J.; Breccia, M.; Goh, Y.T.; Talpaz, M.; Hochhaus, A.; et al. Asciminib in Chronic Myeloid Leukemia after ABL Kinase Inhibitor Failure. N. Engl. J. Med. 2019, 381, 2315–2326. [Google Scholar] [CrossRef]
- Santinelli, E.; Pascale, M.R.; Xie, Z.; Badar, T.; Stahl, M.F.; Bewersdorf, J.P.; Gurnari, C.; Zeidan, A.M. Targeting apoptosis dysregulation in myeloid malignancies—The promise of a therapeutic revolution. Blood Rev. 2023, 101130, in press. [Google Scholar] [CrossRef] [PubMed]
- Kampen, K.R.; Ter Elst, A.; de Bont, E.S. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol. Life Sci. 2013, 70, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Nguyen, D.; Ravandi, F. Treatment of older adults with FLT3-mutated AML: Emerging paradigms and the role of frontline FLT3 inhibitors. Blood Cancer J. 2023, 13, 142. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Dohner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Pollyea, D.A.; Amaya, M.; Strati, P.; Konopleva, M.Y. Venetoclax for AML: Changing the treatment paradigm. Blood Adv. 2019, 3, 4326–4335. [Google Scholar] [CrossRef]
- Griffioen, M.S.; de Leeuw, D.C.; Janssen, J.; Smit, L. Targeting Acute Myeloid Leukemia with Venetoclax; Biomarkers for Sensitivity and Rationale for Venetoclax-Based Combination Therapies. Cancers 2022, 14, 3456. [Google Scholar] [CrossRef]
- Hu, M.; Li, W.; Zhang, Y.; Liang, C.; Tan, J.; Wang, Y. Venetoclax in adult acute myeloid leukemia. Biomed. Pharmacother. 2023, 168, 115820. [Google Scholar] [CrossRef]
- Wei, A.H.; Roberts, A.W. BCL2 Inhibition: A New Paradigm for the Treatment of AML and Beyond. Hemasphere 2023, 7, e912. [Google Scholar] [CrossRef]
- Mendes, F.R.; da Silva, W.F.; da Costa Bandeira de Melo, R.; Silveira, D.R.A.; Velloso, E.; Rocha, V.; Rego, E.M. Predictive factors associated with induction-related death in acute myeloid leukemia in a resource-constrained setting. Ann. Hematol. 2022, 101, 147–154. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Desnoyers, S.; Ottaviano, Y.; Davidson, N.E.; Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res. 1993, 53, 3976–3985. [Google Scholar]
- Mah, L.J.; El-Osta, A.; Karagiannis, T.C. gammaH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia 2010, 24, 679–686. [Google Scholar] [CrossRef]
- Kaghad, M.; Bonnet, H.; Yang, A.; Creancier, L.; Biscan, J.C.; Valent, A.; Minty, A.; Chalon, P.; Lelias, J.M.; Dumont, X.; et al. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997, 90, 809–819. [Google Scholar] [CrossRef]
- Jost, C.A.; Marin, M.C.; Kaelin, W.G., Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 1997, 389, 191–194. [Google Scholar] [CrossRef]
- Ramsey, H.E.; Fischer, M.A.; Lee, T.; Gorska, A.E.; Arrate, M.P.; Fuller, L.; Boyd, K.L.; Strickland, S.A.; Sensintaffar, J.; Hogdal, L.J.; et al. A Novel MCL1 Inhibitor Combined with Venetoclax Rescues Venetoclax-Resistant Acute Myelogenous Leukemia. Cancer Discov. 2018, 8, 1566–1581. [Google Scholar] [CrossRef]
- Pan, R.; Hogdal, L.J.; Benito, J.M.; Bucci, D.; Han, L.; Borthakur, G.; Cortes, J.; DeAngelo, D.J.; Debose, L.; Mu, H.; et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014, 4, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Riley-Gillis, B.; Han, L.; Jia, Y.; Lodi, A.; Zhang, H.; Ganesan, S.; Pan, R.; Konoplev, S.N.; Sweeney, S.R.; et al. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduct. Target. Ther. 2022, 7, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Nakauchi, Y.; Kohnke, T.; Stafford, M.; Bottomly, D.; Thomas, R.; Wilmot, B.; McWeeney, S.K.; Majeti, R.; Tyner, J.W. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer 2020, 1, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Bisaillon, R.; Moison, C.; Thiollier, C.; Krosl, J.; Bordeleau, M.E.; Lehnertz, B.; Lavallee, V.P.; MacRae, T.; Mayotte, N.; Labelle, C.; et al. Genetic characterization of ABT-199 sensitivity in human AML. Leukemia 2020, 34, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Panina, S.B.; Baran, N.; Brasil da Costa, F.H.; Konopleva, M.; Kirienko, N.V. A mechanism for increased sensitivity of acute myeloid leukemia to mitotoxic drugs. Cell Death Dis. 2019, 10, 617. [Google Scholar] [CrossRef] [PubMed]
- Garciaz, S.; Saillard, C.; Hicheri, Y.; Hospital, M.A.; Vey, N. Venetoclax in Acute Myeloid Leukemia: Molecular Basis, Evidences for Preclinical and Clinical Efficacy and Strategies to Target Resistance. Cancers 2021, 13, 5608. [Google Scholar] [CrossRef] [PubMed]
- Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J.; Jr Laird, P.W.; Baty, J.D.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Saeed, A.I.; Sharov, V.; White, J.; Li, J.; Liang, W.; Bhagabati, N.; Braisted, J.; Klapa, M.; Currier, T.; Thiagarajan, M.; et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003, 34, 374–378. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, K.; Carvalho, M.F.L.; Pereira-Martins, D.A.; Nogueira, F.L.; de Miranda, L.B.L.; Nascimento, M.C.d.; Cavaglieri, R.d.C.; Schuringa, J.J.; Machado-Neto, J.A.; Rego, E.M. Pharmacological Inhibition of PIP4K2 Potentiates Venetoclax-Induced Apoptosis in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2023, 24, 16899. https://doi.org/10.3390/ijms242316899
Lima K, Carvalho MFL, Pereira-Martins DA, Nogueira FL, de Miranda LBL, Nascimento MCd, Cavaglieri RdC, Schuringa JJ, Machado-Neto JA, Rego EM. Pharmacological Inhibition of PIP4K2 Potentiates Venetoclax-Induced Apoptosis in Acute Myeloid Leukemia. International Journal of Molecular Sciences. 2023; 24(23):16899. https://doi.org/10.3390/ijms242316899
Chicago/Turabian StyleLima, Keli, Maria Fernanda Lopes Carvalho, Diego Antonio Pereira-Martins, Frederico Lisboa Nogueira, Lívia Bassani Lins de Miranda, Mariane Cristina do Nascimento, Rita de Cássia Cavaglieri, Jan Jacob Schuringa, João Agostinho Machado-Neto, and Eduardo Magalhães Rego. 2023. "Pharmacological Inhibition of PIP4K2 Potentiates Venetoclax-Induced Apoptosis in Acute Myeloid Leukemia" International Journal of Molecular Sciences 24, no. 23: 16899. https://doi.org/10.3390/ijms242316899
APA StyleLima, K., Carvalho, M. F. L., Pereira-Martins, D. A., Nogueira, F. L., de Miranda, L. B. L., Nascimento, M. C. d., Cavaglieri, R. d. C., Schuringa, J. J., Machado-Neto, J. A., & Rego, E. M. (2023). Pharmacological Inhibition of PIP4K2 Potentiates Venetoclax-Induced Apoptosis in Acute Myeloid Leukemia. International Journal of Molecular Sciences, 24(23), 16899. https://doi.org/10.3390/ijms242316899