In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin
Abstract
:1. Introduction
2. Results
2.1. In Silico Analysis
2.1.1. Molecular Parameters
2.1.2. Toxicity and ADME Prediction
2.1.3. Target and Anti-Inflammatory Prediction
2.1.4. Molecular Docking Analysis
2.2. In Vitro Analysis
2.2.1. Effects of Mygalin on Nucleic Acid and the Protein Profile
2.2.2. Effect of Mygalin on the Expression of Genes iNOS and COX-2
2.3. Antioxidant Activity
2.3.1. DPPH Radical Scavenging Activity of Mygalin
2.3.2. Mygalin Reduced PMA-Induced Intracellular ROS in Macrophages
2.3.3. Heat-Induced Hemolysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. In Silico Studies
4.2.1. Molecular Properties of Mygalin
4.2.2. Toxicity and ADME Properties
4.2.3. Targets and Anti-Inflammatory Prediction
4.2.4. Molecular Docking
4.3. In Vitro Studies
4.3.1. Animals
4.3.2. Isolation of BMDM and Cell Cultures
4.3.3. Activation of Macrophages, and Inflammation
4.3.4. RNA Extraction and RT-PCR
4.4. In Vitro Antioxidant and Anti-Inflammatory Activity of Mygalin
4.4.1. DPPH Radical Scavenging Assay
4.4.2. Measurement of Intracellular Reactive Oxygen Species (ROS)
4.5. In Vitro Anti-Inflammatory Activity
Heat-Induced Hemolysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro-da-Silva, A.; Tavares, J.; Araújo, N.; Cerqueira, F.; Tomás, A.; Kong Thoo Lin, P.; Ouaissi, A. Immunological alterations induced by polyamine derivatives on murine splenocytes and human mononuclear cells. Int. Immunopharmacol. 2004, 4, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Casero, R.A., Jr.; Celano, P.; Ervin, S.J.; Wiest, L.; Pegg, A.E. High specific induction of spermidine/spermine N1-acetyltransferase in a human large cell lung carcinoma. Biochem. J. 1990, 270, 615–620. [Google Scholar] [CrossRef]
- Huang, Y.; Pledgie, A.; Rubin, E.; Marton, L.J.; Woster, P.M.; Sukumar, S.; Casero, R.A., Jr.; Davidson, N.E. Role of p53/p21(Waf1/Cip1) in the regulation of polyamine analogue-induced growth inhibition and cell death in human breast cancer cells. Cancer Biol. Ther. 2005, 4, 1006–1013. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Cadelis, M.M.; Rouvier, F.; Troia, T.; Edmeades, L.R.; Fraser, K.; Gill, E.S.; Bourguet-Kondracki, M.-L.; Brunel, J.M.; Copp, B.R. A,ω-Diacyl-Substituted Analogues of Natural and Unnatural Polyamines: Identification of Potent Bactericides That Selectively Target Bacterial Membranes. Int. J. Mol. Sci. 2023, 24, 5882. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Caragine, T.; Wang, H.; Cohen, P.S.; Botchkina, G.; Soda, K.; Bianchi, M.; Ulrich, P.; Cerami, A.; Sherry, B.; et al. Spermine Inhibits Proinflammatory Cytokine Synthesis in Human Mononuclear Cells: A Counterregulatory Mechanism that Restrains the Immune Response. J. Exp. Med. 1997, 185, 1759–1768. [Google Scholar] [CrossRef]
- Haskó, G.; Kuhel, D.G.; Marton, A.; Nemeth, Z.H.; Deitch, E.A.; Szabó, C. Spermine differentially regulates the production of interleukin-12 p40 and interleukin-10 and suppresses the release of the T helper 1 cytokine interferon-gamma. Shock 2000, 14, 144–149. [Google Scholar] [CrossRef]
- Nishiguchi, A.; Taguchi, T. Inflammation-Targeting Polyamine Nanomedicines for the Treatment of Ulcerative Colitis. J. Mater. Chem. B 2023, 11, 4005–4013. [Google Scholar] [CrossRef]
- Espinoza-Culupú, A.; Mendes, E.; Vitorino, H.A.; da Silva, P.I.; Borges, M.M. Mygalin: An Acylpolyamine With Bactericidal Activity. Front. Microbiol. 2020, 10, 2928. [Google Scholar] [CrossRef]
- Feuerstein, B.G.; Williams, L.D.; Basu, H.S.; Marton, L.J. Implications and concepts of polyamine-nucleic acid interactions. J. Cell. Biochem. 1991, 46, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, V.A. Condensation of DNA by multivalent cations: Considerations on mechanism. Biopolym. Orig. Res. Biomol. 1991, 31, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.M.; Tolokh, I.S.; Pabit, S.A.; Baker, N.; Onufriev, A.V.; Pollack, L. Spermine Condenses DNA, but Not RNA Duplexes. Biophys. J. 2017, 112, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Kusama-Eguchi, K.; Kobayashi, H.; Igarashi, K. Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J. Biol. Chem. 1991, 266, 20803–20809. [Google Scholar] [CrossRef] [PubMed]
- Lightfoot, H.L.; Hall, J. Endogenous polyamine function—The RNA perspective. Nucleic Acids Res. 2014, 42, 11275–11290. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.-C.; Yang, S.-T.; Hsu, S.-C.; Chiang, J.-H.; Hsia, T.-C.; Yang, J.-S.; Liu, K.-C.; Wu, R.S.-C.; Chung, J.-G. Propofol induces DNA damage in mouse leukemic monocyte macrophage RAW264.7 cells. Oncol. Rep. 2013, 30, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.-C.; Yu, C.-C.; Yang, S.-T.; Hsia, T.-C.; Yang, J.-S.; Lai, K.-C.; Ko, Y.-C.; Lin, J.-J.; Lai, T.-Y.; Chung, J.-G. Induction of DNA damage by deguelin is mediated through reducing DNA repair genes in human non-small cell lung cancer NCI-H460 cells. Oncol. Rep. 2012, 27, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-H.; Kim, M.-M. Inhibitory effect of spermidine with antioxidant activity on oxidative stress in human dermal fibroblasts. J. Life Sci. 2011, 21, 693–699. [Google Scholar] [CrossRef]
- Gaboriau, F.; Vaultier, M.; Moulinoux, J.-P.; Delcros, J.-G. Antioxidative properties of natural polyamines and dimethylsilane analogues. Redox Rep. 2005, 10, 9–18. [Google Scholar] [CrossRef]
- Espinoza-Culupú, A.; Vázquez-Ramírez, R.; Farfán-López, M.; Mendes, E.; Sato, M.N.; Junior, P.I.d.S.; Borges, M.M. Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules 2020, 10, 1624. [Google Scholar] [CrossRef]
- Mafra, D.G.; da Silva, P.I., Jr.; Galhardo, C.S.; Nassar, R.; Daffre, S.; Sato, M.N.; Borges, M.M. The Spider Acylpolyamine Mygalin Is a Potent Modulator of Innate Immune Responses. Cell. Immunol. 2012, 275, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Pálmai-Pallag, T.; Bachrati, C.Z. Inflammation-Induced DNA Damage and Damage-Induced Inflammation: A Vicious Cycle. Microbes Infect. 2014, 16, 822–832. [Google Scholar] [CrossRef]
- Tak, P.P.; Firestein, G.S. NF-κB: A Key Role in Inflammatory Diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Minghetti, L. Cyclooxygenase-2 (COX-2) in Inflammatory and Degenerative Brain Diseases. J. Neuropathol. Exp. Neurol. 2004, 63, 901–910. [Google Scholar] [CrossRef]
- Bogdan, C.; Röllinghoff, M.; Diefenbach, A. The Role of Nitric Oxide in Innate Immunity. Immunol. Rev. 2000, 173, 17–26. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Mir, G.J.; Ayaz, A.; Maqbool, I.; Ahmad, S.B.; Mushtaq, S.; Khan, A.; Mir, T.M.; Rehman, M.U. In Silico Analysis and Molecular Docking Studies of Natural Compounds of Withania Somnifera against Bovine NLRP9. J. Mol. Model. 2023, 29, 171. [Google Scholar] [CrossRef]
- Lauritano, C.; Montuori, E.; De Falco, G.; Carrella, S. In Silico Methodologies to Improve Antioxidants’ Characterization from Marine Organisms. Antioxidants 2023, 12, 710. [Google Scholar] [CrossRef]
- Olğaç, A.; Orhan, I.E.; Banoglu, E. The Potential Role of in Silico Approaches to Identify Novel Bioactive Molecules from Natural Resources. Future Med. Chem. 2017, 9, 1665–1686. [Google Scholar] [CrossRef]
- Gadnayak, A.; Dehury, B.; Nayak, A.; Jena, S.; Sahoo, A.; Panda, P.C.; Ray, A.; Nayak, S. ′Mechanistic Insights into 5-Lipoxygenase Inhibition by Active Principles Derived from Essential Oils of Curcuma Species: Molecular Docking, ADMET Analysis and Molecular Dynamic Simulation Study. PLoS ONE 2022, 17, e0271956. [Google Scholar] [CrossRef]
- Zhong, H.-J.; Liu, L.-J.; Chong, C.-M.; Lu, L.; Wang, M.; Chan, D.S.-H.; Chan, P.W.H.; Lee, S.M.-Y.; Ma, D.-L.; Leung, C.-H. Discovery of a Natural Product-Like iNOS Inhibitor by Molecular Docking with Potential Neuroprotective Effects In Vivo. PLoS ONE 2014, 9, e92905. [Google Scholar] [CrossRef]
- Alam, M.J.; Alam, O.; Khan, S.A.; Naim, M.J.; Islamuddin, M.; Deora, G.S. Synthesis, Anti-Inflammatory, Analgesic, COX1/2-Inhibitory Activity, and Molecular Docking Studies of Hybrid Pyrazole Analogues. Drug Des. Dev. Ther. 2016, 10, 3529–3543. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.-W.; Tsuji, Y. Reactive Oxygen Species (ROS) Homeostasis and Redox Regulation in Cellular Signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, J.; Post, J.A. Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells. Gene 2004, 337, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Alkadi, H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Pereira, L.S.; Silva, P.I., Jr.; Miranda, M.T.M.; Almeida, I.C.; Naoki, H.; Konno, K.; Daffre, S. Structural and Biological Characterization of One Antibacterial Acylpolyamine Isolated from the Hemocytes of the Spider Acanthocurria Gomesiana. Biochem. Biophys. Res. Commun. 2007, 352, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Encinas, M.A.; Valencia, D.; Ortega-García, J.; Carvajal-Millan, E.; Díaz-Ríos, J.C.; Mendez-Pfeiffer, P.; Soto-Bracamontes, C.M.; Garibay-Escobar, A.; Alday, E.; Velazquez, C. Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents. Molecules 2023, 28, 4496. [Google Scholar] [CrossRef] [PubMed]
- Moualek, I.; Iratni Aiche, G.; Mestar Guechaoui, N.; Lahcene, S.; Houali, K. Antioxidant and Anti-Inflammatory Activities of Arbutus Unedo Aqueous Extract. Asian Pac. J. Trop. Biomed. 2016, 6, 937–944. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2018, 47, D1102–D1109. [Google Scholar] [CrossRef]
- Dimitrov, S.D.; Diderich, R.; Sobanski, T.; Pavlov, T.S.; Chankov, G.V.; Chapkanov, A.S.; Karakolev, Y.H.; Temelkov, S.G.; Vasilev, R.A.; Gerova, K.D.; et al. QSAR Toolbox—Workflow and major functionalities. SAR QSAR Environ. Res. 2016, 27, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lou, C.; Sun, L.; Li, J.; Cai, Y.; Wang, Z.; Li, W.; Liu, G.; Tang, Y. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 2018, 35, 1067–1069. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Maunz, A.; Gütlein, M.; Rautenberg, M.; Vorgrimmler, D.; Gebele, D.; Helma, C. lazar: A modular predictive toxicology framework. Front. Pharmacol. 2013, 4, 38. [Google Scholar] [CrossRef]
- Varsou, D.-D.; Melagraki, G.; Sarimveis, H.; Afantitis, A. MouseTox: An online toxicity assessment tool for small molecules through Enalos Cloud platform. Food Chem. Toxicol. 2017, 110, 83–93. [Google Scholar] [CrossRef]
- Luo, H.; Zhang, P.; Huang, H.; Huang, J.; Kao, E.; Shi, L.; He, L.; Yang, L. DDI-CPI, a server that predicts drug-drug interactions through implementing the chemical-protein interactome. Nucleic Acids Res. 2014, 42, W46–W52. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef]
- Wang, X.; Shen, Y.; Wang, S.; Li, S.; Zhang, W.; Liu, X.; Lai, L.; Pei, J.; Li, H. PharmMapper 2017 Update: A Web Server for Potential Drug Target Identification with a Comprehensive Target Pharmacophore Database. Nucleic Acids Res. 2017, 45, W356–W360. [Google Scholar] [CrossRef]
- Rosenfeld, R.J.; Bonaventura, J.; Szymczyna, B.R.; MacCoss, M.J.; Arvai, A.S.; Yates, J.R., 3rd; Tainer, J.A.; Getzoff, E.D. Nitric-oxide synthase forms N-NO-pterin and S-NO-cys: Implications for activity, allostery, and regulation. J. Biol. Chem. 2010, 285, 31581–31589. [Google Scholar] [CrossRef]
- Orlando, B.J.; Lucido, M.J.; Malkowski, M.G. The structure of ibuprofen bound to cyclooxygenase-2. J. Struct. Biol. 2015, 189, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N.C.; Rui, Z.; Neau, D.B.; Waight, M.T.; Bartlett, S.G.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2012, 26, 3222–3229. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Biovia, D.S. Discovery Studio Visualizer 2020. Release v20 1.0.19295; Dassault Systèmes: San Diego, CA, USA, 2016. [Google Scholar]
- Lutz, M.B.; Kukutsch, N.; Ogilvie, A.L.; Rößner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant Principles from Bauhinia tarapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Wang, H.S.; Hwang, Y.J.; Yin, J.; Lee, M.W. Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica. Molecules 2019, 24, 1938. [Google Scholar] [CrossRef]
- Zou, J.; Feng, D.; Ling, W.-H.; Duan, R.-D. Lycopene suppresses proinflammatory response in lipopolysaccharide-stimulated macrophages by inhibiting ROS-induced trafficking of TLR4 to lipid raft-like domains. J. Nutr. Biochem. 2013, 24, 1117–1122. [Google Scholar] [CrossRef]
- Gunathilake, K.D.P.P.; Ranaweera, K.K.D.S.; Rupasinghe, H.P.V. Influence of Boiling, Steaming and Frying of Selected Leafy Vegetables on the In Vitro Anti-inflammation Associated Biological Activities. Plants 2018, 7, 22. [Google Scholar] [CrossRef]
Molecular Properties | Molinspiration | SwissADME |
---|---|---|
Molecular weight | 417.46 | 417.46 |
Heavy atoms | 30 | 30 |
Aromatic heavy atoms | - | 12 |
Rotatable bonds | - | 13 |
H-bond acceptors | 9 | 7 |
H-bond donors | 7 | 7 |
Molar refractivity | - | 111.69 |
TPSA [Ǻ2] | 151.13 | 151.15 |
Consensus log P 0/w or miLogP | 2.17 | 1.77 |
Lipinski violation | 1 | 1 |
Solubility Log S | - | −3.44 |
Protein | Docking Energy (kcal/mol) | Binding-Site Residues |
---|---|---|
5-LOX | −7.70 | PHE177, ALA410, GLN413, ASN554, HE555, GLN557, TYR558, ASP559, LEU607 and SER608. |
COX-2 | −7.40 | VAL89, VAL117, SER120, ARG121, LEU353, TYR356, TRP388, MET523, ALA528, SER531 and LEU532. |
iNOS | −8.00 | TRP188, GLN257, TRP340, ALA345, PHE363, TRP366, GLU371 and ASP376 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Culupú, A.; Del Santos, N.; Farfán-López, M.; Mendes, E.; da Silva Junior, P.I.; Marques Borges, M. In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin. Int. J. Mol. Sci. 2023, 24, 17019. https://doi.org/10.3390/ijms242317019
Espinoza-Culupú A, Del Santos N, Farfán-López M, Mendes E, da Silva Junior PI, Marques Borges M. In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin. International Journal of Molecular Sciences. 2023; 24(23):17019. https://doi.org/10.3390/ijms242317019
Chicago/Turabian StyleEspinoza-Culupú, Abraham, Nayara Del Santos, Mariella Farfán-López, Elizabeth Mendes, Pedro Ismael da Silva Junior, and Monamaris Marques Borges. 2023. "In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin" International Journal of Molecular Sciences 24, no. 23: 17019. https://doi.org/10.3390/ijms242317019
APA StyleEspinoza-Culupú, A., Del Santos, N., Farfán-López, M., Mendes, E., da Silva Junior, P. I., & Marques Borges, M. (2023). In Silico and In Vitro Approach for Evaluation of the Anti-Inflammatory and Antioxidant Potential of Mygalin. International Journal of Molecular Sciences, 24(23), 17019. https://doi.org/10.3390/ijms242317019