Structural Insights into the Mechanisms Underlying Polyaminopathies
Abstract
:1. Introduction
2. Snyder–Robinson Syndrome
3. Bachmann–Bupp Syndrome
4. Deoxyhypusine Synthase Disorder
5. Faundes–Banka Syndrome
6. Deoxyhypusine Hydroxylase Disorder
7. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Xuan, M.; Gu, X.; Li, J.; Huang, D.; Xue, C.; He, Y. Polyamines: Their Significance for Maintaining Health and Contributing to Diseases. Cell Commun. Signal. 2023, 21, 348. [Google Scholar] [CrossRef] [PubMed]
- Uemura, T.; Yerushalmi, H.F.; Tsaprailis, G.; Stringer, D.E.; Pastorian, K.E.; Hawel, L.; Byus, C.V.; Gerner, E.W. Identification and Characterization of a Diamine Exporter in Colon Epithelial Cells. J. Biol. Chem. 2008, 283, 26428–26435. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, V.; Andl, T.; Phanstiel, O. ATP13A3 Facilitates Polyamine Transport in Human Pancreatic Cancer Cells. Sci. Rep. 2022, 12, 4045. [Google Scholar] [CrossRef] [PubMed]
- Barba-Aliaga, M.; Alepuz, P. Role of eIF5A in Mitochondrial Function. Int. J. Mol. Sci. 2022, 23, 1284. [Google Scholar] [CrossRef] [PubMed]
- Tauc, M.; Cougnon, M.; Carcy, R.; Melis, N.; Hauet, T.; Pellerin, L.; Blondeau, N.; Pisani, D.F. The Eukaryotic Initiation Factor 5A (eIF5A1), the Molecule, Mechanisms and Recent Insights into the Pathophysiological Roles. Cell Biosci. 2021, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, B.-K.; Kanchwala, M.; Cai, J.; Wang, L.; Xing, C.; Zheng, Y.; Pan, D. YAP/TAZ Drives Cell Proliferation and Tumour Growth via a Polyamine–eIF5A Hypusination–LSD1 Axis. Nat. Cell Biol. 2022, 24, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Wang, X.; An, X.; Ji, C.; Ling, W.; Qi, Y.; Li, S.; Jiang, D. Polyamines in Ovarian Aging and Disease. Int. J. Mol. Sci. 2023, 24, 15330. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Lu, X.; Li, Y.; Xu, Y.; Zhou, Y.; Mao, H. Metabolism of Polyamines and Kidney Disease: A Promising Therapeutic Target. Kidney Dis. 2023, 9, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Vrijsen, S.; Houdou, M.; Cascalho, A.; Eggermont, J.; Vangheluwe, P. Polyamines in Parkinson’s Disease: Balancing between Neurotoxicity and Neuroprotection. Annu. Rev. Biochem. 2023, 92, 435–464. [Google Scholar] [CrossRef]
- Holbert, C.E.; Cullen, M.T.; Casero, R.A.; Stewart, T.M. Polyamines in Cancer: Integrating Organismal Metabolism and Antitumour Immunity. Nat. Rev. Cancer 2022, 22, 467–480. [Google Scholar] [CrossRef]
- Milovic, V.; Turchanowa, L. Polyamines and Colon Cancer. Biochem. Soc. Trans. 2003, 31, 381–383. [Google Scholar] [CrossRef]
- Kulkarni, A.; Anderson, C.M.; Mirmira, R.G.; Tersey, S.A. Role of Polyamines and Hypusine in β Cells and Diabetes Pathogenesis. Metabolites 2022, 12, 344. [Google Scholar] [CrossRef]
- Fiches, G.N.; Wu, Z.; Zhou, D.; Biswas, A.; Li, T.-W.; Kong, W.; Jean, M.; Santoso, N.G.; Zhu, J. Polyamine Biosynthesis and eIF5A Hypusination Are Modulated by the DNA Tumor Virus KSHV and Promote KSHV Viral Infection. PLoS Pathog. 2022, 18, e1010503. [Google Scholar] [CrossRef]
- Smeltzer, S.; Quadri, Z.; Miller, A.; Zamudio, F.; Hunter, J.; Stewart, N.J.F.; Saji, S.; Lee, D.C.; Chaput, D.; Selenica, M.-L.B. Hypusination of Eif5a Regulates Cytoplasmic TDP-43 Aggregation and Accumulation in a Stress-Induced Cellular Model. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2021, 1867, 165939. [Google Scholar] [CrossRef] [PubMed]
- Sfakianos, A.P.; Raven, R.M.; Willis, A.E. The Pleiotropic Roles of eIF5A in Cellular Life and Its Therapeutic Potential in Cancer. Biochem. Soc. Trans. 2022, 50, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Pendeville, H.; Carpino, N.; Marine, J.-C.; Takahashi, Y.; Muller, M.; Martial, J.A.; Cleveland, J.L. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development. Mol. Cell. Biol. 2001, 21, 6549–6558. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Nakatsu, F.; Kashiwagi, K.; Ohno, H.; Saito, T.; Igarashi, K. Essential Role of S-Adenosylmethionine Decarboxylase in Mouse Embryonic Development. Genes Cells Devoted Mol. Cell. Mech. 2002, 7, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Lee, S.B.; Park, J.H.; Park, M.H. Essential Role of eIF5A-1 and Deoxyhypusine Synthase in Mouse Embryonic Development. Amino Acids 2012, 42, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Sievert, H.; Pällmann, N.; Miller, K.K.; Hermans-Borgmeyer, I.; Venz, S.; Sendoel, A.; Preukschas, M.; Schweizer, M.; Boettcher, S.; Janiesch, P.C.; et al. A Novel Mouse Model for Inhibition of DOHH-Mediated Hypusine Modification Reveals a Crucial Function in Embryonic Development, Proliferation and Oncogenic Transformation. Dis. Model. Mech. 2014, 7, 963–976. [Google Scholar] [CrossRef]
- Cason, A.L.; Ikeguchi, Y.; Skinner, C.; Wood, T.C.; Holden, K.R.; Lubs, H.A.; Martinez, F.; Simensen, R.J.; Stevenson, R.E.; Pegg, A.E.; et al. X-Linked Spermine Synthase Gene (SMS) Defect: The First Polyamine Deficiency Syndrome. Eur. J. Hum. Genet. 2003, 11, 937–944. [Google Scholar] [CrossRef]
- Bupp, C.P.; Schultz, C.R.; Uhl, K.L.; Rajasekaran, S.; Bachmann, A.S. Novel de Novo Pathogenic Variant in the ODC1 Gene in a Girl with Developmental Delay, Alopecia, and Dysmorphic Features. Am. J. Med. Genet. Part A 2018, 176, 2548–2553. [Google Scholar] [CrossRef] [PubMed]
- Ganapathi, M.; Padgett, L.R.; Yamada, K.; Devinsky, O.; Willaert, R.; Person, R.; Au, P.-Y.B.; Tagoe, J.; McDonald, M.; Karlowicz, D.; et al. Recessive Rare Variants in Deoxyhypusine Synthase, an Enzyme Involved in the Synthesis of Hypusine, Are Associated with a Neurodevelopmental Disorder. Am. J. Hum. Genet. 2019, 104, 287–298. [Google Scholar] [CrossRef]
- Faundes, V.; Jennings, M.D.; Crilly, S.; Legraie, S.; Withers, S.E.; Cuvertino, S.; Davies, S.J.; Douglas, A.G.L.; Fry, A.E.; Harrison, V.; et al. Impaired eIF5A Function Causes a Mendelian Disorder That Is Partially Rescued in Model Systems by Spermidine. Nat. Commun. 2021, 12, 833. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, A.; Steindl, K.; Hanner, A.S.; Kumar Kar, R.; Prouteau, C.; Boland, A.; Deleuze, J.F.; Coubes, C.; Bézieau, S.; Küry, S.; et al. Bi-Allelic Variants in DOHH, Catalyzing the Last Step of Hypusine Biosynthesis, Are Associated with a Neurodevelopmental Disorder. Am. J. Hum. Genet. 2022, 109, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, A.S.; VanSickle, E.A.; Michael, J.; Vipond, M.; Bupp, C.P. Bachmann-Bupp Syndrome and Treatment. Dev. Med. Child Neurol. 2024, 66, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.D.; Robinson, A. Recessive Sex-Linked Mental Retardation in the Absence of Other Recognizable Abnormalities: Report of a Family. Clin. Pediatr. 1969, 8, 669–674. [Google Scholar] [CrossRef]
- Wu, H.; Min, J.; Zeng, H.; McCloskey, D.E.; Ikeguchi, Y.; Loppnau, P.; Michael, A.J.; Pegg, A.E.; Plotnikov, A.N. Crystal Structure of Human Spermine Synthase: Implications of Substrate Binding and Catalytic Mechanism. J. Biol. Chem. 2008, 283, 16135–16146. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Norris, J.; Schwartz, C.; Alexov, E. Revealing the Effects of Missense Mutations Causing Snyder-Robinson Syndrome on the Stability and Dimerization of Spermine Synthase. Int. J. Mol. Sci. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- de Alencastro, G.; McCloskey, D.E.; Kliemann, S.E.; Maranduba, C.M.C.; Pegg, A.E.; Wang, X.; Bertola, D.R.; Schwartz, C.E.; Passos-Bueno, M.R.; Sertié, A.L. New SMS Mutation Leads to a Striking Reduction in Spermine Synthase Protein Function and a Severe Form of Snyder-Robinson X-Linked Recessive Mental Retardation Syndrome. J. Med. Genet. 2008, 45, 539–543. [Google Scholar] [CrossRef]
- Lemke, J.R.; Riesch, E.; Scheurenbrand, T.; Schubach, M.; Wilhelm, C.; Steiner, I.; Hansen, J.; Courage, C.; Gallati, S.; Bürki, S.; et al. Targeted next Generation Sequencing as a Diagnostic Tool in Epileptic Disorders. Epilepsia 2012, 53, 1387–1398. [Google Scholar] [CrossRef]
- Peron, A.; Spaccini, L.; Norris, J.; Bova, S.M.; Selicorni, A.; Weber, G.; Wood, T.; Schwartz, C.E.; Mastrangelo, M. Snyder-Robinson Syndrome: A Novel Nonsense Mutation in Spermine Synthase and Expansion of the Phenotype. Am. J. Med. Genet. Part A 2013, 161A, 2316–2320. [Google Scholar] [CrossRef]
- Abela, L.; Simmons, L.; Steindl, K.; Schmitt, B.; Mastrangelo, M.; Joset, P.; Papuc, M.; Sticht, H.; Baumer, A.; Crowther, L.M.; et al. N(8)-Acetylspermidine as a Potential Plasma Biomarker for Snyder-Robinson Syndrome Identified by Clinical Metabolomics. J. Inherit. Metab. Dis. 2016, 39, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Solano, L.E.; Butler, J.; Castañeda-Cisneros, G.; McCloskey, D.E.; Wang, X.; Pegg, A.E.; Schwartz, C.E.; Sánchez-Corona, J.; García-Ortiz, J.E. A Missense Mutation, p.V132G, in the X-Linked Spermine Synthase Gene (SMS) Causes Snyder-Robinson Syndrome. Am. J. Med. Genet. Part A 2009, 149A, 328–335. [Google Scholar] [CrossRef]
- Albert, J.S.; Bhattacharyya, N.; Wolfe, L.A.; Bone, W.P.; Maduro, V.; Accardi, J.; Adams, D.R.; Schwartz, C.E.; Norris, J.; Wood, T.; et al. Impaired Osteoblast and Osteoclast Function Characterize the Osteoporosis of Snyder-Robinson Syndrome. Orphanet J. Rare Dis. 2015, 10, 27. [Google Scholar] [CrossRef]
- Zhang, Z.; Teng, S.; Wang, L.; Schwartz, C.E.; Alexov, E. Computational Analysis of Missense Mutations Causing Snyder-Robinson Syndrome. Hum. Mutat. 2010, 31, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Starks, R.; Kirby, P.; Ciliberto, M.; Hefti, M. Snyder-Robinson Syndrome. Autops. Case Rep. 2018, 8, e2018031. [Google Scholar] [CrossRef]
- Larcher, L.; Norris, J.W.; Lejeune, E.; Buratti, J.; Mignot, C.; Garel, C.; Keren, B.; Schwartz, C.E.; Whalen, S. The Complete Loss of Function of the SMS Gene Results in a Severe Form of Snyder-Robinson Syndrome. Eur. J. Med. Genet. 2020, 63, 103777. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Norris, J.; Kalscheuer, V.; Wood, T.; Wang, L.; Schwartz, C.; Alexov, E.; Van Esch, H. A Y328C Missense Mutation in Spermine Synthase Causes a Mild Form of Snyder-Robinson Syndrome. Hum. Mol. Genet. 2013, 22, 3789–3797. [Google Scholar] [CrossRef]
- Wang, X.; Levic, S.; Gratton, M.A.; Doyle, K.J.; Yamoah, E.N.; Pegg, A.E. Spermine Synthase Deficiency Leads to Deafness and a Profound Sensitivity to Alpha-Difluoromethylornithine. J. Biol. Chem. 2009, 284, 930–937. [Google Scholar] [CrossRef]
- Tantak, M.P.; Sekhar, V.; Tao, X.; Zhai, R.G.; Phanstiel, O. Development of a Redox-Sensitive Spermine Prodrug for the Potential Treatment of Snyder Robinson Syndrome. J. Med. Chem. 2021, 64, 15593–15607. [Google Scholar] [CrossRef]
- Tao, X.; Zhu, Y.; Diaz-Perez, Z.; Yu, S.-H.; Foley, J.R.; Stewart, T.M.; Casero, R.A.; Steet, R.; Zhai, R.G. Phenylbutyrate Modulates Polyamine Acetylase and Ameliorates Snyder-Robinson Syndrome in a Drosophila Model and Patient Cells. JCI Insight 2022, 7, e158457. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.M.; Khomutov, M.; Foley, J.R.; Guo, X.; Holbert, C.E.; Dunston, T.T.; Schwartz, C.E.; Gabrielson, K.; Khomutov, A.; Casero, R.A. (R,R)-1,12-Dimethylspermine Can Mitigate Abnormal Spermidine Accumulation in Snyder-Robinson Syndrome. J. Biol. Chem. 2020, 295, 3247–3256. [Google Scholar] [CrossRef] [PubMed]
- Stewart, T.M.; Foley, J.R.; Holbert, C.E.; Khomutov, M.; Rastkari, N.; Tao, X.; Khomutov, A.R.; Zhai, R.G.; Casero, R.A. Difluoromethylornithine Rebalances Aberrant Polyamine Ratios in SNYDER–ROBINSON Syndrome. EMBO Mol. Med. 2023, 15, e17833. [Google Scholar] [CrossRef]
- Rodan, L.H.; Anyane-Yeboa, K.; Chong, K.; Klein Wassink-Ruiter, J.S.; Wilson, A.; Smith, L.; Kothare, S.V.; Rajabi, F.; Blaser, S.; Ni, M.; et al. Gain-of-Function Variants in the ODC1 Gene Cause a Syndromic Neurodevelopmental Disorder Associated with Macrocephaly, Alopecia, Dysmorphic Features, and Neuroimaging Abnormalities. Am. J. Med. Genet. Part A 2018, 176, 2554–2560. [Google Scholar] [CrossRef]
- VanSickle, E.A.; Michael, J.; Bachmann, A.S.; Rajasekaran, S.; Prokop, J.W.; Kuzniecky, R.; Hofstede, F.C.; Steindl, K.; Rauch, A.; Lipson, M.H.; et al. Expanding the Phenotype: Four New Cases and Hope for Treatment in Bachmann-Bupp Syndrome. Am. J. Med. Genet. Part A 2021, 185, 3485–3493. [Google Scholar] [CrossRef]
- Michael, J.; VanSickle, E.; Vipond, M.; Dalman, A.; Prokop, J.; Schwartz, C.E.; Rajasekaran, S.; Bachmann, A.S.; Barth, M.; Prouteau, C.; et al. Two New Cases of Bachmann-Bupp Syndrome Identified through the International Center for Polyamine Disorders. Med. Sci. 2023, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Kahana, C. The Antizyme Family for Regulating Polyamines. J. Biol. Chem. 2018, 293, 18730–18735. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, S.; Bupp, C.P.; Leimanis-Laurens, M.; Shukla, A.; Russell, C.; Junewick, J.; Gleason, E.; VanSickle, E.A.; Edgerly, Y.; Wittmann, B.M.; et al. Repurposing Eflornithine to Treat a Patient with a Rare ODC1 Gain-of-Function Variant Disease. eLife 2021, 10, e67097. [Google Scholar] [CrossRef] [PubMed]
- Wątor, E.; Wilk, P.; Grudnik, P. Half Way to Hypusine—Structural Basis for Substrate Recognition by Human Deoxyhypusine Synthase. Biomolecules 2020, 10, 522. [Google Scholar] [CrossRef]
- Liao, D.I.; Wolff, E.C.; Park, M.H.; Davies, D.R. Crystal Structure of the NAD Complex of Human Deoxyhypusine Synthase: An Enzyme with a Ball-and-Chain Mechanism for Blocking the Active Site. Structure 1998, 6, 23–32. [Google Scholar] [CrossRef]
- Wątor, E.; Wilk, P.; Biela, A.; Rawski, M.; Zak, K.M.; Steinchen, W.; Bange, G.; Glatt, S.; Grudnik, P. Cryo-EM Structure of Human eIF5A-DHS Complex Reveals the Molecular Basis of Hypusination-Associated Neurodegenerative Disorders. Nat. Commun. 2023, 14, 1698. [Google Scholar] [CrossRef] [PubMed]
- Umland, T.C.; Wolff, E.C.; Park, M.H.; Davies, D.R. A New Crystal Structure of Deoxyhypusine Synthase Reveals the Configuration of the Active Enzyme and of an Enzyme.NAD.Inhibitor Ternary Complex. J. Biol. Chem. 2004, 279, 28697–28705. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Park, I.; Hong, B.; Nedyalkova, L.; Tempel, W.; Park, H. Crystal Structure of Human eIF5A1: Insight into Functional Similarity of Human eIF5A1 and eIF5A2. Proteins 2009, 75, 1040–1045. [Google Scholar] [CrossRef]
- Cano, V.S.P.; Jeon, G.A.; Johansson, H.E.; Henderson, C.A.; Park, J.-H.; Valentini, S.R.; Hershey, J.W.B.; Park, M.H. Mutational Analyses of Human eIF5A-1--Identification of Amino Acid Residues Critical for eIF5A Activity and Hypusine Modification. FEBS J. 2008, 275, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Zanelli, C.F.; Valentini, S.R. Is There a Role for eIF5A in Translation? Amino Acids 2007, 33, 351–358. [Google Scholar] [CrossRef]
- Park, M.H.; Kar, R.K.; Banka, S.; Ziegler, A.; Chung, W.K. Post-Translational Formation of Hypusine in eIF5A: Implications in Human Neurodevelopment. Amino Acids 2022, 54, 485–499. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Sakai, N.; Böttger, L.H.; Klinke, S.; Hauber, J.; Trautwein, A.X.; Hilgenfeld, R. Crystal Structure of the Peroxo-Diiron(III) Intermediate of Deoxyhypusine Hydroxylase, an Oxygenase Involved in Hypusination. Structure 2015, 23, 882–892. [Google Scholar] [CrossRef]
- Park, J.-H.; Aravind, L.; Wolff, E.C.; Kaevel, J.; Kim, Y.S.; Park, M.H. Molecular Cloning, Expression, and Structural Prediction of Deoxyhypusine Hydroxylase: A HEAT-Repeat-Containing Metalloenzyme. Proc. Natl. Acad. Sci. USA 2006, 103, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Karamanou, M.; Poulakou-Rebelakou, E.; Tzetis, M.; Androutsos, G. Anton van Leeuwenhoek (1632–1723): Father of Micromorphology and Discoverer of Spermatozoa. Rev. Argent. Microbiol. 2010, 42, 311–314. [Google Scholar]
- Hofer, S.J.; Liang, Y.; Zimmermann, A.; Schroeder, S.; Dengjel, J.; Kroemer, G.; Eisenberg, T.; Sigrist, S.J.; Madeo, F. Spermidine-Induced Hypusination Preserves Mitochondrial and Cognitive Function during Aging. Autophagy 2021, 17, 2037–2039. [Google Scholar] [CrossRef]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Park, J.H.; Folk, J.E.; Deck, J.A.; Pegg, A.E.; Sokabe, M.; Fraser, C.S.; Park, M.H. Inactivation of Eukaryotic Initiation Factor 5A (eIF5A) by Specific Acetylation of Its Hypusine Residue by Spermidine/Spermine Acetyltransferase 1 (SSAT1). Biochem. J. 2011, 433, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Alayoubi, A.M.; Iqbal, M.; Aman, H.; Hashmi, J.A.; Alayadhi, L.; Al-Regaiey, K.; Basit, S. Loss-of-Function Variant in Spermidine/Spermine N1-Acetyl Transferase like 1 (SATL1) Gene as an Underlying Cause of Autism Spectrum Disorder. Sci. Rep. 2024, 14, 5765. [Google Scholar] [CrossRef]
- Schwarz, C.; Stekovic, S.; Wirth, M.; Benson, G.; Royer, P.; Sigrist, S.J.; Pieber, T.; Dammbrueck, C.; Magnes, C.; Eisenberg, T.; et al. Safety and Tolerability of Spermidine Supplementation in Mice and Older Adults with Subjective Cognitive Decline. Aging 2018, 10, 19–33. [Google Scholar] [CrossRef]
Polyaminopathies | Name | Mutant Gene | Genetic Mode | Mutant Form | First Case | Cases | Deaths | Clinical Symptoms |
---|---|---|---|---|---|---|---|---|
Polyamine biosynthesis-related diseases | SRS | SMS | X-linked recessive | Monogenic mutations | 2003 | 24 males | 2 males | Developmental delay, intellectual disability, hypotonia, seizures, osteoporosis, kyphosis, genital abnormalities, facial dysmorphism |
BABS | ODC | autosomal dominant | Monogenic mutations | 2018 | 6 males 5 females | 1 male (labor induction) | Developmental delay, intellectual disability, hypotonia, non-congenital alopecia, abnormal brain MRI, non-specific dysmorphic features, macrocephaly | |
Polyamine utilization-related diseases | DHPS disorder | DHPS | autosomal recessive | Biallelic mutations | 2019 | 1 male 4 females | none | Developmental delay, intellectual disability, seizures, dystonia, pregnancy problems |
FABAS | EIF5A | autosomal dominant | Monogenic mutations | 2021 | 3 males 4 females | none | Developmental delay, intellectual disability, facial deformity, microcephaly | |
DOHH disorder | DOHH | autosomal recessive | Biallelic mutations | 2022 | 3 males 2 females | 1 male 1 female | Developmental delay, intellectual disability, brain MRI abnormalities, microcephaly, congenital cardiac malformations |
Polyaminopathies | Name | Mutant Gene | Variants (Gene) | Variants (Protein) | ||||
---|---|---|---|---|---|---|---|---|
Polyamine biosynthesis-related diseases | SRS | SMS | c.104T>G c.166G>A c.174T>A c.200G>A c.329+5G>A | c.335C>T c.388C>T c.395T>G c.443A>G c.449T>C | c.831G>T c.908_911del c.983A>G | p.M35R p.G56S p.F58L p.G67E p.? | p.P112L p.R130C p.V132G p.Q148R p.I150T | p.L277F p.M303Kfs*3 p.Y328C |
BABS | ODC | c.1240_1241dupTG c.1241+1G>T c.1242_1263del22 | c.1242-2A>G c.1252C>T c.1255C>T | c.1307_1311delinsT c.1342A>T c.1313_1316delCTGT | p.W414Cfs*7 p.? p.W414* | p.? p.Q418* p.Q419* | p.T436Ifs*11 p.K448K p.438Rfs*9 | |
Polyamine utilization-related diseases | DHPS disorder | DHPS | c.1A>G c.518A>G | c.912_917delTTACAT | c.1014+1G>A | p.Met1? p.N173S | p.Y305_I306del | p.? |
FABAS | EIF5A | c.143C>A c.316G>A c.324dupA | c.325C>G c.325C>T c.343C>T | c.364G>A | p.T48N p.G106R p.R109Tfs*8 | p.R109G p.R109* p.P115S | p.E122K | |
DOHH disorder | DOHH | c.304delG c.455C>T c.552C>A | c.654_655insAACC c.668C>T c.746T>C | c.840T>A | p.G102Kfs*6 p.P152L p.N184K | p.G219Nfs*54 p.P223L p.I249T | p.Y280* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Liu, S. Structural Insights into the Mechanisms Underlying Polyaminopathies. Int. J. Mol. Sci. 2024, 25, 6340. https://doi.org/10.3390/ijms25126340
Wu B, Liu S. Structural Insights into the Mechanisms Underlying Polyaminopathies. International Journal of Molecular Sciences. 2024; 25(12):6340. https://doi.org/10.3390/ijms25126340
Chicago/Turabian StyleWu, Bing, and Sen Liu. 2024. "Structural Insights into the Mechanisms Underlying Polyaminopathies" International Journal of Molecular Sciences 25, no. 12: 6340. https://doi.org/10.3390/ijms25126340
APA StyleWu, B., & Liu, S. (2024). Structural Insights into the Mechanisms Underlying Polyaminopathies. International Journal of Molecular Sciences, 25(12), 6340. https://doi.org/10.3390/ijms25126340