Spermidine Synthase Localization in Retinal Layers: Early Age Changes
Abstract
:1. Introduction
2. Results
2.1. Immunocytochemistry and Western Blot Analysis for Spermidine Synthase and Localization of Markers: Glutamine Synthetase in Glia, and DAPI in Nuclei
2.2. Western Blot Analysis for SpdS
2.3. Analysis of SpdS Redistribution during Aging and between Retinal Layers
3. Discussion
4. Materials and Methods
4.1. Animals and Tissues
4.2. Immunohistochemistry
4.3. Confocal Microscopy
4.4. Western Blot Analysis
4.5. Semi-Quantitative Image Analysis of Fluorescent Staining
4.6. Data Analysis and Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piletz, J.E.; Aricioglu, F.; Cheng, J.-T.; Fairbanks, C.A.; Gilad, V.H.; Haenisch, B.; Halaris, A.; Hong, S.; Lee, J.E.; Li, J.; et al. Agmatine: Clinical Applications after 100 Years in Translation. Drug Discov. Today 2013, 18, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Skatchkov, S.; Woodbury, M.; Eaton, M. The Role of Glia in Stress: Polyamines and Brain Disorders. Psychiatr. Clin. N. Am. 2014, 37, 653–678. [Google Scholar] [CrossRef] [PubMed]
- Miller-Fleming, L.; Olin-Sandoval, V.; Campbell, K.; Ralser, M. Remaining Mysteries of Molecular Biology: The Role of Polyamines in the Cell. J. Mol. Biol. 2015, 427, 3389–3406. [Google Scholar] [CrossRef] [PubMed]
- Laube, G.; Bernstein, H.-G. Agmatine: Multifunctional Arginine Metabolite and Magic Bullet in Clinical Neuroscience? Biochem. J. 2017, 474, 2619–2640. [Google Scholar] [CrossRef] [PubMed]
- Rieck, J.; Skatchkov, S.N.; Derst, C.; Eaton, M.J.; Veh, R.W. Unique Chemistry, Intake, and Metabolism of Polyamines in the Central Nervous System (CNS) and Its Body. Biomolecules 2022, 12, 501. [Google Scholar] [CrossRef]
- Weiss, T.; Bernard, R.; Laube, G.; Rieck, J.; Eaton, M.J.; Skatchkov, S.N.; Veh, R.W. As Verified with the Aid of Biotinylated Spermine, the Brain Cannot Take up Polyamines from the Bloodstream Leaving It Solely Dependent on Local Biosynthesis. Biomolecules 2023, 13, 1114. [Google Scholar] [CrossRef]
- Nishimura, K.; Shiina, R.; Kashiwagi, K.; Igarashi, K. Decrease in Polyamines with Aging and Their Ingestion from Food and Drink. J. Biochem. 2006, 139, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Alsaleh, G.; Feltham, J.; Sun, Y.; Napolitano, G.; Riffelmacher, T.; Charles, P.; Frau, L.; Hublitz, P.; Yu, Z.; et al. Polyamines Control eIF5A Hypusination, TFEB Translation, and Autophagy to Reverse B Cell Senescence. Mol. Cell 2019, 76, 110–125. [Google Scholar] [CrossRef] [PubMed]
- Minois, N.; Carmona-Gutierrez, D.; Madeo, F. Polyamines in Aging and Disease. Aging 2011, 3, 716–732. [Google Scholar] [CrossRef]
- Laube, G.; Veh, R.W. Astrocytes, Not Neurons, Show Most Prominent Staining for Spermidine/Spermine-like Immunoreactivity in Adult Rat Brain. Glia 1997, 19, 171–179. [Google Scholar] [CrossRef]
- Skatchkov, S.N.; Antonov, S.M.; Eaton, M.J. Glia and Glial Polyamines. Role in Brain Function in Health and Disease. Biochem. Moscow. Suppl. Ser. A 2016, 10, 73–98. [Google Scholar] [CrossRef]
- Ríos, D.S.; Malpica-Nieves, C.J.; Díaz-García, A.; Eaton, M.J.; Skatchkov, S.N. Changes in the Localization of Polyamine Spermidine in the Rat Retina with Age. Biomedicines 2023, 11, 1008. [Google Scholar] [CrossRef] [PubMed]
- Sala-Rabanal, M.; Li, D.C.; Dake, G.R.; Kurata, H.T.; Inyushin, M.; Skatchkov, S.N.; Nichols, C.G. Polyamine Transport by the Polyspecific Organic Cation Transporters OCT1, OCT2, and OCT3. Mol. Pharm. 2013, 10, 1450–1458. [Google Scholar] [CrossRef]
- Hiasa, M.; Miyaji, T.; Haruna, Y.; Takeuchi, T.; Harada, Y.; Moriyama, S.; Yamamoto, A.; Omote, H.; Moriyama, Y. Identification of a Mammalian Vesicular Polyamine Transporter. Sci. Rep. 2014, 4, 6836. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Cuzcano, A.; Martin, S.; Chamova, T.; Synofzik, M.; Timmann, D.; Holemans, T.; Andreeva, A.; Reichbauer, J.; De Rycke, R.; Chang, D.-I.; et al. Loss-of-Function Mutations in the ATP13A2/PARK9 Gene Cause Complicated Hereditary Spastic Paraplegia (SPG78). Brain 2017, 140, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Cao, W.-J.; Zhao, R.; Lu, M.; Hu, G.; Qiao, C. ATP13A2 Protects Dopaminergic Neurons in Parkinson’s Disease: From Biology to Pathology. J. Biomed. Res. 2022, 36, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Malpica-Nieves, C.J.; Rivera, Y.; Rivera-Aponte, D.E.; Phanstiel, O.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. Uptake of Biotinylated Spermine in Astrocytes: Effect of Cx43 siRNA, HIV-Tat Protein and Polyamine Transport Inhibitor on Polyamine Uptake. Biomolecules 2021, 11, 1187. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.W.; Fong, W.F.; Pang, S.F.; Wong, P.C. Limited Blood-Brain Barrier Transport of Polyamines. J. Neurochem. 1985, 44, 1056–1059. [Google Scholar] [CrossRef] [PubMed]
- Sanayama, H.; Ito, K.; Ookawara, S.; Uemura, T.; Sakiyama, Y.; Sugawara, H.; Tabei, K.; Igarashi, K.; Soda, K. Whole Blood Spermine/Spermidine Ratio as a New Indicator of Sarcopenia Status in Older Adults. Biomedicines 2023, 11, 1403. [Google Scholar] [CrossRef] [PubMed]
- Skatchkov, S.N.; Eaton, M.J.; Krusek, J.; Veh, R.W.; Biedermann, B.; Bringmann, A.; Pannicke, T.; Orkand, R.K.; Reichenbach, A. Spatial Distribution of Spermine/Spermidine Content and K(+)-Current Rectification in Frog Retinal Glial (Müller) Cells. Glia 2000, 31, 84–90. [Google Scholar] [CrossRef]
- Malpica-Nieves, C.J.; Rivera-Aponte, D.E.; Tejeda-Bayron, F.A.; Mayor, A.M.; Phanstiel, O.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. The Involvement of Polyamine Uptake and Synthesis Pathways in the Proliferation of Neonatal Astrocytes. Amino Acids 2020, 52, 1169–1180. [Google Scholar] [CrossRef]
- Liang, Y.; Piao, C.; Beuschel, C.B.; Toppe, D.; Kollipara, L.; Bogdanow, B.; Maglione, M.; Lützkendorf, J.; See, J.C.K.; Huang, S.; et al. eIF5A Hypusination, Boosted by Dietary Spermidine, Protects from Premature Brain Aging and Mitochondrial Dysfunction. Cell Rep. 2021, 35, 108941. [Google Scholar] [CrossRef]
- Noro, T.; Namekata, K.; Kimura, A.; Guo, X.; Azuchi, Y.; Harada, C.; Nakano, T.; Tsuneoka, H.; Harada, T. Spermidine Promotes Retinal Ganglion Cell Survival and Optic Nerve Regeneration in Adult Mice Following Optic Nerve Injury. Cell Death Dis. 2015, 6, e1720. [Google Scholar] [CrossRef]
- Withrow, C.; Ashraf, S.; O’Leary, T.; Johnson, L.R.; Fitzgerald, M.E.C.; Johnson, D.A. Effect of Polyamine Depletion on Cone Photoreceptors of the Developing Rabbit Retina. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3081–3090. [Google Scholar]
- Tsunemi, T.; Ishiguro, Y.; Yoroisaka, A.; Valdez, C.; Miyamoto, K.; Ishikawa, K.; Saiki, S.; Akamatsu, W.; Hattori, N.; Krainc, D. Astrocytes Protect Human Dopaminergic Neurons from α-Synuclein Accumulation and Propagation. J. Neurosci. 2020, 40, 8618–8628. [Google Scholar] [CrossRef]
- Watanabe, S.; Kusama-Eguchi, K.; Kobayashi, H.; Igarashi, K. Estimation of Polyamine Binding to Macromolecules and ATP in Bovine Lymphocytes and Rat Liver. J. Biol. Chem. 1991, 266, 20803–20809. [Google Scholar] [CrossRef]
- D’Agostino, L.; di Pietro, M.; Di Luccia, A. Nuclear Aggregates of Polyamines. IUBMB Life 2006, 58, 75–82. [Google Scholar] [CrossRef]
- Biedermann, B.; Skatchkov, S.N.; Brunk, I.; Bringmann, A.; Pannicke, T.; Bernstein, H.G.; Faude, F.; Germer, A.; Veh, R.; Reichenbach, A. Spermine/Spermidine Is Expressed by Retinal Glial (Muller) Cells and Controls Distinct K+ Channels of Their Membrane. Glia 1998, 23, 209–220. [Google Scholar] [CrossRef]
- Kucheryavykh, Y.V.; Shuba, Y.M.; Antonov, S.M.; Inyushin, M.Y.; Cubano, L.; Pearson, W.L.; Kurata, H.; Reichenbach, A.; Veh, R.W.; Nichols, C.G.; et al. Complex Rectification of Muller Cell Kir Currents. Glia 2008, 56, 775–790. [Google Scholar] [CrossRef]
- Zahedi, K.; Huttinger, F.; Morrison, R.; Murray-Stewart, T.; Casero, R.A.; Strauss, K.I. Polyamine Catabolism Is Enhanced after Traumatic Brain Injury. J. Neurotrauma 2010, 27, 515–525. [Google Scholar] [CrossRef]
- Adibhatla, R.M.; Hatcher, J.F.; Sailor, K.; Dempsey, R.J. Polyamines and Central Nervous System Injury: Spermine and Spermidine Decrease Following Transient Focal Cerebral Ischemia in Spontaneously Hypertensive Rats. Brain Res. 2002, 938, 81–86. [Google Scholar] [CrossRef]
- Kovács, Z.; Skatchkov, S.N.; Veh, R.W.; Szabó, Z.; Németh, K.; Szabó, P.T.; Kardos, J.; Héja, L. Critical Role of Astrocytic Polyamine and GABA Metabolism in Epileptogenesis. Front. Cell Neurosci. 2022, 15, 787319. [Google Scholar] [CrossRef]
- Gilad, G.M.; Gilad, V.H. Treatment with Polyamines Can Prevent Monosodium Glutamate Neurotoxicity in the Rat Retina. Life Sci. 1989, 44, 1963–1969. [Google Scholar] [CrossRef]
- Cervetto, C.; Averna, M.; Vergani, L.; Pedrazzi, M.; Amato, S.; Pelassa, S.; Giuliani, S.; Baldini, F.; Maura, G.; Mariottini, P.; et al. Reactive Astrocytosis in a Mouse Model of Chronic Polyamine Catabolism Activation. Biomolecules 2021, 11, 1274. [Google Scholar] [CrossRef]
- Cervelli, M.; Averna, M.; Vergani, L.; Pedrazzi, M.; Amato, S.; Fiorucci, C.; Rossi, M.N.; Maura, G.; Mariottini, P.; Cervetto, C.; et al. The Involvement of Polyamines Catabolism in the Crosstalk between Neurons and Astrocytes in Neurodegeneration. Biomedicines 2022, 10, 1756. [Google Scholar] [CrossRef]
- Uemura, T.; Matsunaga, M.; Yokota, Y.; Takao, K.; Furuchi, T. Inhibition of Polyamine Catabolism Reduces Cellular Senescence. Int. J. Mol. Sci. 2023, 24, 13397. [Google Scholar] [CrossRef]
- Sakamoto, A.; Terui, Y.; Igarashi, K.; Kashiwagi, K. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel Mediates Acrolein Cytotoxicity in Human Lung Cancer Cells. Int. J. Mol. Sci. 2023, 24, 11847. [Google Scholar] [CrossRef]
- Damier, P.; Kastner, A.; Agid, Y.; Hirsch, E.C. Does Monoamine Oxidase Type B Play a Role in Dopaminergic Nerve Cell Death in Parkinson’s Disease? Neurology 1996, 46, 1262–1269. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, P.; Deshmukh, R. Neuroprotective Potential of Spermidine against Rotenone Induced Parkinson’s Disease in Rats. Neurochem. Int. 2018, 116, 104–111. [Google Scholar] [CrossRef]
- Vrijsen, S.; Houdou, M.; Cascalho, A.; Eggermont, J.; Vangheluwe, P. Polyamines in Parkinson’s Disease: Balancing Between Neurotoxicity and Neuroprotection. Annu. Rev. Biochem. 2023, 92, 435–464. [Google Scholar] [CrossRef]
- Wirth, M.; Schwarz, C.; Benson, G.; Horn, N.; Buchert, R.; Lange, C.; Köbe, T.; Hetzer, S.; Maglione, M.; Michael, E.; et al. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults with Subjective Cognitive Decline (SmartAge)-Study Protocol for a Randomized Controlled Trial. Alzheimers Res. Ther. 2019, 11, 36. [Google Scholar] [CrossRef]
- Polis, B.; Karasik, D.; Samson, A.O. Alzheimer’s Disease as a Chronic Maladaptive Polyamine Stress Response. Aging 2021, 13, 10770–10795. [Google Scholar] [CrossRef]
- Guerra, G.P.; Rubin, M.A.; Mello, C.F. Modulation of Learning and Memory by Natural Polyamines. Pharmacol. Res. 2016, 112, 99–118. [Google Scholar] [CrossRef]
- Sala-Rabanal, M.; Kucheryavykh, L.Y.; Skatchkov, S.N.; Eaton, M.J.; Nichols, C.G. Molecular Mechanisms of EAST/SeSAME Syndrome Mutations in Kir4.1 (KCNJ10). J. Biol. Chem. 2010, 285, 36040–36048. [Google Scholar] [CrossRef]
- Olsen, M.L.; Khakh, B.S.; Skatchkov, S.N.; Zhou, M.; Lee, C.J.; Rouach, N. New Insights on Astrocyte Ion Channels: Critical for Homeostasis and Neuron-Glia Signaling. J. Neurosci. 2015, 35, 13827–13835. [Google Scholar] [CrossRef]
- Pegg, A.E.; Casero, R.A. Current Status of the Polyamine Research Field. Methods Mol. Biol. 2011, 720, 3–35. [Google Scholar] [CrossRef]
- Pegg, A.E. The Function of Spermine. IUBMB Life 2014, 66, 8–18. [Google Scholar] [CrossRef]
- Bang, E.; Park, C.; Hwangbo, H.; Shim, J.-H.; Leem, S.-H.; Hyun, J.W.; Kim, G.-Y.; Choi, Y.H. Spermidine Attenuates High Glucose-Induced Oxidative Damage in Retinal Pigment Epithelial Cells by Inhibiting Production of ROS and NF-κB/NLRP3 Inflammasome Pathway. Int. J. Mol. Sci. 2023, 24, 10550. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Polyamine Modulon in Escherichia Coli: Genes Involved in the Stimulation of Cell Growth by Polyamines. J. Biochem. 2006, 139, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.K.; Scheunemann, L.; Eisenberg, T.; Mertel, S.; Bhukel, A.; Koemans, T.S.; Kramer, J.M.; Liu, K.S.; Schroeder, S.; Stunnenberg, H.G.; et al. Restoring Polyamines Protects from Age-Induced Memory Impairment in an Autophagy-Dependent Manner. Nat. Neurosci. 2013, 16, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Fabbrin, S.B.; Girardi, B.A.; de Lorena Wendel, A.; Coelho Ilha Valin, C.; Pillat, M.M.; Viero, F.T.; Mello, C.F.; Rubin, M.A. Spermidine-Induced Improvement of Memory Consolidation Involves PI3K/Akt Signaling Pathway. Brain Res. Bull. 2020, 164, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Buttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of Autophagy by Spermidine Promotes Longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Hofer, S.J.; Simon, A.K.; Bergmann, M.; Eisenberg, T.; Kroemer, G.; Madeo, F. Mechanisms of Spermidine-Induced Autophagy and Geroprotection. Nat. Aging 2022, 2, 1112–1129. [Google Scholar] [CrossRef]
- Eisenberg, T.; Abdellatif, M.; Schroeder, S.; Primessnig, U.; Stekovic, S.; Pendl, T.; Harger, A.; Schipke, J.; Zimmermann, A.; Schmidt, A.; et al. Cardioprotection and Lifespan Extension by the Natural Polyamine Spermidine. Nat. Med. 2016, 22, 1428–1438. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, S.J.; Carmona-Gutierrez, D.; Gupta, V.K.; Bhukel, A.; Mertel, S.; Eisenberg, T.; Madeo, F. Spermidine-Triggered Autophagy Ameliorates Memory during Aging. Autophagy 2014, 10, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Bhukel, A.; Madeo, F.; Sigrist, S.J. Spermidine Boosts Autophagy to Protect from Synapse Aging. Autophagy 2017, 13, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.; Hahn, H.; Antz, C.; Ruppersberg, J.P.; Fakler, B. Interaction of Permeant and Blocking Ions in Cloned Inward-Rectifier K+ Channels. Biophys. J. 1998, 74, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.; Baukrowitz, T.; Fakler, B. Polyamines as Gating Molecules of Inward-Rectifier K+ Channels. Eur. J. Biochem. 2000, 267, 5824–5829. [Google Scholar] [CrossRef] [PubMed]
- Kucheryavykh, Y.V.; Pearson, W.L.; Kurata, H.T.; Eaton, M.J.; Skatchkov, S.N.; Nichols, C.G. Polyamine Permeation and Rectification of Kir4.1 Channels. Channels 2007, 1, 172–178. [Google Scholar] [CrossRef]
- Nichols, C.G.; Lee, S.-J. Polyamines and Potassium Channels: A 25-Year Romance. J. Biol. Chem. 2018, 293, 18779–18788. [Google Scholar] [CrossRef]
- Benedikt, J.; Inyushin, M.; Kucheryavykh, Y.V.; Rivera, Y.; Kucheryavykh, L.Y.; Nichols, C.G.; Eaton, M.J.; Skatchkov, S.N. Intracellular Polyamines Enhance Astrocytic Coupling. Neuroreport 2012, 23, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Benedikt, J.; Malpica-Nieves, C.J.; Rivera, Y.; Méndez-González, M.; Nichols, C.G.; Veh, R.W.; Eaton, M.J.; Skatchkov, S.N. The Polyamine Spermine Potentiates the Propagation of Negatively Charged Molecules through the Astrocytic Syncytium. Biomolecules 2022, 12, 1812. [Google Scholar] [CrossRef] [PubMed]
- Zayas-Santiago, A.; Agte, S.; Rivera, Y.; Benedikt, J.; Ulbricht, E.; Karl, A.; Dávila, J.; Savvinov, A.; Kucheryavykh, Y.; Inyushin, M.; et al. Unidirectional Photoreceptor-to-Müller Glia Coupling and Unique K+ Channel Expression in Caiman Retina. PLoS ONE 2014, 9, e97155. [Google Scholar] [CrossRef] [PubMed]
- Skatchkov, S.N.; Bukauskas, F.F.; Benedikt, J.; Inyushin, M.; Kucheryavykh, Y.V. Intracellular Spermine Prevents Acid-Induced Uncoupling of Cx43 Gap Junction Channels. Neuroreport 2015, 26, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Kucheryavykh, L.Y.; Benedikt, J.; Cubano, L.A.; Skatchkov, S.N.; Bukauskas, F.F.; Kucheryavykh, Y.V. Polyamines Preserve Connexin 43-Mediated Gap Junctional Communication during Intracellular Hypercalcemia and Acidosis. Neuroreport 2017, 28, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science 2018, 359, eaan2788. [Google Scholar] [CrossRef] [PubMed]
- Maglione, M.; Kochlamazashvili, G.; Eisenberg, T.; Rácz, B.; Michael, E.; Toppe, D.; Stumpf, A.; Wirth, A.; Zeug, A.; Müller, F.E.; et al. Spermidine Protects from Age-Related Synaptic Alterations at Hippocampal Mossy Fiber-CA3 Synapses. Sci. Rep. 2019, 9, 19616. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Harada, C.; Namekata, K.; Kimura, A.; Mitamura, Y.; Yoshida, H.; Matsumoto, Y.; Harada, T. Spermidine Alleviates Severity of Murine Experimental Autoimmune Encephalomyelitis. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2696–2703. [Google Scholar] [CrossRef] [PubMed]
- Gilad, V.H.; Tetzlaff, W.G.; Rabey, J.M.; Gilad, G.M. Accelerated Recovery Following Polyamines and Aminoguanidine Treatment after Facial Nerve Injury in Rats. Brain Res. 1996, 724, 141–144. [Google Scholar] [CrossRef]
- Ghosh, I.; Sankhe, R.; Mudgal, J.; Arora, D.; Nampoothiri, M. Spermidine, an Autophagy Inducer, as a Therapeutic Strategy in Neurological Disorders. Neuropeptides 2020, 83, 102083. [Google Scholar] [CrossRef]
- Sturman, J.A.; Ingoglia, N.A.; Lindquist, T.D. Interconversion of Putrescine, Spermidine and Spermine in Goldfish and Rat Retina. Life Sci. 1976, 19, 719–724. [Google Scholar] [CrossRef]
- Johnson, D.A.; Fields, C.; Fallon, A.; Fitzgerald, M.E.C.; Viar, M.J.; Johnson, L.R. Polyamine-Dependent Migration of Retinal Pigment Epithelial Cells. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1228–1233. [Google Scholar]
- Ientile, R.; Russo, P.; Macaione, S. Polyamine Localization and Biosynthesis in Chemically Fractionated Rat Retina. J. Neurochem. 1986, 47, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Krauss, M.; Weiss, T.; Langnaese, K.; Richter, K.; Kowski, A.; Veh, R.W.; Laube, G. Cellular and Subcellular Rat Brain Spermidine Synthase Expression Patterns Suggest Region-Specific Roles for Polyamines, Including Cerebellar Pre-Synaptic Function. J. Neurochem. 2007, 103, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Krauss, M.; Langnaese, K.; Richter, K.; Brunk, I.; Wieske, M.; Ahnert-Hilger, G.; Veh, R.W.; Laube, G. Spermidine Synthase Is Prominently Expressed in the Striatal Patch Compartment and in Putative Interneurones of the Matrix Compartment. J. Neurochem. 2006, 97, 174–189. [Google Scholar] [CrossRef] [PubMed]
- Seiler, N. Catabolism of Polyamines. Amino Acids 2004, 26, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Rozov, A.; Burnashev, N. Polyamine-Dependent Facilitation of Postsynaptic AMPA Receptors Counteracts Paired-Pulse Depression. Nature 1999, 401, 594–598. [Google Scholar] [CrossRef]
- Ahern, G.P.; Wang, X.; Miyares, R.L. Polyamines Are Potent Ligands for the Capsaicin Receptor TRPV1 *. J. Biol. Chem. 2006, 281, 8991–8995. [Google Scholar] [CrossRef] [PubMed]
- Maksaev, G.; Yuan, P.; Nichols, C.G. Blockade of TRPV Channels by Intracellular Spermine. J. Gen. Physiol. 2023, 155, e202213273. [Google Scholar] [CrossRef]
- Morrison, L.D.; Kish, S.J. Brain Polyamine Levels Are Altered in Alzheimer’s Disease. Neurosci. Lett. 1995, 197, 5–8. [Google Scholar] [CrossRef]
- Wortha, S.M.; Frenzel, S.; Bahls, M.; Habes, M.; Wittfeld, K.; Van der Auwera, S.; Bülow, R.; Zylla, S.; Friedrich, N.; Nauck, M.; et al. Association of Spermidine Plasma Levels with Brain Aging in a Population-Based Study. Alzheimers Dement. 2023, 19, 1832–1840. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.; Horn, N.; Benson, G.; Wrachtrup Calzado, I.; Wurdack, K.; Pechlaner, R.; Grittner, U.; Wirth, M.; Flöel, A. Spermidine Intake Is Associated with Cortical Thickness and Hippocampal Volume in Older Adults. Neuroimage 2020, 221, 117132. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.; Hofer, S.J.; Zimmermann, A.; Pechlaner, R.; Dammbrueck, C.; Pendl, T.; Marcello, G.M.; Pogatschnigg, V.; Bergmann, M.; Müller, M.; et al. Dietary Spermidine Improves Cognitive Function. Cell Rep. 2021, 35, 108985. [Google Scholar] [CrossRef] [PubMed]
- Wirth, A.; Wolf, B.; Huang, C.-K.; Glage, S.; Hofer, S.J.; Bankstahl, M.; Bär, C.; Thum, T.; Kahl, K.G.; Sigrist, S.J.; et al. Novel Aspects of Age-Protection by Spermidine Supplementation Are Associated with Preserved Telomere Length. Geroscience 2021, 43, 673–690. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayas-Santiago, A.; Malpica-Nieves, C.J.; Ríos, D.S.; Díaz-García, A.; Vázquez, P.N.; Santiago, J.M.; Rivera-Aponte, D.E.; Veh, R.W.; Méndez-González, M.; Eaton, M.; et al. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. Int. J. Mol. Sci. 2024, 25, 6458. https://doi.org/10.3390/ijms25126458
Zayas-Santiago A, Malpica-Nieves CJ, Ríos DS, Díaz-García A, Vázquez PN, Santiago JM, Rivera-Aponte DE, Veh RW, Méndez-González M, Eaton M, et al. Spermidine Synthase Localization in Retinal Layers: Early Age Changes. International Journal of Molecular Sciences. 2024; 25(12):6458. https://doi.org/10.3390/ijms25126458
Chicago/Turabian StyleZayas-Santiago, Astrid, Christian J. Malpica-Nieves, David S. Ríos, Amanda Díaz-García, Paola N. Vázquez, José M. Santiago, David E. Rivera-Aponte, Rüdiger W. Veh, Miguel Méndez-González, Misty Eaton, and et al. 2024. "Spermidine Synthase Localization in Retinal Layers: Early Age Changes" International Journal of Molecular Sciences 25, no. 12: 6458. https://doi.org/10.3390/ijms25126458
APA StyleZayas-Santiago, A., Malpica-Nieves, C. J., Ríos, D. S., Díaz-García, A., Vázquez, P. N., Santiago, J. M., Rivera-Aponte, D. E., Veh, R. W., Méndez-González, M., Eaton, M., & Skatchkov, S. N. (2024). Spermidine Synthase Localization in Retinal Layers: Early Age Changes. International Journal of Molecular Sciences, 25(12), 6458. https://doi.org/10.3390/ijms25126458