The Role of Neutrophils in ANCA-Associated Vasculitis: The Pathogenic Role and Diagnostic Utility of Autoantibodies
Abstract
:1. Search Strategy
2. Introduction
3. Vasculitis
3.1. Historical Perspective and Development of Subject’s Common Understanding
3.2. Current Classification Criteria for Systemic Vasculitis
4. The Neutrophil
Neutrophil Development and Brief Characteristics
5. Pathogenesis and Influence of Neutrophilic Elements on the Development of Vasculitis
6. Antineutrophil-Cytoplasmic Antibodies
7. Diagnostics
8. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tsukui, D.; Kimura, Y.; Kono, H. Pathogenesis and pathology of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. J. Transl. Autoimmun. 2021, 4, 100094. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.; Falk, R.; Bacon, P.; Basu, N.; Cid, M.; Ferrario, F.; Flores-Suarez, L.; Gross, W.; Guillevin, L.; Hagen, E.; et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Segelmark, M.; Baslund, B.; Wieslander, J. Some patients with anti-myeloperoxidase autoantibodies have a C-ANCA pattern. Clin. Exp. Immunol. 1994, 96, 458–465. [Google Scholar] [CrossRef]
- Radice, A.; Bianchi, L.; Sinico, R.A. Anti-neutrophil cytoplasmic autoantibodies: Methodological aspects and clinical significance in systemic vasculitis. Autoimmun. Rev. 2013, 12, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Cohen Tervaert, J.W. Should proteinase-3 and myeloperoxidase anti-neutrophil cytoplasmic antibody vasculitis be treated differently: Part 2. Nephrol. Dial. Transpl. 2019, 34, 384–387. [Google Scholar] [CrossRef]
- Watts, R.A.; Mahr, A.; Mohammad, A.J.; Gatenby, P.; Basu, N.; Flores-Suárez, L.F. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol. Dial. Transplant. 2015, 30, i14–i22. [Google Scholar] [CrossRef]
- Pearce, F.A.; Lanyon, P.C.; Grainge, M.J.; Shaunak, R.; Mahr, A.; Hubbard, R.B.; Watts, R.A. Incidence of ANCA-associated vasculitis in a UK mixed ethnicity population. Rheumatology 2016, 55, 1656–1663. [Google Scholar] [CrossRef]
- Iudici, M.; Quartier, P.; Terrier, B.; Mouthon, L.; Guillevin, L.; Puéchal, X. Childhood-onset granulomatosis with polyangiitis and microscopic polyangiitis: Systematic review and meta-analysis. Orphanet J. Rare Dis. 2016, 11, 141. [Google Scholar] [CrossRef]
- Bataille, P.M.; Durel, C.A.; Chauveau, D.; Panes, A.; Thervet, É.S.; Terrier, B. Epidemiology of granulomatosis with polyangiitis and microscopic polyangiitis in adults in France. J. Autoimmun. 2022, 133, 102910. [Google Scholar] [CrossRef]
- Redondo-Rodriguez, R.; Mena-Vázquez, N.; Cabezas-Lucena, A.M.; Manrique-Arija, S.; Mucientes, A.; Fernández-Nebro, A. Systematic Review and Metaanalysis of Worldwide Incidence and Prevalence of Antineutrophil Cytoplasmic Antibody (ANCA) Associated Vasculitis. J. Clin. Med. 2022, 11, 2573. [Google Scholar] [CrossRef]
- Paroli, M.; Gioia, C.; Accapezzato, D. New Insights into Pathogenesis and Treatment of ANCA-Associated Vasculitis: Autoantibodies and Beyond. Antibodies 2023, 12, 25. [Google Scholar] [CrossRef]
- Watts, R.A.; Hatemi, G.; Burns, J.C.; Mohammad, A.J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 2021, 18, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Runowska, M.D.; Majewski, D. Ziarniniakowatość z zapaleniem naczyń-rys historyczny. Forum Reumatol. 2019, 5, 51–59. [Google Scholar] [CrossRef]
- Langford, C.A. Wegener Granulomatosis. Am. J. Med. Sci. 2001, 321, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, P.; Gross, W.L. A brief history of Wegener’s granulomatosis: On limited, localized, and generalized forms of the disease: Comment on the article by the Wegener’s granulomatosis Etanercept Trial Research Group. Arthritis Rheum. 2004, 50, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.L.; Leonard, E.; Churg, J.; Godman, G. Wegener’s Granulomatosis. Am. J. Med. 1954, 17, 168–179. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.B. “Wegener’s Granulomatosis”—A Triad. JAMA 1960, 173, 1205. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol. 2014, 10, 463–473. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J.; Andrassy, K.; Bacon, P.A.; Churg, J.; Gross, W.L.; Hagen, E.C.; Hoffman, G.S.; Hunder, G.G.; Kallenberg, C.G.M.; et al. Nomenclature of Systemic Vasculitides. Arthritis Rheum. 1994, 37, 187–192. [Google Scholar] [CrossRef]
- Robson, J.C.; Grayson, P.C.; Ponte, C.; Suppiah, R.; Craven, A.; Judge, A.; Khalid, S.; Hutchings, A.; Watts, R.A.; Merkel, P.A.; et al. 2022 American College of Rheumatology/European Alliance of Associations for Rheumatology classification criteria for granulomatosis with polyangiitis. Ann. Rheum. Dis. 2022, 81, 315–320. [Google Scholar] [CrossRef]
- Luqmani, R.A.; Pathare, S.; Kwok-Fai, T.L. How to diagnose and treat secondary forms of vasculitis. Best Pract. Res. Clin. Rheumatol. 2005, 19, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Peleg, H.; Ben-Chetrit, E. Vasculitis in the autoinflammatory diseases. Curr. Opin. Rheumatol. 2017, 29, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Hewins, P.; Al-Abadi, E. Medium vessel vasculitis. Medicine 2022, 50, 34–40. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J. Small-Vessel Vasculitis. N. Engl. J. Med. 1997, 337, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Mahr, A.; Specks, U.; Jayne, D. Subclassifying ANCA-associated vasculitis: A unifying view of disease spectrum. Rheumatology 2019, 58, 1707–1709. [Google Scholar] [CrossRef] [PubMed]
- Sunderkötter, C.; Golle, L.; Pillebout, E.; Michl, C. Pathophysiology and clinical manifestations of immune complex vasculitides. Front. Med. 2023, 10, 1103065. [Google Scholar] [CrossRef] [PubMed]
- Hendaoui, L.; Stanson, A.W.; Bouhaouala, M.H.; Joffre, F. (Eds.) Systemic Vasculitis; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Almaani, S.; Fussner, L.A.; Brodsky, S.; Meara, A.S.; Jayne, D. ANCA-Associated Vasculitis: An Update. J. Clin. Med. 2021, 10, 1446. [Google Scholar] [CrossRef]
- Liew, P.X.; Kubes, P. The Neutrophil’s Role During Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef]
- Summers, C.; Rankin, S.M.; Condliffe, A.M.; Singh, N.; Peters, A.M.; Chilvers, E.R. Neutrophil kinetics in health and disease. Trends Immunol. 2010, 31, 318–324. [Google Scholar] [CrossRef]
- Borges, L.; Pithon-Curi, T.C.; Curi, R.; Hatanaka, E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediat. Inflamm. 2020, 2020, 8829674. [Google Scholar] [CrossRef] [PubMed]
- Silvestre-Roig, C.; Fridlender, Z.G.; Glogauer, M.; Scapini, P. Neutrophil Diversity in Health and Disease. Trends Immunol. 2019, 40, 565–583. [Google Scholar] [CrossRef] [PubMed]
- Evrard, M.; Kwok, I.W.; Chong, S.Z.; Teng, K.W.; Becht, E.; Chen, J.; Sieow, J.L.; Penny, H.L.; Ching, G.C.; Devi, S.; et al. Developmental Analysis of Bone Marrow Neutrophils Reveals Populations Specialized in Expansion, Trafficking, and Effector Functions. Immunity 2018, 48, 364–379.e8. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Chilvers, E.R.; Summers, C.; Koenderman, L. The Neutrophil Life Cycle. Trends Immunol. 2019, 40, 584–597. [Google Scholar] [CrossRef] [PubMed]
- Nandakumar, S.K.; Ulirsch, J.C.; Sankaran, V.G. Advances in understanding erythropoiesis: Evolving perspectives. Br. J. Haematol. 2016, 173, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Xu, Q.; Yang, S.; Huang, X.; Wang, L.; Huang, F.; Luo, J.; Zhou, X.; Wu, A.; Mei, Q.; et al. Toll-like Receptors and Thrombopoiesis. Int. J. Mol. Sci. 2023, 24, 1010. [Google Scholar] [CrossRef]
- Hong, C.W. Current Understanding in Neutrophil Differentiation and Heterogeneity. Immune Netw. 2017, 17, 298. [Google Scholar] [CrossRef]
- Cowland, J.B.; Borregaard, N. Granulopoiesis and granules of human neutrophils. Immunol. Rev. 2016, 273, 11–28. [Google Scholar] [CrossRef]
- Özcan, A.; Boyman, O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 2022, 77, 3567–3583. [Google Scholar] [CrossRef]
- Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch. Biochem. Biophys. 2018, 640, 47–52. [Google Scholar] [CrossRef]
- Kallenberg, C.G. Pathogenesis of PR3-ANCA Associated Vasculitis. J. Autoimmun. 2008, 30, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Néel, A.; Degauque, N.; Bruneau, S.; Braudeau, C.; Bucchia, M.; Caristan, A.; Mornac, D.D.; Genin, V.; Glemain, A.; Oriot, C.; et al. Pathogénie des vascularites associées aux ANCA en 2021: Mise au point. Rev. Méd. Interne 2022, 43, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, D.; Masuda, S.; Tomaru, U.; Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 2018, 15, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.J.; Li, Z.Y.; Chen, M. Pathogenesis of anti-neutrophil cytoplasmic antibody-associated vasculitis. Rheumatol. Immunol. Res. 2023, 4, 11–21. [Google Scholar] [CrossRef]
- Merino-Vico, A.; van Hamburg, J.P.; Tas, S.W. B Lineage Cells in ANCA-Associated Vasculitis. Int. J. Mol. Sci. 2021, 23, 387. [Google Scholar] [CrossRef] [PubMed]
- d’Alessandro, M.; Conticini, E.; Bergantini, L.; Cameli, P.; Cantarini, L.; Frediani, B.; Bargagli, E. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis and Interstitial Lung Disease: A Scoping Review. Life 2022, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, A.; Rousselle, A.; Becker, J.U.; von Mässenhausen, A.; Linkermann, A.; Kettritz, R. Necroptosis Controls NET Generation and Mediates Complement Activation, Endothelial Damage, and Autoimmune Vasculitis. Proc. Natl. Acad. Sci. USA 2017, 114, E9618–E9625. [Google Scholar] [CrossRef]
- Kimura, H.; Matsuyama, Y.; Araki, S.; Koizumi, A.; Kariya, Y.; Takasuga, S.; Eguchi, S.; Nakanishi, H.; Sasaki, J.; Sasaki, T. The effect and possible clinical efficacy of in vivo inhibition of neutrophil extracellular traps by blockade of PI3K-gamma on the pathogenesis of microscopic polyangiitis. Mod. Rheumatol. 2018, 28, 530–541. [Google Scholar] [CrossRef]
- Suire, S.; Condliffe, A.M.; Ferguson, G.J.; Ellson, C.D.; Guillou, H.; Davidson, K.; Welch, H.; Coadwell, J.; Turner, M.; Chilvers, E.R.; et al. Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat. Cell Biol. 2006, 8, 1303–1309. [Google Scholar] [CrossRef]
- Schreiber, A.; Xiao, H.; Jennette, J.C.; Schneider, W.; Luft, F.C.; Kettritz, R. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 289–298. [Google Scholar] [CrossRef]
- Uozumi, R.; Iguchi, R.; Masuda, S.; Nishibata, Y.; Nakazawa, D.; Tomaru, U.; Ishizu, A. Pharmaceutical immunoglobulins reduce neutrophil extracellular trap formation and ameliorate the development of MPO-ANCA-associated vasculitis. Mod. Rheumatol. 2019, 30, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Kühnle, A.; Veelken, R.; Galuska, C.E.; Saftenberger, M.; Verleih, M.; Schuppe, H.C.; Rudloff, S.; Kunz, C.; Galuska, S.P. Polysialic acid interacts with lactoferrin and supports its activity to inhibit the release of neutrophil extracellular traps. Carbohydr. Polym. 2019, 208, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Okubo, K.; Kamiya, M.; Urano, Y.; Nishi, H.; Herter, J.M.; Mayadas, T.; Hirohama, D.; Suzuki, K.; Kawakami, H.; Tanaka, M.; et al. Lactoferrin Suppresses Neutrophil Extracellular Traps Release in Inflammation. eBioMedicine 2016, 10, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, A.; Libby, P.; Soehnlein, O.; Aramburu, I.V.; Papayannopoulos, V.; Silvestre-Roig, C. Neutrophil extracellular traps: From physiology to pathology. Cardiovasc. Res. 2021, 118, 2737–2753. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Yamada, M.; Sudo, Y.; Kojima, T.; Tomiyasu, T.; Yoshikawa, N.; Oda, T.; Yamada, M. Myeloperoxidase anti-neutrophil cytoplasmic antibody affinity is associated with the formation of neutrophil extracellular traps in the kidney and vasculitis activity in myeloperoxidase anti-neutrophil cytoplasmic antibody-associated microscopic polyangiitis. Nephrology 2016, 21, 624–629. [Google Scholar] [CrossRef]
- Sangaletti, S.; Tripodo, C.; Chiodoni, C.; Guarnotta, C.; Cappetti, B.; Casalini, P.; Piconese, S.; Parenza, M.; Guiducci, C.; Vitali, C.; et al. Neutrophil Extracellular Traps Mediate Transfer of Cytoplasmic Neutrophil Antigens to Myeloid Dendritic Cells Toward ANCA Induction and Associated Autoimmunity. Blood 2012, 120, 3007–3018. [Google Scholar] [CrossRef] [PubMed]
- Grayson, P.C.; Kaplan, M.J. At the Bench: Neutrophil Extracellular Traps (NETs) Highlight Novel Aspects of Innate Immune System Involvement in Autoimmune Diseases. J. Leukoc. Biol. 2016, 99, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Yang, X.; Chatterjee, V.; Meegan, J.E.; Beard, R.S., Jr.; Yuan, S.Y. Role of Neutrophil Extracellular Traps and Vesicles in Regulating Vascular Endothelial Permeability. Front. Immunol. 2019, 10, 1037. [Google Scholar] [CrossRef]
- Wilde, B.; van Paassen, P.; Witzke, O.; Tervaert, J.W.C. New pathophysiological insights and treatment of ANCA-associated vasculitis. Kidney Int. 2011, 79, 599–612. [Google Scholar] [CrossRef]
- Shi, L. Anti-neutrophil cytoplasmic antibody-associated vasculitis: Prevalence, treatment, and outcomes. Rheumatol. Int. 2017, 37, 1779–1788. [Google Scholar] [CrossRef]
- Wallace, Z.S.; Miloslavsky, E.M. Management of ANCA associated vasculitis. BMJ 2020, 368, m421. [Google Scholar] [CrossRef] [PubMed]
- Quintana, L.F.; Kronbichler, A.; Blasco, M.; Zhao, M.H.; Jayne, D. ANCA associated vasculitis: The journey to complement-targeted therapies. Mol. Immunol. 2019, 112, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Sakai, R.; Kondo, T.; Kurasawa, T.; Nishi, E.; Okuyama, A.; Chino, K.; Shibata, A.; Okada, Y.; Takei, H.; Nagasawa, H.; et al. Current clinical evidence of tocilizumab for the treatment of ANCA-associated vasculitis: A prospective case series for microscopic polyangiitis in a combination with corticosteroids and literature review. Clin. Rheumatol. 2017, 36, 2383–2392. [Google Scholar] [CrossRef] [PubMed]
- Monogioudi, E.; Sheldon, J.; Meroni, P.L.; Hutu, D.P.; Schimmel, H.; Zegers, I. Certified reference material against PR3 ANCA IgG autoantibodies. From development to certification. Clin. Chem. Lab. Med. 2019, 57, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Gapud, E.; Seo, P.; Antiochos, B. ANCA-Associated Vasculitis Pathogenesis: A Commentary. Curr. Rheumatol. Rep. 2017, 19, 15. [Google Scholar] [CrossRef]
- van der Geest, K.S.M.; Brouwer, E.; Sanders, J.S.; Sandovici, M.; Bos, N.A.; Boots, A.M.H.; Abdulahad, W.H.; Stegeman, C.A.; Kallenberg, C.G.M.; Heeringa, P.; et al. Towards precision medicine in ANCA-associated vasculitis. Rheumatology 2017, 57, 1332–1339. [Google Scholar] [CrossRef]
- Cornec, D.; Gall, E.C.L.; Fervenza, F.C.; Specks, U. ANCA-associated vasculitis—Clinical utility of using ANCA specificity to classify patients. Nat. Rev. Rheumatol. 2016, 12, 570–579. [Google Scholar] [CrossRef]
- Franssen, C.F.M.; Huitema, M.G.; Kobold, A.C.M.; Oost-Kort, W.W.; Limburg, P.C.; Tiebosch, A.; Stegeman, C.A.; Kallenberg, C.G.M.; Tervaert, J.W.C. In Vitro Neutrophil Activation by Antibodies to Proteinase 3 and Myeloperoxidase from Patients with Crescentic Glomerulonephritis. J. Am. Soc. Nephrol. 1999, 10, 1506–1515. [Google Scholar] [CrossRef]
- Moodie, F.D.; Leaker, B.; Cambridge, G.; Totty, N.F.; Segal, A.W. Alpha-enolase: A Novel Cytosolic Autoantigen in ANCA Positive Vasculitis. Kidney Int. 1993, 43, 675–681. [Google Scholar] [CrossRef]
- Yu, F.; Chen, M.; Gao, Y.; Wang, S.X.; Zou, W.Z.; Zhao, M.H.; Wang, H.Y. Clinical and Pathological Features of Renal Involvement in Propylthiouracil-Associated ANCA-Positive Vasculitis. Am. J. Kidney Dis. 2007, 49, 607–614. [Google Scholar] [CrossRef]
- Suzuki, K.; Nagao, T.; Itabashi, M.; Hamano, Y.; Sugamata, R.; Yamazaki, Y.; Yumura, W.; Tsukita, S.; Wang, P.C.; Nakayama, T.; et al. A Novel Autoantibody Against Moesin in the Serum of Patients with MPO-ANCA-Associated Vasculitis. Nephrol. Dial. Transplant. 2014, 29, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Suzuki, K.; Utsunomiya, K.; Matsumura, M.; Saiga, K.; Wang, P.C.; Minamitani, H.; Aratani, Y.; Nakayama, T.; Suzuki, K. Direct Activation of Glomerular Endothelial Cells by Anti-Moesin Activity of Anti-Myeloperoxidase Antibody. Nephrol. Dial. Transplant. 2011, 26, 2752–2760. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, A.; Tanino, Y.; Sato, S.; Ishii, T.; Nikaido, T.; Kanazawa, K.; Saito, J.I.; Ishida, T.; Kanno, M.; Watanabe, T.; et al. Systemic Vasculitis Associated with Anti-Neutrophil Cytoplasmic Antibodies Against Bactericidal/Permeability Increasing Protein. Intern. Med. 2013, 52, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Guchelaar, N.A.; Waling, M.M.; Adhin, A.A.; van Daele, P.L.; Schreurs, M.W.; Rombach, S.M. The value of anti-neutrophil cytoplasmic antibodies (ANCA) testing for the diagnosis of ANCA-associated vasculitis, a systematic review and meta-analysis. Autoimmun. Rev. 2021, 20, 102716. [Google Scholar] [CrossRef] [PubMed]
- Csernok, E. New concepts in ANCA detection and disease classification in small vessel vasculitis: The role of ANCA antigen specificity. Mediterr. J. Rheumatol. 2018, 29, 17–20. [Google Scholar] [CrossRef]
- Dalpé, G.; Fernandes, F.; Richard, C.; Boire, G.; Ménard, H.A. Heterogeneity of ANCA Sera Showing Atypical, Peripheral and Classical Cytoplasmic Immunofluorescence Patterns. In Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 1993; pp. 239–243. [Google Scholar] [CrossRef]
- van Beers, J.J.B.C.; Vanderlocht, J.; Roozendaal, C.; Damoiseaux, J. Detection of Anti-neutrophil Cytoplasmic Antibodies (ANCA) by Indirect Immunofluorescence. In Autoantibodies; Springer: New York, NY, USA, 2018; pp. 47–62. [Google Scholar] [CrossRef]
- Moiseev, S.; Tervaert, J.W.C.; Arimura, Y.; Bogdanos, D.P.; Csernok, E.; Damoiseaux, J.; Ferrante, M.; Flores-Suárez, L.F.; Fritzler, M.J.; Invernizzi, P.; et al. 2020 international consensus on ANCA testing beyond systemic vasculitis. Autoimmun. Rev. 2020, 19, 102618. [Google Scholar] [CrossRef] [PubMed]
- Savige, J.; Gillis, D.; Benson, E.; Davies, D.; Esnault, V.; Falk, R.J.; Hagen, E.C.; Jayne, D.; Jennette, J.C.; Paspaliaris, B.; et al. International Consensus Statement on Testing and Reporting of Antineutrophil Cytoplasmic Antibodies (ANCA). Am. J. Clin. Pathol. 1999, 111, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Suwanchote, S.; Rachayon, M.; Rodsaward, P.; Wongpiyabovorn, J.; Deekajorndech, T.; Wright, H.L.; Edwards, S.W.; Beresford, M.W.; Rerknimitr, P.; Chiewchengchol, D. Anti-neutrophil cytoplasmic antibodies and their clinical significance. Clin. Rheumatol. 2018, 37, 875–884. [Google Scholar] [CrossRef]
- Savige, J.; Trevisin, M.; Pollock, W. Testing and reporting antineutrophil cytoplasmic antibodies (ANCA) in treated vasculitis and non-vasculitic disease. J. Immunol. Methods 2018, 458, 1–7. [Google Scholar] [CrossRef]
- Kempiners, N.; Mahrhold, J.; Hellmich, B.; Csernok, E. Evaluation of PR3- and MPO-ANCA line and dot immunoassays in ANCA-associated vasculitis. Rheumatology 2020, 60, 4390–4394. [Google Scholar] [CrossRef]
- Csernok, E.; Damoiseaux, J.; Rasmussen, N.; Hellmich, B.; van Paassen, P.; Vermeersch, P.; Blockmans, D.; Tervaert, J.W.C.; Bossuyt, X. Evaluation of automated multi-parametric indirect immunofluorescence assays to detect anti-neutrophil cytoplasmic antibodies (ANCA) in granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). Autoimmun. Rev. 2016, 15, 736–741. [Google Scholar] [CrossRef]
- Shovman, O.; Agmon-Levin, N.; Gilburd, B.; Martins, T.; Petzold, A.; Matthias, T.; Shoenfeld, Y. A fully automated IIF system for the detection of antinuclear antibodies and antineutrophil cytoplasmic antibodies. Immunol. Res. 2014, 61, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Damoiseaux, J.; Csernok, E.; Rasmussen, N.; Moosig, F.; van Paassen, P.; Baslund, B.; Vermeersch, P.; Blockmans, D.; Tervaert, J.W.C.; Bossuyt, X. Detection of antineutrophil cytoplasmic antibodies (ANCAs): A multicentre European Vasculitis Study Group (EUVAS) evaluation of the value of indirect immunofluorescence (IIF) versus antigen-specific immunoassays. Ann. Rheum. Dis. 2016, 76, 647–653. [Google Scholar] [CrossRef]
- Renuncio-García, M.; Calvo-Río, V.; Benavides-Villanueva, F.; Fazazi, S.A.; Rodríguez-Vidriales, M.; Escagedo-Cagigas, C.; Martín-Penagos, L.; Irure-Ventura, J.; López-Hoyos, M.; Blanco, R. ANCA detection with solid phase chemiluminescence assay: Diagnostic and severity association in vasculitis. Immunol. Res. 2023. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, X.; Tervaert, J.W.C.; Arimura, Y.; Blockmans, D.; Flores-Suárez, L.F.; Guillevin, L.; Hellmich, B.; Jayne, D.; Jennette, J.C.; Kallenberg, C.G.M.; et al. Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat. Rev. Rheumatol. 2017, 13, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Baggiolini, M.; Bretz, U.; Dewald, B.; Feigenson, M.E. The Polymorphonuclear Leukocyte. Agents Actions 1978, 8, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, A.B.; Espinosa, R.I.; Hoidal, J.R.; Le Beau, M.M. Localization of the Gene Encoding Proteinase-3 (the Wegener’s Granulomatosis Autoantigen) to Human Chromosome Band 19p13.3. Cytogenet. Cell Genet. 1993, 64, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Gencik, M.; Meller, S.; Borgmann, S.; Fricke, H. Proteinase 3 Gene Polymorphisms and Wegener’s Granulomatosis. Kidney Int. 2000, 58, 2473–2477. [Google Scholar] [CrossRef] [PubMed]
- Specks, U. Epitope-specific anti-neutrophil cytoplasmic antibodies: Do they matter? Can they be detected? APMIS 2009, 117, 63–66. [Google Scholar] [CrossRef]
- Hunter, R.W.; Welsh, N.; Farrah, T.E.; Gallacher, P.J.; Dhaun, N. ANCA associated vasculitis. BMJ 2020, 369, m1070. [Google Scholar] [CrossRef]
- Basu, N.; Watts, R.; Bajema, I.; Baslund, B.; Bley, T.; Boers, M.; Brogan, P.; Calabrese, L.; Cid, M.C.; Cohen-Tervaert, J.W.; et al. EULAR points to consider in the development of classification and diagnostic criteria in systemic vasculitis. Ann. Rheum. Dis. 2010, 69, 1744–1750. [Google Scholar] [CrossRef] [PubMed]
- Suresh, E. Diagnostic approach to patients with suspected vasculitis. Postgrad. Med. J. 2006, 82, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Guggenberger, K.V.; Bley, T.A. Imaging in Vasculitis. Curr. Rheumatol. Rep. 2020, 22, 34. [Google Scholar] [CrossRef] [PubMed]
- Gaffo, A.L. Diagnostic Approach to ANCA-associated Vasculitides. Rheum. Dis. Clin. N. Am. 2010, 36, 491–506. [Google Scholar] [CrossRef]
- Damoiseaux, J. ANCA testing in clinical practice: From implementation to Quality Control and Harmonization. Front. Immunol. 2021, 12, 656796. [Google Scholar] [CrossRef]
- Sinico, R.A.; Radice, A. Antineutrophil cytoplasmic antibodies (ANCA) testing: Detection methods and clinical application. Clin. Exp. Rheumatol. 2014, 32, S112–S117. [Google Scholar]
PR3 (%) | MPO (%) | Negative (%) | |
---|---|---|---|
GPA | 80 | 15 | 5 |
MPA | 20 | 70 | 10 |
EGPA | 5 | 35 | 60 |
Feature | GPA | MPA | EGPA |
---|---|---|---|
Epidemiology | 130 cases/million | 20 cases/million | 1–3 cases/million |
ANCA(+) | 80–90% | 60–80% | 30–40% |
ANCA antigen specificity | PR3 > MPO | MPO > PR3 | MPO > PR3 |
Histology | Granulomatous inflammation, tissue necrosis, small–medium-vessel vasculitis, renal-biopsy focal-segmental-necrotising glomerulonephritis with crescent formation, skin-biopsy leukocytoclastic vasculitis | Leukocytoclastic vasculitis, no granulomatous inflammation | Tissue eosinophilia, necrotising vasculitis, eosinophil-rich granulomatous inflammation |
Upper-respiratory-tract involvement | Nasal septal perforation, saddle-nose deformity, conductive or sensorineural hearing loss, subglottic stenosis (90%) | Absent or mild | Nasal polyps, allergic rhinitis, conductive hearing loss (70%) |
Lower-respiratory-tract involvement | Nodules, infiltrates, or cavitary lesions, alveolar haemorrhage, cough, shortness of breath, chest pain (50–90%) | Shortness of breath, exertion dyspnoea, cough, expectoration of sputum with blood, alveolar haemorrhage (10–30%) | Asthma (>95%), fleeting infiltrates, alveolar haemorrhage |
Cardiac involvement | Granulomas, effusion of pericardium, pericarditis, myocarditis, arrhythmias, increased risk of coronary artery disease and acute coronary syndrome, congestive heart failure (6–44%) | Pericarditis, cardiac failure (3%) | Pericarditis, cardiac tamponade, cardiomyopathy, arrhythmias, myocardial infarction, valvular disease (44%) |
Renal involvement | Segmental necrotising glomerulonephritis with symptoms of nephritic syndrome, rare granulomatous features, abnormal urine tests (75%) | Segmental necrotising glomerulonephritis, reduced urine output, swelling in the lower extremities and face, elevated blood pressure, proteinuria (80–90%) | Segmental necrotising glomerulonephritis (40%) |
Skin involvement | Palpable purpura (40%), cutaneous ulceration | Purpuric rash, nailed infarcts, splinter haemorrhages, livedo, ulceration (60%) | Palpable purpura (40–70%), cutaneous or subcutaneous nodules (30%) |
Gastrointestinal involvement | Abdominal pain, diarrhoea, nausea, vomiting, bleeding (10%) | Abdominal pain, diarrhoea, gastrointestinal bleeding (30%) | Abdominal pain, diarrhoea, nausea, vomiting, bleeding (30%) |
Nervous system involvement | Vasculitic neuropathy (10%) | Vasculitic neuropathy (30%) | Vasculitic neuropathy (80%) |
Eye involvement | Orbital pseudotumour, scleritis (risk of scleromalacia perforans), episcleritis, uveitis (50%) | Scleritis, episcleritis, uveitis, optic neuropathy, orbital granulomata (20%) | Occasional eye disease: scleritis, episcleritis, uveitis, retinal vasculitis, exophthalmos |
Diagnosis criteria | Typical histopathological pattern: characteristic pulmonary or urinary sediment changes, presence of PR3-ANCA | Typical clinical manifestations: typical histopathological pattern, presence of MPO-ANCA | Typical clinical manifestations: typical histopathological pattern, Lanham diagnostic criteria |
ANCA Staining Pattern | Target Antigens | Associated Diseases |
---|---|---|
C-ANCA | PR3 | GPA > MPA Pauci-immune crescentic glomerulonephritis EGPA Infective endocarditis Amoeba infection Normal individual |
P-ANCA | MPO > PR3 Other | MPA > EGPA > GPA Inflammatory bowel disease Cystic fibrosis Pauci-immune crescentic glomerulonephritis Primary sclerosing cholangitis Normal individual |
A-ANCA | Multiple antigens | Inflammatory bowel disease Arthritis Drug-induced vasculitis Primary sclerosing cholangitis Autoimmune hepatitis Cocaine Hydralazine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walulik, A.; Łysak, K.; Błaszkiewicz, M.; Górecki, I.; Gomułka, K. The Role of Neutrophils in ANCA-Associated Vasculitis: The Pathogenic Role and Diagnostic Utility of Autoantibodies. Int. J. Mol. Sci. 2023, 24, 17217. https://doi.org/10.3390/ijms242417217
Walulik A, Łysak K, Błaszkiewicz M, Górecki I, Gomułka K. The Role of Neutrophils in ANCA-Associated Vasculitis: The Pathogenic Role and Diagnostic Utility of Autoantibodies. International Journal of Molecular Sciences. 2023; 24(24):17217. https://doi.org/10.3390/ijms242417217
Chicago/Turabian StyleWalulik, Agata, Kinga Łysak, Michał Błaszkiewicz, Ignacy Górecki, and Krzysztof Gomułka. 2023. "The Role of Neutrophils in ANCA-Associated Vasculitis: The Pathogenic Role and Diagnostic Utility of Autoantibodies" International Journal of Molecular Sciences 24, no. 24: 17217. https://doi.org/10.3390/ijms242417217
APA StyleWalulik, A., Łysak, K., Błaszkiewicz, M., Górecki, I., & Gomułka, K. (2023). The Role of Neutrophils in ANCA-Associated Vasculitis: The Pathogenic Role and Diagnostic Utility of Autoantibodies. International Journal of Molecular Sciences, 24(24), 17217. https://doi.org/10.3390/ijms242417217