Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology Characteristics
2.2. Pb2+ Absorption Experiments
2.2.1. Effect of Solution pH
2.2.2. Absorption Kinetics
2.2.3. Absorption Isotherms
2.2.4. Reusability Studies
2.2.5. Effect of Coexisting Alkali Metal Ions
2.3. Absorption Mechanisms
2.3.1. FTIR Analysis
2.3.2. XRD Analysis
2.3.3. XPS Analysis
2.3.4. Relative Distributions of Absorption Mechanisms
3. Materials and Methods
3.1. Materials
3.2. Preparation of Magnetic Biochar
3.3. Characterization of the Biochars
3.4. Absorption Experiment
3.5. Model Fitting
3.6. Quantitative Analysis of the Different Absorption Mechanisms
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, H.; Shahab, A.; Li, J.; Xi, B.; Sun, X.; He, H.; Yu, G. Distribution, ecological risk assessment and source identification of heavy metals in surface sediments of Huixian karst wetland, China. Ecotoxicol. Environ. Saf. 2019, 185, 109700. [Google Scholar] [CrossRef] [PubMed]
- Tume, P.; Barrueto, K.; Olguin, M.; Torres, J.; Cifuentes, J.; Ferraro, F.X.; Roca, N.; Bech, J.; Cornejo, O. The influence of the industrial area on the pollution outside its borders: A case study from Quintero and Puchuncavi districts, Chile. Environ. Geochem. Health 2020, 42, 2557–2572. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Halim, S.H.; Shehata, A.M.A.; El-Shahat, M.F. Removal of lead ions from industrial waste water by different types of natural materials. Water Res. 2003, 37, 1678–1683. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Wan, X.; Zhou, T.; Wang, L.; Yin, X.; Ma, A.; Wang, N. Novel Zn-Fe engineered kiwi branch biochar for the removal of Pb(II) from aqueous solution. J. Hazard. Mater. 2022, 424, 127349. [Google Scholar] [CrossRef]
- Dong, J.; Shen, L.; Shan, S.; Liu, W.; Qi, Z.; Liu, C.; Gao, X. Optimizing magnetic functionalization conditions for efficient preparation of magnetic biochar and adsorption of Pb(II) from aqueous solution. Sci. Total Environ. 2022, 806, 151442. [Google Scholar] [CrossRef]
- Amrulloh, H.; Kurniawan, Y.S.; Ichsan, C.; Jelita, J.; Simanjuntak, W.; Situmeang, R.T.M.; Krisbiantoro, P.A. Highly efficient removal of Pb(II) and Cd(II) ions using magnesium hydroxide nanostructure prepared from seawater bittern by electrochemical method. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127687. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Hayder, G.; Baloo, L.; Ghaleb, A.A.S.; Lawal, I.M.; Abubakar, S.; Al-dhawi, B.N.S.; Almahbashi, N.M.Y.; Umaru, I. Degradation of Cd, Cu, Fe, Mn, Pb and Zn by Moringa-oleifera, zeolite, ferric-chloride, chitosan and alum in an industrial effluent. Ain Shams Eng. J. 2021, 12, 57–64. [Google Scholar] [CrossRef]
- Bora, A.J.; Dutta, R.K. Removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J. Water Process Eng. 2019, 31, 100839. [Google Scholar] [CrossRef]
- Fang, Y.; Ren, G.; Ma, Y.; Wang, C.; Li, M.; Pang, X.; Pan, Q.; Li, J. Adsorption and reutilization of Pb(II) based on acid-resistant metal-organic gel. Sep. Purif. Technol. 2022, 295, 121253. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zheng, S.; Chen, X.; Lu, D.; Zeng, Z. Alkaline aging significantly affects Mn(II) adsorption capacity of polypropylene microplastics in water environments: Critical roles of natural organic matter and colloidal particles. J. Hazard. Mater. 2022, 438, 129568. [Google Scholar] [CrossRef]
- Mu, R.; Liu, B.; Chen, X.; Wang, N.; Yang, J. Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environ. Technol. Innov. 2020, 20, 101107. [Google Scholar] [CrossRef]
- Orucoglu, E.; Tournassat, C.; Robinet, J.-C.; Made, B.; Lundy, M. From experimental variability to the sorption related retention parameters necessary for performance assessment models for nuclear waste disposal systems: The example of Pb adsorption on clay minerals. Appl. Clay Sci. 2018, 163, 20–32. [Google Scholar] [CrossRef]
- Mercado-Borrayo, B.M.; Contreras, R.; Sanchez, A.; Font, X.; Schouwenaars, R.; Ramirez-Zamora, R.M. Optimisation of the removal conditions for heavy metals from water: A comparison between steel furnace slag and CeO2 nanoparticles. Arab. J. Chem. 2020, 13, 1712–1719. [Google Scholar] [CrossRef]
- Rajendran, S.; Priya, A.K.; Kumar, P.S.; Hoang, T.K.A.; Sekar, K.; Chong, K.Y.; Khoo, K.S.; Ng, H.S.; Show, P.L. A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review. Chemosphere 2022, 303, 135146. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, B.; Lee, X.; Lehmann, J.; Gao, B. Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH. Sci. Total Environ. 2018, 634, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Li, J.; Niazi, N.K.; Muller, K.; Chu, Y.; Zhang, L.; Yuan, G.; Lu, K.; Song, Z.; Wang, H. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ. Sci. Pollut. Res. 2016, 23, 22890–22896. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wang, S.-L.; Zheng, L.; Chen, D.; Wu, Z.; Xie, Y.; Wu, W.; Niazi, N.K.; Ok, Y.S.; Rinklebe, J.; et al. Sorption of lead in soil amended with coconut fiber biochar: Geochemical and spectroscopic investigations. Geoderma 2019, 350, 52–60. [Google Scholar] [CrossRef]
- Wang, S.Y.; Tang, Y.K.; Chen, C.; Wu, J.T.; Huang, Z.N.; Mo, Y.Y.; Zhang, K.X.; Chen, J.B. Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal. Bioresour. Technol. 2015, 186, 360–364. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, H.; Shahab, A.; Zeng, H.; Zeng, H.; Bacha, A.-U.-R.; Nabi, I.; Siddique, J.; Ullah, H. Efficient performance of magnesium oxide loaded biochar for the significant removal of Pb2+ and Cd2+ from aqueous solution. Ecotoxicol. Environ. Saf. 2021, 221, 112426. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Bi, L.; Song, X.; Luo, H.; Ji, P.; Lin, Q.; Liu, Q.; Tang, G. Adsorption of Cd(II) from aqueous solution by Pennisetum sp. straw biochars derived from different modification methods. Environ. Sci. Pollut. Res. 2019, 26, 7024–7032. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Deng, H.; Wang, L.; Huang, T.; Liu, S.; Wang, J. Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J. 2018, 335, 22–31. [Google Scholar] [CrossRef]
- Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 2012, 211, 317–331. [Google Scholar] [CrossRef]
- Meepho, M.; Sirimongkol, W.; Ayawanna, J. Samaria-doped ceria nanopowders for heavy metal removal from aqueous solution. Mater. Chem. Phys. 2018, 214, 56–65. [Google Scholar] [CrossRef]
- Recillas, S.; Garcia, A.; Gonzalez, E.; Casals, E.; Puntes, V.; Sanchez, A.; Font, X. Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water Toxicity of nanoparticles and derived compounds. Desalination 2011, 277, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, P.R.; Satrio, J.A.; Brown, R.C.; Shanks, B.H. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour. Technol. 2010, 101, 4646–4655. [Google Scholar] [CrossRef]
- Mian, M.M.; Liu, G.J.; Yousaf, B.; Fu, B.; Ullah, H.; Ali, M.U.; Abbas, Q.; Munir, M.A.M.; Ruijia, L. Simultaneous functionalization and magnetization of biochar via NH3 ambiance pyrolysis for efficient removal of Cr (VI). Chemosphere 2018, 208, 712–721. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, V.C. Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ. Pollut. 2020, 259, 113822. [Google Scholar] [CrossRef]
- Mei, Y.L.; Xu, J.; Zhang, Y.; Li, B.; Fan, S.S.; Xu, H.C. Effect of Fe-N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution. Bioresour. Technol. 2021, 325, 124732. [Google Scholar] [CrossRef]
- Ren, J.; Li, N.; Li, L.; An, J.K.; Zhao, L.; Ren, N.Q. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water. Bioresour. Technol. 2015, 178, 119–125. [Google Scholar] [CrossRef]
- Gupta, A.D.; Giri, B.S.; Rene, E.R.; Chaturvedi, P.; Goswami, M.; Singh, H. Batch and continuous reactor studies for the adsorption of As(III) from wastewater using a hybrid biochar loaded with transition metal oxides: Kinetics and mass transfer analysis. Environ. Eng. Res. 2021, 26, 200438. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Qian, Q.R.; Machida, M.; Tatsumoto, H. Effect of ZnO loading to activated carbon on Pb(II) adsorption from aqueous solution. CARBON 2006, 44, 195–202. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, H.; Liu, K.; Zhang, Q.; Chen, K.-J. Biowaste-Derived Bimetallic Ru-MoOx Catalyst for the Direct Hydrogenation of Furfural to Tetrahydrofurfuryl Alcohol. Acs Sustain. Chem. Eng. 2019, 7, 12858–12866. [Google Scholar] [CrossRef]
- Schoenfelder, R.; Aviles, F.; Knupfer, M.; Azamar-Barrios, J.A.; Gonzalez-Chi, P.I.; Ruemmeli, M.H. Influence of architecture on the Raman spectra of acid-treated carbon nanostructures. J. Exp. Nanosci. 2014, 9, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Bao, D.; Li, Z.; Tang, R.; Wan, C.; Zhang, C.; Tan, X.; Liu, X. Metal-modified sludge-based biochar enhance catalytic capacity: Characteristics and mechanism. J. Environ. Manag. 2021, 284, 112113. [Google Scholar] [CrossRef]
- Huang, S.; Liang, Q.; Geng, J.; Luo, H.; Wei, Q. Sulfurized biochar prepared by simplified technic with superior adsorption property towards aqueous Hg(II) and adsorption mechanisms. Mater. Chem. Phys. 2019, 238, 121919. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Yu, H.; Li, Y.; Yuan, Q.; Xiao, H.; Li, F.; Pan, B. Using sewage sludge with high ash content for biochar production and Cu (II) sorption. Sci. Total Environ. 2020, 713, 136663. [Google Scholar] [CrossRef]
- Xu, C.-Y.; Li, Q.-R.; Geng, Z.-C.; Hu, F.-N.; Zhao, S.-W. Surface properties and suspension stability of low-temperature pyrolyzed biochar nanoparticles: Effects of solution chemistry and feedstock sources. Chemosphere 2020, 259, 127510. [Google Scholar] [CrossRef]
- Luo, S.; Qin, J.; Wu, Y.; Feng, F. Tetracycline adsorption on magnetic sludge biochar: Size effect of the Fe3O4 nanoparticles. R. Soc. Open Sci. 2022, 9, 210805. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Shen, F.; Li, T. Phosphate adsorption on lanthanum loaded biochar. Chemosphere 2016, 150, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Useviciute, L.; Baltrenaite, E. Methods for Determining Lignocellulosic Biochar Wettability. Waste Biomass Valorization 2020, 11, 4457–4468. [Google Scholar] [CrossRef]
- Moradi-Choghamarani, F.; Moosavi, A.A.; Sepaskhah, A.R.; Baghernejad, M. Physico-hydraulic properties of sugarcane bagasse-derived biochar: The role of pyrolysis temperature. Cellulose 2019, 26, 7125–7143. [Google Scholar] [CrossRef]
- Jayalakshmi, A.; Rajesh, S.; Senthilkumar, S.; Mohan, D. Epoxy functionalized poly(ether-sulfone) incorporated cellulose acetate ultrafiltration membrane for the removal of chromium ions. Sep. Purif. Technol. 2012, 90, 120–132. [Google Scholar] [CrossRef]
- Lundy, R.; Byrne, C.; Bogan, J.; Nolan, K.; Collins, M.N.; Dalton, E.; Enright, R. Exploring the Role of Adsorption and Surface State on the Hydrophobicity of Rare Earth Oxides. Acs Appl. Mater. Interfaces 2017, 9, 13751–13760. [Google Scholar] [CrossRef]
- Seo, J.; Moon, J.; Kim, J.H.; Lee, K.; Hwang, J.; Yoon, H.; Yi, D.K.; Paik, U. Role of the oxidation state of cerium on the ceria surfaces for silicate adsorption. Appl. Surf. Sci. 2016, 389, 311–315. [Google Scholar] [CrossRef]
- Tan, G.; Liu, Y.; Xiao, D. Preparation of manganese oxides coated porous carbon and its application for lead ion removal. Carbohydr. Polym. 2019, 219, 306–315. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wang, H. Pb(II) sorption from aqueous solution by novel biochar loaded with nano-particles. Chemosphere 2018, 192, 1–4. [Google Scholar] [CrossRef]
- Song, J.-M.; Chen, S.-Y.; Shen, Y.-L.; Tsai, C.-H.; Feng, S.-W.; Tung, H.-T.; Chen, I.-G. Effect of surface physics of metal oxides on the ability to form metallic nanowires. Appl. Surf. Sci. 2013, 285, 450–457. [Google Scholar] [CrossRef]
- Kumar, S.; Ahmed, F.; Ahmad, N.; Shaalan, N.M.; Kumar, R.; Alshoaibi, A.; Arshi, N.; Dalela, S.; Alvi, P.A.; Kumari, K. Influence of Fe and Cu Co-Doping on Structural, Magnetic and Electrochemical Properties of CeO2 Nanoparticles. Materials 2022, 15, 4119. [Google Scholar] [CrossRef]
- Jia, Y.; Zhang, Y.; Fu, J.; Yuan, L.; Li, Z.; Liu, C.; Zhao, D.; Wang, X. A novel magnetic biochar/MgFe-layered double hydroxides composite removing Pb2+ from aqueous solution: Isotherms, kinetics and thermodynamics. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 567, 278–287. [Google Scholar] [CrossRef]
- Yang, T.; Xu, Y.; Huang, Q.; Sun, Y.; Liang, X.; Wang, L. Removal mechanisms of Cd from water and soil using Fe-Mn oxides modified biochar. Environ. Res. 2022, 212, 113406. [Google Scholar] [CrossRef]
- Liang, T.; Li, L.; Zhu, C.; Liu, X.; Li, H.; Su, Q.; Ye, J.; Geng, B.; Tian, Y.; Sardar, M.F.; et al. Adsorption of As(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. Water 2020, 12, 2720. [Google Scholar] [CrossRef]
- Li, M.; Liu, H.; Chen, T.; Dong, C.; Sun, Y. Synthesis of magnetic biochar composites for enhanced uranium (VI) adsorption. Sci. Total Environ. 2019, 651, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wu, L.; Zeng, Y.; Jia, B.; Liang, L. Preparation of Ce-Ag bimetallic modified biochar composite for the efficient removal of sulfathiazole and its mechanism. Mater. Today Commun. 2022, 33, 104577. [Google Scholar] [CrossRef]
- Matharu, J.; Cabailh, G.; Lindsay, R.; Pang, C.L.; Grinter, D.C.; Skala, T.; Thornton, G. Reduction of thin-film ceria on Pt(111) by supported Pd nanoparticles probed with resonant photoemission. Surf. Sci. 2011, 605, 1062–1066. [Google Scholar] [CrossRef]
- Sun, C.; Chen, T.; Huang, Q.; Wang, J.; Lu, S.; Yan, J. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification. Environ. Sci. Pollut. Res. 2019, 26, 8902–8913. [Google Scholar] [CrossRef]
- Kypritidou, Z.; El-Bassi, L.; Jellali, S.; Kinigopoulou, V.; Tziritis, E.; Akrout, H.; Jeguirim, M.; Doulgeris, C. Lead removal from aqueous solutions by olive mill wastes derived biochar: Batch experiments and geochemical modelling. J. Environ. Manag. 2022, 318, 115562. [Google Scholar] [CrossRef]
- Tiwari, D.; Laldanwngliana, C.; Choi, C.-H.; Lee, S.M. Manganese-modified natural sand in the remediation of aquatic environment contaminated with heavy metal toxic ions. Chem. Eng. J. 2011, 171, 958–966. [Google Scholar] [CrossRef]
- Aran, D.; Antelo, J.; Fiol, S.; Macias, F. Influence of feedstock on the copper removal capacity of waste-derived biochars. Bioresour. Technol. 2016, 212, 199–206. [Google Scholar] [CrossRef]
- Wu, J.; Wang, T.; Wang, J.; Zhang, Y.; Pan, W.P. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Sci. Total Environ. 2021, 754, 142150. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Zhu, C. A new method of characterizing mass transfer controlling mechanism in pollutant adsorption from aqueous solutions. J. Mol. Liq. 2020, 301, 112455. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, H.; Zhu, R.; Zhan, X.; Yan, L. Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions. Environ. Sci. Pollut. Res. 2020, 27, 28132–28145. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, B.; Huang, H.; Zhao, N.; Zhang, M.; Cao, L. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Sci. Total Environ. 2020, 714, 112455. [Google Scholar] [CrossRef]
- Gao, L.-Y.; Deng, J.-H.; Huang, G.-F.; Li, K.; Cai, K.-Z.; Liu, Y.; Huang, F. Relative distribution of Cd2+ adsorption mechanisms on biochars derived from rice straw and sewage sludge. Bioresour. Technol. 2019, 272, 114–122. [Google Scholar] [CrossRef]
- Liu, P.; Rao, D.; Zou, L.; Teng, Y.; Yu, H. Capacity and potential mechanisms of Cd(II) adsorption from aqueous solution by blue algae-derived biochars. Sci. Total Environ. 2021, 767, 145447. [Google Scholar] [CrossRef]
- Sheng, G.; Wang, S.; Hu, J.; Lu, Y.; Li, J.; Dong, Y.; Wang, X. Adsorption of Pb(II) on diatomite as affected via aqueous solution chemistry and temperature. Colloids Surf. A-Physicochem. Eng. Asp. 2009, 339, 159–166. [Google Scholar] [CrossRef]
- Hou, J.; Ci, H.; Wang, P.; Wang, C.; Lv, B.; Miao, L.; You, G. Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca2+ and alginate on the aggregation of cerium oxide nanoparticles. J. Hazard. Mater. 2018, 360, 319–328. [Google Scholar] [CrossRef]
- El-Deen, G.E.S.; El-Deen, S.E.A.S. Kinetic and isotherm studies for adsorption of Pb(II) from aqueous solution onto coconut shell activated carbon. Desalin. Water Treat. 2016, 57, 28910–28931. [Google Scholar] [CrossRef]
- Li, Q.; Gao, Y.; Lang, J.; Ding, W.; Yong, Y. Removal of Pb(II) and Cu(II) from aqueous solutions by ultraviolet irradiation-modified biochar. Desalin. Water Treat. 2017, 82, 179–187. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Sreekumari, S.S. Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef] [PubMed]
- Phuong-Thao, H.; Ngoc-Tuan, N.; Ha Nguyen, V.; Phuong-Tung, N.; Trinh Duy, N.; Van-Phuc, D. Modeling and optimization of biosorption of lead (II) ions from aqueous solution onto pine leaves (Pinus kesiya) using response surface methodology. Desalin. Water Treat. 2020, 173, 383–393. [Google Scholar] [CrossRef]
- Shi, S.; Xu, C.; Wang, X.; Xie, Y.; Wang, Y.; Dong, Q.; Zhu, L.; Zhang, G.; Xu, D. Electrospinning fabrication of flexible Fe3O4 fibers by sol-gel method with high saturation magnetization for heavy metal adsorption. Mater. Des. 2020, 186, 108298. [Google Scholar] [CrossRef]
- Zahedifar, M.; Seyedi, N.; Shafiei, S.; Basij, M. Surface-modified magnetic biochar: Highly efficient adsorbents for removal of Pb(II) and Cd(II). Mater. Chem. Phys. 2021, 271, 124860. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Wang, Z.; He, C.; Lyu, W.; Yan, W.; Yang, L. Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chem. Eng. J. 2018, 354, 623–632. [Google Scholar] [CrossRef]
- Tan, G.; Wu, Y.; Liu, Y.; Xiao, D. Removal of Pb(II) ions from aqueous solution by manganese oxide coated rice straw biochar—A low-cost and highly effective sorbent. J. Taiwan Inst. Chem. Eng. 2018, 84, 85–92. [Google Scholar] [CrossRef]
- Ji, Y.; Zheng, N.; An, Q.; Sun, S.; Wang, S.; Li, X.; Li, P.; Hua, X.; Dong, D.; Zhao, C.; et al. The effect of carbonization temperature on the capacity and mechanisms of Cd(II)-Pb(II) mix-ions adsorption by wood ear mushroom sticks derived biochar. Ecotoxicol. Environ. Saf. 2022, 239, 113646. [Google Scholar] [CrossRef]
- Yamada, S. Cation-pi interactions in organic crystals. Coord. Chem. Rev. 2020, 415, 213301. [Google Scholar] [CrossRef]
- Zhu, L.; Zhao, N.; Tong, L.; Lv, Y. Structural and adsorption characteristics of potassium carbonate activated biochar. Rsc Adv. 2018, 8, 21012–21019. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.-L.; Qiao, G.-L.; Zhao, F.; Wang, Y. Thermodynamic and kinetic parameters of ciprofloxacin adsorption onto modified coal fly ash from aqueous solution. J. Mol. Liq. 2011, 163, 53–56. [Google Scholar] [CrossRef]
- Zhao, D.; Qiu, S.K.; Li, M.M.; Luo, Y.; Zhang, L.S.; Feng, M.H.; Yuan, M.Y.; Zhang, K.Q.; Wang, F. Modified biochar improves the storage capacity and adsorption affinity of organic phosphorus in soil. Environ. Res. 2022, 205, 112455. [Google Scholar] [CrossRef] [PubMed]
Samples | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Size (nm) |
---|---|---|---|
MCB | 234.35 | 0.030 | 4.99 |
Ce-MCB | 246.32 | 0.070 | 5.14 |
Adsorbents | PFO | PSO | ||||
---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | |
MCB | 24.4702 | 0.00928 | 0.9429 | 26.4702 | 4.9319 × 10−4 | 0.9680 |
Ce-MCB | 108.7895 | 0.00657 | 0.9928 | 122.7613 | 6.3576 × 10−5 | 0.9985 |
Adsorbents | Intra-Particle Diffusion | ||
---|---|---|---|
R12 | R22 | R32 | |
MCB | 0.9312 | 0.9170 | 0.8942 |
Ce-MCB | 0.9714 | 0.9430 | 0.9492 |
Adsorbents | Elovich | ||
---|---|---|---|
α (mg·(g·min)−1) | β (g·mg−1) | R2 | |
MCB | −3.8882 | 4.1366 | 0.9528 |
Ce-MCB | −41.9298 | 21.3492 | 0.9696 |
Adsorbents | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
KL | Qm | R2 | n | KF | R2 | |
MCB | 0.04083 | 29.6060 | 0.9741 | 5.0132 | 8.4063 | 0.8975 |
Ce-MCB | 0.1253 | 140.8337 | 0.9928 | 5.3815 | 45.8808 | 0.8445 |
Materials | Qm (mg·g−1) | Concentration (mg·L−1) | Activation | Reference |
---|---|---|---|---|
Coconut skin fiber | 140.83 | 200 | Fe(NO3)3, Ce(NO3)2 | This work |
29.61 | 200 | Fe(NO3)3 | ||
Coconut shell | 26.14 | / | / | [69] |
49.92 | / | HPO3 | ||
Coconut shell | 66.86 | / | Ultraviolet (UV) | [70] |
Waste coconut buttons | 92.72 | 300 | / | [71] |
Pine leaves | 31.04 | / | / | [72] |
Precursor fibers | 22.95 | 100 | Fe3O4 | [73] |
Raw date leaves and stalks | 61.25 | 25 | HNO3, DDCFeCl2, FeCl3 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Shan, R.; Xiao, Y.; Zhao, F.; Yuan, H.; Chen, Y. Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. Int. J. Mol. Sci. 2023, 24, 1974. https://doi.org/10.3390/ijms24031974
Yang Y, Shan R, Xiao Y, Zhao F, Yuan H, Chen Y. Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. International Journal of Molecular Sciences. 2023; 24(3):1974. https://doi.org/10.3390/ijms24031974
Chicago/Turabian StyleYang, Yujia, Rui Shan, Yaoxin Xiao, Fengxiao Zhao, Haoran Yuan, and Yong Chen. 2023. "Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar" International Journal of Molecular Sciences 24, no. 3: 1974. https://doi.org/10.3390/ijms24031974
APA StyleYang, Y., Shan, R., Xiao, Y., Zhao, F., Yuan, H., & Chen, Y. (2023). Effect of CeO2-Reinforcement on Pb Absorption by Coconut Coir-Derived Magnetic Biochar. International Journal of Molecular Sciences, 24(3), 1974. https://doi.org/10.3390/ijms24031974