Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Silicon Naphthalocyanine Dyes SiNC(1–4)
2.2. Photophysical Characterization of SiNC(1–4) Dyes
2.3. Photophysical Characterization of SiNC(1–4) Dyes in Buffer
2.4. Photobleaching Studies
2.5. Cellular Uptake and PA Imaging
3. Discussion
4. Materials and Methods
4.1. Synthesis of Silicon Naphthalocyanine Dyes
4.1.1. Preparation of Compound 1
4.1.2. Preparation of Compound 2
4.1.3. Preparation of Compound 3
4.1.4. Preparation of Compound 4
4.2. UV-Visible Spectroscopy
4.3. Photobleaching Studies (Photostability)
4.4. Photoacoustic Measurements
4.5. Oral Squamous Cell Carcinoma Line (Cal 27) Culture
4.6. Preparation of Tumor Cell Phantom Gelatin Molds for PA Imaging
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Y.; Yao, J.; Wang, L. Tutorial on photoacoustic tomography. J. Biomed. Opt. 2016, 21, 061007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.E.; Wang, T.Y.; Willmann, J.K. Acoustic and Photoacoustic Molecular Imaging of Cancer. J. Nucl. Med. 2013, 54, 1851–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.S.; Bi, R.; Ntziachristos, V.; Olivo, M. A review of clinical photoacoustic imaging: Current and future trends. Photoacoustics 2019, 16, 100144. [Google Scholar] [CrossRef] [PubMed]
- Mallidi, S.; Luke, G.P.; Emelianov, S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011, 29, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.; DeLuna, F.; Anastasio, M.A.; Ye, J.Y.; Brey, E.M. Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine. Tissue Eng. Part B Rev. 2020, 26, 79–102. [Google Scholar] [CrossRef]
- Qiu, T.; Lan, Y.; Gao, W.; Zhou, M.; Liu, S.; Huang, W.; Zeng, S.; Pathak, J.L.; Yang, B.; Zhang, J. Photoacoustic imaging as a highly efficient and precise imaging strategy for the evaluation of brain diseases. Quant. Imaging Med. Surg. 2021, 11, 2169–2186. [Google Scholar] [CrossRef]
- Wang, D.; Wu, Y.; Xia, J. Review on photoacoustic imaging of the brain using nanoprobes. Neurophotonics 2016, 3, 010901. [Google Scholar] [CrossRef] [Green Version]
- Tsang, V.T.C.; Li, X.; Wong, T.T.W. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. Sensors 2020, 20, 5595. [Google Scholar] [CrossRef]
- Nyayapathi, N.; Xia, J. Photoacoustic imaging of breast cancer: A mini review of system design and image features. J. Biomed. Opt. 2019, 24, 121911. [Google Scholar] [CrossRef]
- Lin, L.; Wang, L.V. The emerging role of photoacoustic imaging in clinical oncology. Nat. Rev. Clin. Oncol. 2022, 19, 365–384. [Google Scholar] [CrossRef]
- Wu, D.; Huang, L.; Jiang, M.S.; Jiang, H. Contrast Agents for Photoacoustic and Thermoacoustic Imaging: A Review. Int. J. Mol. Sci. 2014, 15, 23616–23639. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Zhu, R.; Song, J.; Yang, H.; Chen, X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. Adv. Mater. 2019, 31, 1805875. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Beard, P.C.; Bohndiek, S.E. Contrast agents for molecular photoacoustic imaging. Nat. Methods 2016, 13, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishio, N.; van den Berg, N.S.; Martin, B.A.; van Keulen, S.; Fakurnejad, S.; Rosenthal, E.L.; Wilson, K.E. Photoacoustic Molecular Imaging for the Identification of Lymph Node Metastasis in Head and Neck Cancer Using an Anti-EGFR Antibody–Dye Conjugate. J. Nucl. Med. 2021, 62, 648–655. [Google Scholar] [CrossRef]
- Tummers, W.S.; Miller, S.E.; Teraphongphom, N.T.; Gomez, A.; Steinberg, I.; Huland, D.M.; Hong, S.; Kothapalli, S.-R.; Hasan, A.; Ertsey, R.; et al. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann. Surg. Oncol. 2018, 25, 1880–1888. [Google Scholar] [CrossRef]
- Chen, J.; Gao, Z.; Li, G.; Wang, T.D. Dual-modal in vivo fluorescence and photoacoustic imaging using a heterodimeric peptide. Chem. Commun. 2018, 54, 13196–13199. [Google Scholar] [CrossRef]
- Park, E.-Y.; Oh, D.; Park, S.; Kim, W.; Kim, C. New contrast agents for photoacoustic imaging and theranostics: Recent 5-year overview on phthalocyanine/naphthalocyanine-based nanoparticles. APL Bioeng. 2021, 5, 031510. [Google Scholar] [CrossRef]
- Chitgupi, U.; Lovell, J.F. Naphthalocyanines as contrast agents for photoacoustic and multimodal imaging. Biomed. Eng. Lett. 2018, 8, 215–221. [Google Scholar] [CrossRef]
- Gathje, J.; Steuer, R.R.; Nicholes, K.R. Stability studies on indocyanine green dye. J. Appl. Physiol. 1970, 29, 181–185. [Google Scholar] [CrossRef]
- Ebert, B.; Sukowski, U.; Riefke, B.; Licha, K. Cyanine dyes as contrast agents for near-infrared imaging in vivo: Acute tolerance, pharmacokinetics, and fluorescence imaging. J. Biomed. Opt. 2011, 16, 066003. [Google Scholar] [CrossRef]
- Landsman, M.L.; Kwant, G.; Mook, G.A.; Zijlstra, W.G. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 1976, 40, 575–583. [Google Scholar] [CrossRef]
- Mordon, S.; Devoisselle, J.M.; Soulie-Begu, S.; Desmettre, T. Indocyanine Green: Physicochemical Factors Affecting Its Fluorescencein Vivo. Microvasc. Res. 1998, 55, 146–152. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Zhang, Y.; Zhou, Y.; Geng, J.; Chitgupi, U.; Cook, T.R.; Xia, J.; Lovell, J.F. Axial PEGylation of Tin Octabutoxy Naphthalocyanine Extends Blood Circulation for Photoacoustic Vascular Imaging. Bioconjug. Chem. 2016, 27, 1574–1578. [Google Scholar] [CrossRef]
- Aoudia, M.; Cheng, G.; Kennedy, V.O.; Kenney, M.E.; Rodgers, M.A.J. Synthesis of a Series of Octabutoxy- and Octabutoxybenzophthalocyanines and Photophysical Properties of Two Members of the Series. J. Am. Chem. Soc. 1997, 119, 6029–6039. [Google Scholar] [CrossRef]
- Saad, M.A.; Xavierselvan, M.; Sharif, H.A.; Selfridge, S.; Pawle, R.; Varvares, M.; Mallidi, S.; Hasan, T. Dual Function Antibody Conjugates for Multimodal Imaging and Photoimmunotherapy of Cancer Cells. Photochem. Photobiol. 2022, 98, 220–231. [Google Scholar] [CrossRef]
- Saad, M.; Contreras, L.; Bano, S.; Selfridge, S.; Mai, Z.; Pawle, R.; Varvares, M.; Mallidi, S.; Hasan, T. EGFR-Targeted Multi-Modal Molecular Imaging and Treatment in a Heterocellular Model of Head and Neck Cancer; SPIE: Bellingham, WA, USA, 2022; Volume 11935. [Google Scholar]
- Duffy, M.J.; Planas, O.; Faust, A.; Vogl, T.; Hermann, S.; Schäfers, M.; Nonell, S.; Strassert, C.A. Towards optimized naphthalocyanines as sonochromes for photoacoustic imaging in vivo. Photoacoustics 2018, 9, 49–61. [Google Scholar] [CrossRef]
- Jelley, E.E. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 1936, 138, 1009–1010. [Google Scholar] [CrossRef]
- Li, K.; Duan, X.; Jiang, Z.; Ding, D.; Chen, Y.; Zhang, G.-Q.; Liu, Z. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat. Commun. 2021, 12, 2376. [Google Scholar] [CrossRef] [PubMed]
- Würthner, F.; Kaiser, T.E.; Saha-Möller, C.R. J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376–3410. [Google Scholar] [CrossRef]
- Nguyen, C.D.; Edwards, S.A.; Iorizzo, T.W.; Longo, B.N.; Yaroslavsky, A.N.; Kaplan, D.L.; Mallidi, S. Investigation of silk as a phantom material for ultrasound and photoacoustic imaging. Photoacoustics 2022, 28, 100416. [Google Scholar] [CrossRef]
- Engel, E.; Schraml, R.d.; Maisch, T.; Kobuch, K.; König, B.; Szeimies, R.-M.; Hillenkamp, J.; Bäumler, W.; Vasold, R. Light-Induced Decomposition of Indocyanine Green. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, L.; Xavierselvan, M.; Kuriakose, M.; Kennedy, M.; Nguyen, C.; Batt, J.; Detels, K.; Mallidi, S. Mutual impact of clinically translatable near-infrared dyes on photoacoustic image contrast and in vitro photodynamic therapy efficacy. J. Biomed. Opt. 2020, 25, 063808. [Google Scholar] [PubMed] [Green Version]
- Ntziachristos, V.; Ripoll, J.; Wang, L.V.; Weissleder, R. Looking and listening to light: The evolution of whole-body photonic imaging. Nat. Biotechnol. 2005, 23, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.V.; Hu, S. Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science 2012, 335, 1458–1462. [Google Scholar] [CrossRef] [Green Version]
- Zackrisson, S.; van de Ven, S.M.W.Y.; Gambhir, S.S. Light In and Sound Out: Emerging Translational Strategies for Photoacoustic Imaging. Cancer Res. 2014, 74, 979–1004. [Google Scholar] [CrossRef] [Green Version]
- Zelken, J.A.; Tufaro, A.P. Current Trends and Emerging Future of Indocyanine Green Usage in Surgery and Oncology: An Update. Ann. Surg. Oncol. 2015, 22, 1271–1283. [Google Scholar] [CrossRef]
- Dip, F.; Boni, L.; Bouvet, M.; Carus, T.; Diana, M.; Falco, J.; Gurtner, G.C.; Ishizawa, T.; Kokudo, N.; Lo Menzo, E.; et al. Consensus Conference Statement on the General Use of Near-infrared Fluorescence Imaging and Indocyanine Green Guided Surgery: Results of a Modified Delphi Study. Ann. Surg. 2022, 275, 685–691. [Google Scholar] [CrossRef]
- Rosenthal, E.L.; Warram, J.M.; de Boer, E.; Chung, T.K.; Korb, M.L.; Brandwein-Gensler, M.; Strong, T.V.; Schmalbach, C.E.; Morlandt, A.B.; Agarwal, G.; et al. Safety and Tumor Specificity of Cetuximab-IRDye800 for Surgical Navigation in Head and Neck Cancer. Clin. Cancer Res. 2015, 21, 3658–3666. [Google Scholar] [CrossRef] [Green Version]
- Sevieri, M.; Silva, F.; Bonizzi, A.; Sitia, L.; Truffi, M.; Mazzucchelli, S.; Corsi, F. Indocyanine Green Nanoparticles: Are They Compelling for Cancer Treatment? Front. Chem. 2020, 8, 535. [Google Scholar] [CrossRef]
- Bézière, N.; Ntziachristos, V. Optoacoustic imaging of naphthalocyanine: Potential for contrast enhancement and therapy monitoring. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2015, 56, 323–328. [Google Scholar] [CrossRef]
- Bellemo, C.; Jori, G.; Rihter, B.D.; Kenney, M.E.; Rodgers, M.A.J. Si(IV)-naphthalocyanine: Modulation of its pharmacokinetic properties through the use of hydrophilic axial ligands. Cancer Lett. 1992, 65, 145–150. [Google Scholar] [CrossRef]
- Jakubikova, E.; Campbell, I.H.; Martin, R.L. Effects of Peripheral and Axial Substitutions on Electronic Transitions of Tin Naphthalocyanines. J. Phys. Chem. A 2011, 115, 9265–9272. [Google Scholar] [CrossRef]
- Cook, M.J.; Dunn, A.J.; Howe, S.D.; Thomson, A.J.; Harrison, K.J. Octa-alkoxy phthalocyanine and naphthalocyanine derivatives: Dyes with Q-band absorption in the far red or near infrared. J. Chem. Soc. Perkin Trans. 1988, 1, 2453–2458. [Google Scholar] [CrossRef]
- Vagin, S.; Hanack, M. Synthesis and Characterization of Soluble Octaaryl- and Octaaryloxy-Substituted Metal-Naphthalocyanines. Eur. J. Org. Chem. 2003, 2003, 2661–2669. [Google Scholar] [CrossRef]
- Mallidi, S.; Aglyamov, S.R.; Karpiouk, A.B.; Park, S.; Emelianov, S.Y. Functional and morphological ultrasonic biomicroscopy for tissue engineers. In Medical Imaging 2006: Ultrasonic Imaging and Signal Processing; SPIE: Bellingham, WA, USA, 2006; pp. 61470Y–61477Y. [Google Scholar]
- Mallidi, S.; Larson, T.; Aaron, J.; Sokolov, K.; Emelianov, S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 2007, 15, 6583–6588. [Google Scholar] [CrossRef]
Dye\Characteristics | Molecular Weight (g/mol) | Extinction Coefficient (M−1 cm−1) | Wavelength (nm) | Solubility |
---|---|---|---|---|
SiNC-1 | 1653 | 277,095 | 872.6 | chloroform, dichloromethane, toluene |
SiNC-2 | 2247 | 194,000 | 873 | chloroform, dichloromethane, ethanol. Aqueous solutions can be prepared by dissolving in ethanol then diluting with water. |
SiNC-3 | 2511 | 93,000 (Water), 220,000 (0.5% TritonX-100) | 934 (Water), 870 (0.5% TritonX-100) | water, chloroform, ethanol |
SiNC-4 | 1662 | 97,000 | 860 | water, dichloromethane, chloroform, dimethyl sulfoxide, ethanol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, M.A.; Pawle, R.; Selfridge, S.; Contreras, L.; Xavierselvan, M.; Nguyen, C.D.; Mallidi, S.; Hasan, T. Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity. Int. J. Mol. Sci. 2023, 24, 2241. https://doi.org/10.3390/ijms24032241
Saad MA, Pawle R, Selfridge S, Contreras L, Xavierselvan M, Nguyen CD, Mallidi S, Hasan T. Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity. International Journal of Molecular Sciences. 2023; 24(3):2241. https://doi.org/10.3390/ijms24032241
Chicago/Turabian StyleSaad, Mohammad Ahsan, Robert Pawle, Scott Selfridge, Leslie Contreras, Marvin Xavierselvan, Christopher D. Nguyen, Srivalleesha Mallidi, and Tayyaba Hasan. 2023. "Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity" International Journal of Molecular Sciences 24, no. 3: 2241. https://doi.org/10.3390/ijms24032241
APA StyleSaad, M. A., Pawle, R., Selfridge, S., Contreras, L., Xavierselvan, M., Nguyen, C. D., Mallidi, S., & Hasan, T. (2023). Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity. International Journal of Molecular Sciences, 24(3), 2241. https://doi.org/10.3390/ijms24032241