Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy
Abstract
:1. Introduction
2. Results
2.1. Enhanced Proliferation of ADSC-K4DT and ADSC-K4D Cells
2.2. Cell Cycle of ADSC-K4D and ADSC-K4DT Cells
2.3. CD90 Expression Is Altered in ADSC-K4D and ADSC-K4DT Cells
2.4. Maintenance of the Trilineage Differentiated Ability of ADSC-K4DT and ADSC-K4D Cells
2.5. Lack of Cellular Senescence in ADSC-K4D and ADSC-K4DT Cells
2.6. TERT, CCND1, and CDK4R24C Expression in Primary ADSCs, and ADSC-K4DT and ADSC-K4D Cells
2.7. Maintenance of the Chromosome Condition in ADSC-K4DT and ADSC-K4D Cells
2.8. Non-Tumorigenicity of ADSC-K4DT and ADSC-K4D Cells
2.9. ADSC-K4DT and ADSC-K4D Cells Inhibit PBMC Proliferation
2.10. Differentially Expressed Genes among Primary ADSCs, and ADSC-K4DT and ADSC-K4D Cells
2.11. Differences in Pathways among Primary ADSCs, and ADSC-K4DT and ADSC-K4D Cells
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Isolation and Expansion of Canine Adipose-Derived Mesenchymal Stem Cells
4.3. Construction of Lentiviral Vectors and Transduction of Canine ADSCs
4.4. Population Doubling Analysis
4.5. Cell Cycle Analysis
4.6. Cell Surface Markers Analysis
4.7. Trilineage Differentiation Assay
4.8. Cellular Senescence Staining
4.9. Polymerase Chain Reaction
4.10. Karyotype Analysis
4.11. In Vivo Tumorigenic Assay
4.12. Lymphocyte Proliferation Assay
4.13. RNA-Sequencing
4.14. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.; McKee, C.; Bakshi, S.; Walker, K.; Hakman, E.; Halassy, S.; Svinarich, D.; Dodds, R.; Govind, C.K.; Chaudhry, G.R. Mesenchymal stem cells: Cell therapy and regeneration potential. J. Tissue Eng. Regen. Med. 2019, 13, 1738–1755. [Google Scholar] [CrossRef]
- Mushahary, D.; Spittler, A.; Kasper, C.; Weber, V.; Charwat, V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2018, 93, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, A.M.; Dow, S.W. Concise Review: Stem Cell Trials Using Companion Animal Disease Models. Stem Cells 2016, 34, 1709–1729. [Google Scholar] [CrossRef] [PubMed]
- Marx, C.; Silveira, M.D.; Beyer Nardi, N. Adipose-derived stem cells in veterinary medicine: Characterization and therapeutic applications. Stem Cells Dev. 2015, 24, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Gugjoo, M.B.; Amarpal Chandra, V.; Wani, M.Y.; Dhama, K.; Sharma, G.T. Mesenchymal Stem Cell Research in Veterinary Medicine. Curr. Stem Cell Res. Ther. 2018, 13, 645–657. [Google Scholar] [CrossRef]
- Gugjoo, M.B.; Amarpal Makhdoomi, D.M.; Sharma, G.T. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J. Equine Vet. Sci. 2019, 72, 16–27. [Google Scholar] [CrossRef]
- Quimby, J.M.; Borjesson, D.L. Mesenchymal stem cell therapy in cats: Current knowledge and future potential. J. Feline Med. Surg. 2018, 20, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Gugjoo, M.B.; Amarpal, A.; Sharma, G.T. Mesenchymal stem cell basic research and applications in dog medicine. J. Cell Physiol. 2019, 234, 16779–16811. [Google Scholar] [CrossRef]
- Dias, I.E.; Pinto, P.O.; Barros, L.C.; Viegas, C.A.; Dias, I.R.; Carvalho, P.P. Mesenchymal stem cells therapy in companion animals: Useful for immune-mediated diseases? BMC Vet. Res. 2019, 15, 358. [Google Scholar] [CrossRef]
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, N.; Scholtemeijer, M.; Shah, K. Mesenchymal Stem Cell Immunomodulation: Mechanisms and Therapeutic Potential. Trends Pharmacol. Sci. 2020, 41, 653–664. [Google Scholar] [CrossRef]
- Harrell, C.R.; Fellabaum, C.; Jovicic, N.; Djonov, V.; Arsenijevic, N.; Volarevic, V. Molecular Mechanisms Responsible for Therapeutic Potential of Mesenchymal Stem Cell-Derived Secretome. Cells 2019, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Mastrolia, I.; Foppiani, E.M.; Murgia, A.; Candini, O.; Samarelli, A.V.; Grisendi, G.; Veronesi, E.; Horwitz, E.M.; Dominici, M. Challenges in Clinical Development of Mesenchymal Stromal/Stem Cells: Concise Review. Stem Cells Transl. Med. 2019, 8, 1135–1148. [Google Scholar] [CrossRef] [Green Version]
- Olmedo-Moreno, L.; Aguilera, Y.; Baliña-Sánchez, C.; Martín-Montalvo, A.; Capilla-González, V. Heterogeneity of In Vitro Expanded Mesenchymal Stromal Cells and Strategies to Improve Their Therapeutic Actions. Pharmaceutics. 2022, 14, 1112. [Google Scholar] [CrossRef]
- Costa, L.A.; Eiro, N.; Fraile, M.; Gonzalez, L.O.; Saá, J.; Garcia-Portabella, P.; Vega, B.; Schneider, J.; Vizoso, F.J. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cell Mol. Life Sci. 2021, 78, 447–467. [Google Scholar] [CrossRef]
- Wang, Y.H.; Tao, Y.C.; Wu, D.B.; Wang, M.L.; Tang, H.; Chen, E.Q. Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo. Stem Cell Res. Ther. 2021, 12, 391. [Google Scholar] [CrossRef]
- Phinney, D.G. Functional heterogeneity of mesenchymal stem cells: Implications for cell therapy. J. Cell Biochem. 2012, 113, 2806–2812. [Google Scholar] [CrossRef]
- Maqsood, M.I.; Matin, M.M.; Bahrami, A.R.; Ghasroldasht, M.M. Immortality of cell lines: Challenges and advantages of establishment. Cell Biol. Int. 2013, 37, 1038–1045. [Google Scholar] [CrossRef]
- Shay, J.W.; Pereira-Smith, O.M.; Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 1991, 196, 33–39. [Google Scholar] [CrossRef]
- Counter, C.M.; Avilion, A.A.; LeFeuvre, C.E.; Stewart, N.G.; Greider, C.W.; Harley, C.B.; Bacchetti, S. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 1992, 11, 1921–1929. [Google Scholar] [CrossRef]
- Tsuruga, Y.; Kiyono, T.; Matsushita, M.; Takahashi, T.; Kasai, H.; Matsumoto, S.; Todo, S. Establishment of immortalized human hepatocytes by introduction of HPV16 E6/E7 and hTERT as cell sources for liver cell-based therapy. Cell Transplant. 2008, 17, 1083–1094. [Google Scholar] [CrossRef]
- Shiomi, K.; Kiyono, T.; Okamura, K.; Uezumi, M.; Goto, Y.; Yasumoto, S.; Shimizu, S.; Hashimoto, N. CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene Ther. 2011, 18, 857–866. [Google Scholar] [CrossRef] [Green Version]
- Gouko, R.; Onuma, M.; Eitsuka, T.; Katayama, M.; Takahashi, K.; Nakagawa, K.; Inoue-Murayama, M.; Kiyono, T.; Fukuda, T. Efficient immortalization of cells derived from critically endangered Tsushima leopard cat (Prionailurus bengalensis euptilurus) with expression of mutant CDK4, Cyclin D1, and telomerase reverse transcriptase. Cytotechnology 2018, 70, 1619–1630. [Google Scholar] [CrossRef]
- Tani, T.; Eitsuka, T.; Katayama, M.; Nagamine, T.; Nakaya, Y.; Suzuki, H.; Kiyono, T.; Nakagawa, K.; Inoue-Murayama, M.; Onuma, M.; et al. Establishment of immortalized primary cell from the critically endangered Bonin flying fox (Pteropus pselaphon). PLoS ONE 2019, 14, e0221364. [Google Scholar] [CrossRef]
- Donai, K.; Kiyono, T.; Eitsuka, T.; Guo, Y.; Kuroda, K.; Sone, H.; Isogai, E.; Fukuda, T. Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J. Biotechnol. 2014, 176, 50–57. [Google Scholar] [CrossRef]
- Beckenkamp, L.R.; da Fontoura, D.M.S.; Korb, V.G.; de Campos, R.P.; Onzi, G.R.; Iser, I.C.; Bertoni, A.P.S.; Sévigny, J.; Lenz, G.; Wink, M.R. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev. Rep. 2020, 16, 776–791. [Google Scholar] [CrossRef]
- Balducci, L.; Blasi, A.; Saldarelli, M.; Soleti, A.; Pessina, A.; Bonomi, A.; Coccè, V.; Dossena, M.; Tosetti, V.; Ceserani, V.; et al. Immortalization of human adipose-derived stromal cells: Production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors. Stem Cell Res. Ther. 2014, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Orimoto, A.; Kyakumoto, S.; Eitsuka, T.; Nakagawa, K.; Kiyono, T.; Fukuda, T. Efficient immortalization of human dental pulp stem cells with expression of cell cycle regulators with the intact chromosomal condition. PLoS ONE 2020, 15, e0229996. [Google Scholar] [CrossRef] [PubMed]
- Tátrai, P.; Szepesi, Á.; Matula, Z.; Szigeti, A.; Buchan, G.; Mádi, A.; Uher, F.; Német, K. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation. Biochem. Biophys. Res. Commun. 2012, 422, 28–35. [Google Scholar] [CrossRef]
- Takada, H.; Miura, T.; Fujibayashi, S.; Sasaki, N.; Takahashi, K.; Sugano, E.; Tomita, H.; Ozaki, T.; Kiyono, T.; Yoshida, M.A.; et al. Detailed chromosome analysis of wild-type, immortalized fibroblasts with SV40T, E6E7, combinational introduction of cyclin dependent kinase 4, cyclin D1, telomerase reverse transcriptase. In Vitro Cell Dev. Biol. Anim. 2021, 57, 998–1005. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.J.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Maleki, M.; Ghanbarvand, F.; Reza Behvarz, M.; Ejtemaei, M.; Ghadirkhomi, E. Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int. J. Stem Cells. 2014, 7, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Moraes, D.A.; Sibov, T.T.; Pavon, L.F.; Alvim, P.Q.; Bonadio, R.S.; Da Silva, J.R.; Pic-Taylor, A.; Toledo, O.A.; Marti, L.C.; Azevedo, R.B.; et al. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res. Ther. 2016, 7, 97. [Google Scholar] [CrossRef] [Green Version]
- Wiesmann, A.; Bühring, H.J.; Mentrup, C.; Wiesmann, H.P. Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med. 2006, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Teshima, T.; Matsumoto, H.; Michishita, M.; Matsuoka, A.; Shiba, M.; Nagashima, T.; Koyama, H. Allogenic Adipose Tissue-Derived Mesenchymal Stem Cells Ameliorate Acute Hepatic Injury in Dogs. Stem Cells Int. 2017, 2017, 3892514. [Google Scholar] [CrossRef]
CD29 | CD44 | CD90 | CD34 | CD45 | HLA-DR | ||
---|---|---|---|---|---|---|---|
ADSC | passage 3 | 97.6 ± 1.8 | 98.7 ± 1.4 | 97.2 ± 1.5 | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.4 ± 0.2 |
ADSC-K4DT | PDL 20 | 96.4 ± 1.4 | 99.1 ± 1.3 | 67.2 ± 2.1 * | 0.5 ± 0.3 | 0.4 ± 0.2 | 0.4 ± 0.3 |
PDL 50 | 97.5 ± 1.1 | 97.3 ± 1.4 | 37.5 ± 3.2 **,# | 0.9 ± 0.3 | 0.4 ± 0.2 | 0.5 ± 0.3 | |
PDL 100 | 98.3 ± 1.3 | 97.4 ± 1.1 | 19.8 ± 3.3 **,# | 0.4 ± 0.1 | 0.4 ± 0.2 | 0.4 ± 0.4 | |
ADSC-K4D | PDL 20 | 98.0 ± 1.3 | 98.4 ± 1.5 | 88.0 ± 4.1 * | 0.5 ± 0.2 | 0.4 ± 0.2 | 0.4 ± 0.2 |
PDL 50 | 98.1 ± 1.5 | 98.1 ± 1.3 | 89.3 ± 1.8 * | 0.5 ± 0.2 | 0.4 ± 0.2 | 0.5 ± 0.4 | |
PDL 100 | 98.6 ± 1.6 | 98.5 ± 1.0 | 90.0 ± 2.4 * | 0.4 ± 0.3 | 0.4 ± 0.2 | 0.4 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasumura, Y.; Teshima, T.; Nagashima, T.; Takano, T.; Michishita, M.; Taira, Y.; Suzuki, R.; Matsumoto, H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy. Int. J. Mol. Sci. 2023, 24, 2250. https://doi.org/10.3390/ijms24032250
Yasumura Y, Teshima T, Nagashima T, Takano T, Michishita M, Taira Y, Suzuki R, Matsumoto H. Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy. International Journal of Molecular Sciences. 2023; 24(3):2250. https://doi.org/10.3390/ijms24032250
Chicago/Turabian StyleYasumura, Yuyo, Takahiro Teshima, Tomokazu Nagashima, Takashi Takano, Masaki Michishita, Yoshiaki Taira, Ryohei Suzuki, and Hirotaka Matsumoto. 2023. "Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy" International Journal of Molecular Sciences 24, no. 3: 2250. https://doi.org/10.3390/ijms24032250
APA StyleYasumura, Y., Teshima, T., Nagashima, T., Takano, T., Michishita, M., Taira, Y., Suzuki, R., & Matsumoto, H. (2023). Immortalized Canine Adipose-Derived Mesenchymal Stem Cells as a Novel Candidate Cell Source for Mesenchymal Stem Cell Therapy. International Journal of Molecular Sciences, 24(3), 2250. https://doi.org/10.3390/ijms24032250