Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants
Abstract
:1. Introduction
- (1)
- Spirostanol saponins: a hexacyclic ABCDEF-ring system characterized by an axial methyl or hydroxymethyl on the F ring (C-27) [5,6,7,8,9,10] (Figure 1A). The core aglycone of spirostanol saponins has cis- or trans-fusion between ring A and ring B, or has double bonds between ring C-5 and C-6 [7]. The common spirostanol saponins isolated from plants include dioscin, gracillin, and trillin [5,9].
- (2)
- Furostanol saponins: a pentacyclic ABCDE ring with a sixth open F ring [5,6,7,8,9,10] (Figure 1B). The common furostanol saponins include parvifloside, protogracillin, and protodioscin [5]. Furostanol saponins usually have 25(R) and 25(S) structures, or are saturated at the C-20 (22) or C-22 (23) positions on the open F ring [5,6]. The two sugar chains of furostanol saponins are usually connected at the C-3 and C-26 positions, while the β-glucoside at the C-26 position will produce a closed ring reaction under the catalysis of glycosidase and convert it into spirostanol saponin [8,11].
- (3)
- Cholestane saponins: produced by the oxidative cracking of the C-22/C-23 bond of the aglycone skeleton [7,8,9] (Figure 1C). Cholestane saponins (such as Anguivioside XV and Smilaxchinoside D) have been found in some Smilax species [7]; a homo-cholestane saponin with aromatic ring E (such as Paris pseudoside A and B) has also been found in some Paris species [8].
- (4)
- Pregnane saponins: a tetracyclic ABCD-ring system [5,7] (Figure 1D). They may be biosynthesized via the oxidative cleavage of the double bond between C-20 and C-22 in the structure of furostane [7,9]. Pregnane saponins isolated from plants include Spongipregnoloside A/B/C/D/E, Trinervuloside A, Riparoside B, and Timosaponin J/K [5,7].
- (5)
- Isospirostanol saponins: monosaccharide chain saponins. Their unique feature is the equatorial methyl or hydroxymethyl on the F ring (C-27) [7] (Figure 1E). Isospirostanol saponins include the following types: dehydrogenation between C-5 and C-6, carbonylation at C-6, hydroxylation at C-17 or C-27, and cis–trans fusion between the A ring and B ring [7].
- (6)
- (7)
- (8)
2. Biosynthesis of Steroidal Saponins
2.1. Biosynthesis of 2,3-Oxysqualene
2.2. Biosynthesis of Cholesterol/β-Sitosterol
2.3. Modification of Cholesterol or Sitosterol Side Chain to Form Steroidal Saponins
3. Molecular Regulation of Steroidal Saponin Biosynthesis in Plants
4. Functions of Steroidal Saponins in Plants
5. Distribution of Steroidal Saponins in Plants
5.1. Arecales Species
5.2. Asparagales Species
5.3. Dioscoreales Plants
5.4. Liliales Plants
- (1)
- Liliaceae plants. At present, the research on steroidal saponins of Liliaceae plants has mainly focused on Lilium and Fritillaria plants [103]. More than 80 steroidal saponins have been isolated and identified from the bulbs of Lilium lancifolium, L pumilum, L. longiflorum, L. candidum, L. speciosum, L. tenuifolium, L. callosum, and other Lilium plants, which are mainly divided into four types: spirostanol-type, furostanol-type, isospirostanol-type, and pseudospirostanol saponins [103]. Specifically, spirostanol saponins isolated from Lilium plants mainly include lilioglycoside B/H and brownioside, which are unique to Lilium plants [103,104,105,106,107]; the isolated isospirostanol saponins include lilioglycoside C, D, and I, respectively; and furostanol saponins mainly include lilioglycoside K, N, R and pardarinoside A–D, F, and G [103,104,105,106,107]. Among Fritillaria plants, only 12 steroidal saponins have been isolated and identified from the bulbs of Fritillaria pallidiflora, such as pallidiflosides D/E/G/H/I, protobioside, and Polyphyllin V [108] (Supplementary Table S1).
- (2)
- Melanthiaceae plants. Among the plants in this family, Paris and Trillium are the largest two genera; they are important Chinese medicine plants with a long medicinal history [109,110]. A variety of steroidal saponins have been isolated and identified from the rhizomes of Paris plants, including spirostanol-type, furostanol-type, cholestane-type, pregnane-type, and polyhydroxylated-type saponins [8]. Steroidal saponins isolated and identified from Trillium plants can be divided into the following types: spirostanol, furostanol, and pennogenin saponins. Among them, the specific saponins of Trillium plants are trillins, trikamsteroside C, trillenoside A, parisapioside C, etc. [111] (Supplementary Table S1).
- (3)
- Smilacaceae plants. The most common plants containing steroidal saponins are Smilax plants [7]. A total of 104 steroidal saponins have been isolated from about 20 species of Smilax plants [7]. These steroidal saponins include five types: spirostanol-type, isospirostanol-type, furostanol-type, pregnane-type, and cholestane-type; most of the linked sugar groups are monosaccharides or disaccharides [7,112,113,114,115].
5.5. Eudicots
6. Molecular Evolution of Steroidal Saponin Biosynthetic Pathway Genes
7. Conclusions and Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moses, T.; Papadopoulou, K.K.; Osbourn, A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 439–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, Z.; Hussain, F. Steroidal Saponins: An Overview of Medicinal Uses. Ijcbs 2017, 11, 20–24. [Google Scholar]
- Upadhyay, S.; Jeena, G.S.; Shikha; Shukla, R.K. Recent advances in steroidal saponins biosynthesis and in vitro production. Planta 2018, 248, 519–544. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.D.; Desai, D.G.; Kaur, H. Saponins and Their Biological Activities. Pharma Times 2009, 41, 13–16. [Google Scholar]
- Sautour, M.; Mitaine-Offer, A.C.; Lacaille-Dubois, M.A. The Dioscorea genus: A review of bioactive steroid saponins. J. Nat. Med. 2007, 61, 91–101. [Google Scholar] [CrossRef]
- Challinor, V.L.; De Voss, J.J. Open-chain steroidal glycosides, a diverse class of plant saponins. Nat. Prod. Rep. 2013, 30, 429–454. [Google Scholar] [CrossRef]
- Tian, L.W.; Zhang, Z.; Long, H.L.; Zhang, Y.J. Steroidal Saponins from the Genus Smilax and Their Biological Activities. Nat. Prod. Bioprospect. 2017, 7, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, W.; Li, X.; Wei, J.; Jing, S.; Xiao, P. Chemotaxonomic study of the genus Paris based on steroidal saponins. Biochem. Syst. Ecol. 2013, 48, 163–173. [Google Scholar] [CrossRef]
- Thu, Z.M.; Oo, S.M.; Nwe, T.M.; Aung, H.T.; Armijos, C.; Hussain, F.H.S.; Vidari, G. Structures and Bioactivities of Steroidal Saponins Isolated from the Genera Dracaena and Sansevieria. Molecules 2021, 26, 1916. [Google Scholar] [CrossRef]
- Sobolewska, D.; Michalska, K.; Podolak, I.; Grabowska, K. Steroidal Saponins from the Genus Allium. Phytochem. Rev. 2016, 15, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Ebizuka, Y. Purification and characterization of furostanol glycoside 26- o- β-glucosidase from Costus speciosus rhizomes. FEBS Lett. 1996, 378, 157–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, M.; Yanai, Y.; Ikeda, T.; Okawa, M.; Nohara, T. Steroids from the underground parts of Trillium kamtschaticum. Chem. Pharm. Bull. 2003, 51, 328–1331. [Google Scholar] [CrossRef]
- Ono, M.; Sugita, F.; Shigematsu, S.; Takamura, C.; Yoshimitsu, H.; Miyashita, H.; Ikeda, T.; Noara, T. Three new steroid glycosides from the underground parts of Trillium kamtschaticum. Chem. Pharm. Bull. 2007, 55, 1093–1096. [Google Scholar] [CrossRef] [Green Version]
- Szakiel, A.; Pączkowski, C.; Henry, M. Influence of environmental abiotic factors on the content of saponins in plants. Phytochem. Rev. 2011, 10, 471–491. [Google Scholar] [CrossRef]
- De Costa, F.; Yendo, A.C.A.; Fleck, J.D.; Gosmann, G.; Fett-Neto, A.G. Accumulation of a bioactive triterpene saponin fraction of Quillaja brasiliensis leaves is associated with abiotic and biotic stresses. Plant Physiol. Biochem. 2013, 66, 56–62. [Google Scholar] [CrossRef]
- Shabani, L.; Ehsanpour, A.A.; Asghari, G.; Emami, J. Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl Jasmonate and salicylic acid. Russ. J. Plant Physiol. 2009, 56, 621–626. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. 22 R - but not 22 S -hydroxycholesterol is recruited for diosgenin biosynthesis. Plant J. 2021, 1, 940–951. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L.; et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 2016, 3, 16205. [Google Scholar] [CrossRef]
- Christ, B.; Xu, C.; Xu, M.; Li, F.S.; Wada, N.; Mitchell, A.J.; Han, X.L.; Wen, M.L.; Fujita, M.; Weng, J.K. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tan, C.; Li, Z.; Guo, J.; Li, S.; Chen, X.; Wang, C.; Dai, X.; Yang, H.; Song, W.; et al. The genome of Dioscorea zingiberensis sheds light on the biosynthesis, origin and evolution of the medicinally important diosgenin saponins. Hortic. Res. 2022, 9, uhac165. [Google Scholar] [CrossRef]
- Gas-Pascual, E.; Berna, A.; Bach, T.J.; Schaller, H. Plant oxidosqualene metabolism: Cycloartenol synthase-dependent sterol biosynthesis in Nicotiana benthamiana. PLoS ONE 2014, 9, e109156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadi, M.; Mashayekh, T.; Rashidi-Monfared, S.; Ebrahimi, A.; Abedini, D. New insights into diosgenin biosynthesis pathway and its regulation in Trigonella foenum-graecum L. Phytochem. Anal. 2020, 31, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Melzig, M.; Fuchs, H.; Weng, A. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Bot. Targets Ther. 2011, 1, 19–29. [Google Scholar]
- Song, W.; Zhang, C.; Wu, J.; Qi, J.; Hua, X.; Kang, L.; Yuan, Q.; Yuan, J.; Xue, Z. Characterization of three Paris polyphylla glycosyltransferases from different UGT families for Steroid Functionalization. ACS Synth. Biol. 2022, 11, 1669–1680. [Google Scholar] [CrossRef]
- Ye, T.; Song, W.; Zhang, J.J.; An, M.; Feng, S.; Yan, S.; Li, J. Identification and functional characterization of DzS3GT, a cytoplasmic glycosyltransferase catalyzing biosynthesis of diosgenin 3-O-glucoside in Dioscorea zingiberensis. Plant Cell. Tissue Organ Cult. 2017, 129, 399–410. [Google Scholar] [CrossRef]
- Yu, J.; Hu, F.; Dossa, K.; Wang, Z.; Ke, T. Genome-wide analysis of UDP-glycosyltransferase super family in Brassica rapa and Brassica oleracea reveals its evolutionary history and functional characterization. BMC Genom. 2017, 18, 474. [Google Scholar] [CrossRef] [Green Version]
- Nakayasu, M.; Kawasaki, T.; Lee, H.J.; Sugimoto, Y.; Onjo, M.; Muranaka, T.; Mizutani, M. Identification of furostanol glycoside 26-O-β-glucosidase involved in steroidal saponin biosynthesis from Dioscorea esculenta. Plant Biotechnol. 2015, 32, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wu, J.; Yu, D.; Du, X. Advances in steroidal saponins biosynthesis. Planta 2021, 254, 1–17. [Google Scholar] [CrossRef]
- Espinosa-Leal, C.A.; Puente-Garza, C.A.; García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018, 248, 1–18. [Google Scholar] [CrossRef]
- Cheng, J.; Chen, J.; Liu, X.; Li, X.; Zhang, W.; Dai, Z.; Lu, L.; Zhou, X.; Cai, J.; Zhang, X.; et al. The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Commun. 2020, 2, 100079. [Google Scholar] [CrossRef]
- Pompon, D.; Dumas, B.; Spagnoli, R. Cholesterol-Producing Yeast Strains and Uses thereof. U.S. Patent 8,211,676, 3 July 2012. [Google Scholar]
- Souza, C.M.; Schwabe, T.M.E.; Pichler, H.; Ploier, B.; Leitner, E.; Guan, X.L.; Wenk, M.R.; Riezman, I.; Riezman, H. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab. Eng. 2011, 13, 555–569. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Yu, H.; Liu, C.; Wang, Y.; Tang, M.; Yuan, X.; Luo, N.; Xu, X.; Jin, F. Protodioscin-glycosidase-1 hydrolyzing 26-O-β-d-glucoside and 3-O-(1 → 4)-α-l-rhamnoside of steroidal saponins from Aspergillus oryzae. Appl. Microbiol. Biot. 2013, 97, 10035–10043. [Google Scholar] [CrossRef]
- Pang, X.; Wen, D.; Zhao, Y.; Xiong, C.Q.; Wang, X.Q.; Yu, L.Y.; Ma, B.P. Steroidal saponins obtained by biotransformation of total furostanol glycosides from Dioscora zingiberensis with Absidia coerulea. Carbohyd. Res. 2014, 402, 236–240. [Google Scholar] [CrossRef]
- Ding, C.-H.; Du, X.-W.; Xu, Y.; Xu, X.-M.; Mou, J.-C.; Yu, D.; Wu, J.-K.; Meng, F.-J.; Wang, W.-L.; Wang, L.-J. Screening for Differentially Expressed Genes in Endophytic Fungus Strain 39 During Co-culture with Herbal Extract of its Host Dioscorea nipponica Makino. Curr. Microbiol. 2014, 69, 517–524. [Google Scholar] [CrossRef]
- Li, Y.B.; Lin, L.; Liao, Q.H.; Yang, S.C.; Liu, T. Screening of endophytic fungi for promote the accumulation of active components of saponins from Pairs polyphylla var yunnanensis. J. Yunnan Agric. Univ. 2019, 34, 132–137. [Google Scholar]
- Wang, Q.; Huiju, Z.; Min, Y.; Hua, Z.; Zhou, N.; Li, Y. Effects of 28 species of AM fungi on diosgenin contents in Paris polyphylla var. yunnanensis. J. Dali Univ. 2018, 2, 22–25. [Google Scholar]
- Chaudhary, S.; Chikara, S.K.; Sharma, M.C.; Chaudhary, A.; Syed, B.A.; Chaudhary, P.S.; Mehta, A.; Patel, M.; Ghosh, A.; Iriti, M. Elicitation of diosgenin production in Trigonella foenum-graecum (fenugreek) seedlings by Methyl Jasmonate. Int. J. Mol. Sci. 2015, 16, 29889–29899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, L.; Yuan, X.; Li, S.; Li, Y.; Li, Z.; Li, J. Genome-wide Identification of CYP72A Gene Family and Expression Patterns Related to Jasmonic Acid Treatment and Steroidal Saponin Accumulation in Dioscorea zingiberensis. Int. J. Mol. Sci. 2021, 22, 10953. [Google Scholar] [CrossRef]
- De, D.; De, B. Elicitation of diosgenin production in Dioscorea floribunda by ethylene-generating agent. Fitoterapia 2005, 76, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Mohamadi Esboei, M.; Ebrahimi, A.; Amerian, M.R.; Alipour, H. Melatonin confers fenugreek tolerance to salinity stress by stimulating the biosynthesis processes of enzymatic, non-enzymatic antioxidants, and diosgenin content. Front. Plant Sci. 2022, 13, 1–20. [Google Scholar] [CrossRef]
- Shaikh, S.; Shriram, V.; Khare, T.; Kumar, V. Biotic elicitors enhance diosgenin production in Helicteres isora L. suspension cultures via up-regulation of CAS and HMGR genes. Physiol. Mol. Biol. Plants 2020, 26, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Eshaghi, M.; Shiran, B.; Fallahi, H.; Ravash, R.; Đeri, B.B. Identification of genes involved in steroid alkaloid Biosynthesis in Fritillaria imperialis via de novo transcriptomics. Genomics 2019, 111, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Shi, Y.; Xu, J.; Zhao, L.; Tao, Y.; Wu, J. Transcriptome analysis reveals candidate genes related to steroid alkaloid biosynthesis in Fritillaria anhuiensis. Physiol. Plant. 2022, 174, 1–15. [Google Scholar] [CrossRef]
- Yao, L.; Lu, J.; Wang, J.; Gao, W.Y. Advances in biosynthesis of triterpenoid saponins in medicinal plants. Chinese J. Nat. Med. 2020, 18, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, P.D.; Sonawane, P.D.; Pollier, J.; Vanden Bossche, R.; Dewangan, V.; Weithorn, E.; Tal, L.; Meir, S.; Rogachev, I.; Malitsky, S.; et al. GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Commun. 2016, 7, 10654. [Google Scholar] [CrossRef] [PubMed]
- Thagun, C.; Imanishi, S.; Kudo, T.; Nakabayashi, R.; Ohyama, K.; Mori, T.; Kawamoto, K.; Nakamura, Y.; Katayama, M.; Nonaka, S.; et al. Jasmonate-Responsive ERF Transcription Factors Regulate Steroidal Glycoalkaloid Biosynthesis in Tomato. Plant Cell Physiol. 2016, 57, 961–975. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.K.; Zhao, Y.; Chen, S.Y.; Kennelly, E.J. Solanum steroidal glycoalkaloids: Structural diversity, biological activities, and biosynthesis. Nat. Prod. Rep. 2021, 38, 1423–1444. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Zhou, L.; You, S.; Deng, H.; Chen, Y.; Alseekh, S.; Yuan, Y.; Fu, R.; Zhang, Z.; et al. MicroTom Metabolic Network: Rewiring Tomato Metabolic Regulatory Network throughout the Growth Cycle. Mol. Plant 2020, 13, 1203–1218. [Google Scholar] [CrossRef]
- Du, Y.; Fu, X.; Chu, Y.; Wu, P.; Liu, Y.; Ma, L.; Tian, H.; Zhu, B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int. J. Mol. Sci. 2022, 23, 2332. [Google Scholar] [CrossRef]
- Chen, J.; Nolan, T.M.; Ye, H.; Zhang, M.; Tong, H.; Xin, P.; Chu, J. Arabidopsis WRKY46, WRKY54, and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Responses. Plant Cell. 2017, 29, 1425–1439. [Google Scholar] [CrossRef] [Green Version]
- Planas-riverola, A.; Gupta, A.; Betego, I.; Bosch, N.; Iban, M. Brassinosteroid signaling in plant development and adaptation to stress. Development 2019, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Martínez, C.; Espinosa-ruíz, A.; De Lucas, M.; Bernardo-garcía, S.; Franco-zorrilla, J.M.; Prat, S. PIF 4 -induced BR synthesis is critical to diurnal and thermomorphogenic growth. EMBO J. 2018, 37, e99552. [Google Scholar] [CrossRef]
- Nolan, T.M.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional Regulators of Plant. Plant Cell. 2020, 32, 295–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yang, H.; Fang, Y.; Guo, W.; Chen, H.; Zhang, X.; Dai, W.; Chen, S.; Hao, Q.; Yuan, S.; et al. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biochenol. J. 2021, 1, 702–716. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Kwon, M.; Ryu, H.; Fujioka, S.; Takatsuto, S.; Yoshida, S. The Regulation of DWARF4 Expression Is Likely a Critical Mechanism in Maintaining the Homeostasis of Bioactive Brassinosteroids in Arabidopsis. Plant Physiol. 2006, 140, 548–557. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, K.; Melton, R.E.; Leggett, M.; Daniels, M.J.; Osbourn, A.E. Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. USA 1999, 96, 12923–12928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Morrissey, J.P.; Osbourn, A.E. Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis. Microbiol. Mol. Biol. Rev. 1999, 63, 708–724. [Google Scholar] [CrossRef] [Green Version]
- Osbourn, A.E. Saponins in Cereals. Phytochemistry 2003, 62, 1–4. [Google Scholar] [CrossRef]
- Mugford, S.T.; Qi, X.; Bakht, S.; Hill, L.; Wegel, E.; Hughes, R.K.; Papadopoulou, K.; Melton, R.; Philo, M.; Sainsbury, F.; et al. A Serine Carboxypeptidase-Like Acyltransferase Is Required for Synthesis of Antimicrobial Compounds and Disease Resistance in Oats. Plant Cell 2009, 21, 2473–2484. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Sang, S. Triterpenoid Saponins in Oat Bran and Their Levels in Commercial Oat Products. J. Agri. Food Chem. 2020, 68, 6381–6389. [Google Scholar] [CrossRef]
- Augustin, J.M.; Drok, S.; Shinoda, T.; Sanmiya, K.; Nielsen, J.K.; Khakimov, B.; Olsen, C.E.; Hansen, E.H.; Kuzina, V.; Ekstrøm, C.T.; et al. UDP-Glycosyltransferases from the UGT73C Subfamily in Barbarea Vulgaris Catalyze Sapogenin 3-O-Glucosylation in Saponin-Mediated Insect Resistance. Plant Physiol. 2012, 160, 1881–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morant, A.V.; Jørgensen, K.; Jørgensen, C.; Paquette, S.M.; Sánchez-Pérez, R.; Møller, B.L.; Bak, S. β-lucosidases as detonators of plant chemical defense. Phytochemistry 2008, 69, 1795–1813. [Google Scholar] [CrossRef] [PubMed]
- Wittstock, U.; Gershenzon, J. Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr. Opin. Plant Biol. 2002, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Massad, T.J. Interactions in tropical reforestation—How plant defence and polycultures can reduce growth-limiting herbivory. Appl. Veg. Sci. 2012, 15, 338–348. [Google Scholar] [CrossRef]
- Mith, A.; Boland, W. Plant Defense Against Herbivores: Chemical Aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar]
- Sparg, S.G.; Light, M.E.; Staden, J. Van. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef]
- Nawrot, B.J. Naturally occurring antifeedants: Effects on two polyphagous lepidopterans. J. Appl. Entomol. 1991, 12, 194–201. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Sun, J.; Li, X.; Zhao, C.; Zhao, P.; Man, S.; Gao, W. Chemotaxonomic studies of 12 Dioscorea species from China by UHPLC-QTOF-MS/MS analysis. Phytochem. Anal. 2020, 31, 164–182. [Google Scholar] [CrossRef]
- Ciura, J.; Szeliga, M.; Grzesik, M.; Tyrka, M. Next-generation sequencing of representational difference Analysis Products for identification of genes involved in diosgeninbBiosynthesis in fenugreek (Trigonella foenum-graecum). Planta 2017, 245, 977–991. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jin, M.; Tadesse, N.; Dang, J.; Zhou, T.; Zhang, H.; Wang, S.; Guo, Z.; Ito, Y. Dioscorea zingiberensis C. H. Wright: An overview on its traditional use, phytochemistry, pharmacology, clinical applications, quality control, and toxicity. J. Ethnopharmacol. 2018, 220, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Kishi, A.; Matsuda, H.; Yoshikawa, M. Medicinal Foodstuffs. XVII. Fenugreek Seed. (3): Structures of new furostanol-type steroid saponins, trigoneosides Xa, Xb, XIb, XIIa, XIIb, and XIIIa, from the seeds of Egyptian Trigonellafoenum-graecum L. Chem. Pharm. Bull. 2000, 48, 994–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamed, A.I.; Ben Said, R.; Al-Ayed, A.S.; Moldoch, J.; Mahalel, U.A.; Mahmoud, A.M.; Elgebaly, H.A.; Perez, A.J.; Stochmal, A. Fingerprinting of strong spermatogenesis steroidal saponins in male flowers of Phoenix dactylifera (Date palm) by LC-ESI-MS. Nat. Prod. Res. 2017, 31, 2024–2031. [Google Scholar] [CrossRef]
- Sidana, J.; Singh, B.; Sharma, O.P. Saponins of Agave: Chemistry and bioactivity. Phytochemistry 2016, 130, 22–46. [Google Scholar] [CrossRef]
- Hamdi, A.; Jiménez-Araujo, A.; Rodríguez-Arcos, R.; Jaramillo-Carmona, S.; Lachaal, M.; Karray Bouraoui, N.; Guillén-Bejarano, R. Asparagus Saponins: Chemical Characterization, Bioavailability and Intervention in Human Health. Nutr. Food Sci. Int. J. 2018, 7, 26–31. [Google Scholar]
- Zhao, P.; Zhao, C.; Li, X.; Gao, Q.; Huang, L.; Xiao, P.; Gao, W. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology. J. Ethnopharmacol. 2018, 214, 274–291. [Google Scholar] [CrossRef] [PubMed]
- Onishi, T.K.; Ujiwara, Y.F.; Onoshima, T.K.; Iyosawa, S.K.; Ishi, M.N. Steroidal saponins from Hemerocallis fulva var. kwanso. Chem. Pharm. Bull. 2001, 49, 318–320. [Google Scholar] [CrossRef] [PubMed]
- Gang, D.R. Evolution of flavors and scents. Annu. Rev. Plant Biol. 2005, 56, 301–325. [Google Scholar] [CrossRef]
- Jabrane, A.; Ben, H.; Miyamoto, T.; Mirjolet, J.; Duchamp, O.; Harzallah-skhiri, F.; Lacaille-dubois, M. Spirostane and cholestane glycosides from the bulbs of Allium nigrum L. Food Chem. 2011, 125, 447–455. [Google Scholar] [CrossRef]
- Elias, R.; Pichette, A. Cytotoxic steroidal saponins from the flowers of Allium leucanthum. Molecules 2008, 13, 2925–2934. [Google Scholar]
- Lai, W.; Bo, Y.; Li, X.; Na, L.; Jun, Z.; Sheng, W. New Steroidal Sapogenins from the Acid Hydrolysis Product of the Whole Glycoside Mixture of Welsh Onion Seeds. Chinese Chem. Lett. 2012, 23, 193–196. [Google Scholar] [CrossRef]
- Montoro, P.; Skhirtladze, A.; Perrone, A.; Benidze, M.; Kemertelidze, E.; Piacente, S. Determination of steroidal glycosides in Yucca gloriosa flowers by LC/MS/MS. J. Pharm. Biomed. Anal. 2010, 52, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Miyakoshi, M.; Tamura, Y.; Masuda, H.; Mizutani, K.; Tanaka, O.; Ikeda, T. Antiyeast Steroidal Saponins from Yucca schidigera (Mohave Yucca), a New Anti-Food-Deteriorating Agent. J. Nat. Prod. 2000, 25, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Uroda, M.K.; Imaki, Y.M.; Asegawa, F.H.; Okosuka, A.Y.; Ashida, Y.S. Steroidal Glycosides from the Bulbs of Camassia Leichtlinii and Their Cytotoxic Activities. Chem. Pharm. Bull. 2001, 49, 726–731. [Google Scholar]
- Jin, J.-M.; Zhang, Y.-J.; Yang, C.-R. Four New Steroid Constituents from the Waste Residue of Fibre Separation from Agave americana Leaves. Chem. Pharm. Bull. 2004, 52, 654–658. [Google Scholar] [CrossRef] [Green Version]
- Yokosuka, A.; Mimaki, Y. Steroidal Saponins from the Whole Plants of Agave utahensis and Their Cytotoxic Activity. Phytochemistry 2009, 70, 807–815. [Google Scholar] [CrossRef]
- Sati, O.P.; Pant, G.J.; Miyahara, K.; Kawasaki, T. Cantalasaponin-1, a novel spirostanol bisdesmoside from Agave cantala. J. Nat. Prod. 1985, 48, 395–399. [Google Scholar] [CrossRef]
- Mimaki, Y.; Kuroda, M.; Takaashi, Y.; Sashida, Y. Steroidal saponins from the leaves of Cordyline stricta. Phytochemistry 1998, 47, 79–85. [Google Scholar] [CrossRef]
- Li, X.L.; Ma, R.H.; Zhang, F.; Ni, Z.J.; Thakur, K.; Wang, S.; Zhang, J.G.; Wei, Z.J. Evolutionary Research Trend of Polygonatum species: A comprehensive account of their transformation from traditional medicines to functional foods. Crit. Rev. Food Sci. Nutr. 2021, 20, 1–18. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, L.; Kou, J.-P.; Zhu, D.-N.; Qi, J.; Yu, B.-Y. Steroidal sapogenins and glycosides from the Fibrous Roots of Polygonatum odoratum with inhibitory effect on tissue factor (TF) procoagulant activity. Steroids 2014, 89, 1–10. [Google Scholar] [CrossRef]
- Negi, J.S.; Singh, P.; Joshi, G.P.; Rawat, M.S.; Bisht, V.K. Chemical Constituents of Asparagus. Pharmacogn. Rev. 2010, 4, 215–220. [Google Scholar]
- Huang, X.; Kong, L. Steroidal saponins from roots of Asparagus officinalis. Steroids 2006, 71, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Huang, X.; Kong, L. A new steroidal saponin from the dried stems of Asparagus officinalis L. Fitoterapia 2010, 81, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Xu, J.; Luo, L.; Hu, H.; Meng, X.; Li, X.; Chen, S. Predicting the potential global distribution of diosgenin-contained Dioscorea species. Chinese Med. 2018, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jing, S.-S.; Wang, Y.; Li, X.-J.; Li, X.; Zhao, W.-S.; Zhou, B.; Zhao, C.-C.; Huang, L.-Q.; Gao, W.-Y. Phytochemical and chemotaxonomic studies on Dioscorea collettii. Biochem. Syst. Ecol. 2017, 71, 10–15. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Jing, W.; Zhang, J.; Xiao, H.; Zha, Q.; Liu, A. Ultrahigh-Performance Liquid Chromatography-Ion Trap Mass spectrometry characterization of the steroidal saponins of Dioscorea panthaica Prain et Burkill and its application for accelerating the isolation and structural elucidation of steroidal saponins. Steroids 2015, 95, 51–65. [Google Scholar] [CrossRef]
- Yi, T.; Fan, L.L.; Chen, H.L.; Zhu, G.Y.; Suen, H.M.; Tang, Y.N.; Zhu, L.; Chu, C.; Zhao, Z.Z.; Chen, H.B. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS. BMC Biochem. 2014, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Kouda, K.; Tezuka, Y.; Tran, Q.L.; Miyahara, T.; Chen, Y.; Kadota, S. Steroidal glycosides from the rhizomes of Dioscorea spongiosa. J. Nat. Prod. 2003, 66, 646–650. [Google Scholar] [CrossRef]
- Ghosh, S. Phytochemsitry and Therapeutic Potential of Medicinal Plant: Dioscorea bulbifera. Med. Chem. 2015, 5, 4. [Google Scholar] [CrossRef]
- Lee, H.J.; Watanabe, B.; Nakayasu, M.; Onjo, M.; Sugimoto, Y.; Mizutani, M. Novel steroidal saponins from Dioscorea esculenta (Togedokoro). Biosci. Biotechnol. Biochem. 2017, 81, 2253–2260. [Google Scholar] [CrossRef]
- Yokosuka, A.; Mimaki, Y.; Sashida, Y. Steroidal and Pregnane Glycosides from the Rhizomes of Tacca chantrieri. J. Nat. Prod. 2002, 65, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Li, J.; Attia, F.A.K.; Kang, W.; Wei, J.; Liu, Z.; Li, C. A critical review on chemical constituents and pharmacological effects of Lilium. Food Sci. Hum. Wellness 2019, 8, 330–336. [Google Scholar] [CrossRef]
- Mimaki, Y.; Satou, T.; Kuroda, M.; Sashida, Y.; Hatakeyama, Y. New steroidal constituents from the bulbs of Lilium candidum. Chem. Pharm. Bull. 1998, 46, 1829–1832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimaki, Y.; Sashida, Y. Steroidal saponins and alkaloids from the bulbs of Lilium brownii var. colchesteri. Chem. Pharm. Bull. 1990, 38, 3055–3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimaki, Y.; Sashida, Y. Steroidal and phenolic constituents of Lilium speciosum. Phytochemistry 1991, 30, 937–940. [Google Scholar] [CrossRef]
- Jing-min, X. Steroidal saponins and phenylic constituents from Lilium lancifolium and their anti-oxidant activities. Chinese Tradit. Herb. Drugs 2011, 21, 21–24. [Google Scholar]
- Shen, S.; Li, G.; Huang, J.; Chen, C.; Ren, B.; Lu, G.; Tan, Y.; Zhang, J.; Li, X.; Wang, J. Steroidal saponins from Fritillaria pallidiflora Schrenk. Fitoterapia 2012, 83, 785–794. [Google Scholar] [CrossRef]
- Ur Rahman, S.; Ismail, M.; Khurram, M.; Ullah, I.; Rabbi, F.; Iriti, M. Bioactive Steroids and Saponins of the Genus Trillium. Molecules 2017, 22, 2156. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jin, H.; Zhang, J.; Wang, Y. Determination of Total Steroid Saponins in Different Species of Paris Using Ftir Combined with Chemometrics. J. AOAC Int. 2018, 101, 732–738. [Google Scholar] [CrossRef]
- Yan, T.; Zhai, M.; Jia, J. Phytochemical and chemotaxonomic studies on the Trillium tschonoskii Maxim. J. Tradit. Med. 2018, 13, 61–67. [Google Scholar]
- Bernardo, R.R.; Pinto, A.V.; Parente, J.P. Steroidal saponins from Smilax officinalis. Phytochemistry 1996, 43, 465–469. [Google Scholar] [CrossRef] [PubMed]
- Challinor, V.L.; Parsons, P.G.; Chap, S.; White, E.F.; Blanchfield, J.T.; Lehmann, R.P.; De Voss, J.J. Steroidal saponins from the roots of Smilax Sp.: Structure and bioactivity. Steroids 2012, 77, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Elhouchet, Z.B.; Autour, M.S.; Iyamoto, T.M.; Ubois, M.L.A. Steroidal Saponins from the Roots of Smilax aspera Subsp. mauritanica. Chem. Pharm. Bull. 2008, 56, 1324–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, B.; Guo, H.; Cui, Y.; Ye, M.; Han, J.; Guo, D. Steroidal Saponins from Smilax china and Their Anti-Inflammatory Activities. Phytochemistry 2007, 68, 623–630. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Wu, W.; Zhao, Y.; Idehen, E.; Sang, S. Steroidal Saponins in Oat Bran. J. Agric. Food Chem. 2016, 64, 1549–1556. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Parente, J.P. New Steroidal Saponins from Rhizomes of Costus spiralis. Z. Fur Nat. -Sect. C J. Biosci. 2004, 59, 81–85. [Google Scholar] [CrossRef]
- Pawar, V.; Pawar, P. Costus speciosus: An Important Medicinal Plant. Ijsr. Net 2014, 3, 28–33. [Google Scholar]
- Watanabe, K.; Mimaki, Y.; Sakagami, H.; Sashida, Y. Bufadienolide and spirostanol glycosides from the rhizomes of helleborusorientalis. J. Nat. Prod. 2003, 66, 236–241. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Lorenz, P.; Conrad, J.; Stintzing, F.C. Tandem mass spectrometric characterization of acetylated polyhydroxy hellebosaponins, the principal steroid saponins in Helleborus niger L. roots (#). Rapid commun. Mass spectrom. RCM 2014, 28, 1801–1812. [Google Scholar]
- Yoshimitsu, H.; Nishida, M.; Nohara, T. Steroidal glycosides from the fruits of Solanum abutiloides. Phytochemistry 2003, 64, 1361–1366. [Google Scholar] [CrossRef]
- Honbu, T.; Ikeda, T.; Zhu, X.-H.; Yoshihara, O.; Okawa, M.; Nafady, A.M.; Nohara, T. New steroidal glycosides from the fruits of Solanum anguivi. J. Nat. Prod. 2002, 65, 1918–1920. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-L.; Hwang, T.-L.; He, W.-J.; Tsai, Y.-H.; Yen, C.-T.; Yen, H.-F.; Chen, C.-J.; Chang, W.-Y.; Wu, Y.-C. Anti-neutrophilic inflammatory steroidal glycosides from Solanum torvum. Phytochemistry 2013, 95, 315–321. [Google Scholar] [CrossRef]
- Kang, L.P.; Wu, K.L.; Yu, H.S.; Pang, X.; Liu, J.; Han, L.F.; Zhang, J.; Zhao, Y.; Xiong, C.Q.; Song, X.B.; et al. Steroidal saponins from Tribulus terrestris. Phytochemistry 2014, 107, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-F.; Wang, B.-B.; Zhao, Y.; Wang, F.-X.; Sun, Y.; Guo, R.-J.; Song, X.-B.; Xin, H.-L.; Sun, X.-G. Furostanol and spirostanol saponins from Tribulus terrestris. Molecules 2016, 21, 429. [Google Scholar] [CrossRef]
- Viruel, J.; Segarra-Moragues, J.G.; Raz, L.; Forest, F.; Wilkin, P.; Sanmartín, I.; Catalán, P. Late Cretaceous-Early Eocene origin of yams (Dioscorea, Dioscoreaceae) in the Laurasian Palaearctic and their subsequent Oligocene-Miocene diversification. J. Biogeogr. 2016, 43, 750–762. [Google Scholar] [CrossRef]
- Chen, S.; Xu, J.; Liu, C.; Zhu, Y.; Nelson, D.R.; Zhou, S.; Li, C.; Wang, L.; Guo, X.; Sun, Y.; et al. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nat. Commun. 2012, 3, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.L. Gene family evolution in green plants with emphasis on the origination and evolution of Arabidopsis thaliana genes. Plant J. 2013, 73, 941–951. [Google Scholar] [CrossRef]
- Jiao, Y.; Wickett, N.J.; Ayyampalayam, S.; Chanderbali, A.S.; Landherr, L.; Ralph, P.E.; Tomsho, L.P.; Hu, Y.; Liang, H.; Soltis, P.S.; et al. Ancestral polyploidy in seed plants and angiosperms. Nature 2011, 473, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.W.; Donoghue, P.C.J. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, R.; Wang, H.; Guo, C.; Zhang, N.; Zeng, L.; Chen, Y.; Ma, H.; Qi, J. Widespread Whole Genome Duplications Contribute to Genome Complexity and Species Diversity in Angiosperms. Mol. Plant 2018, 11, 414–428. [Google Scholar] [CrossRef] [Green Version]
- Diener, A.C.; Li, H.; Zhou, W.X.; Whoriskey, W.J.; Nes, W.D.; Fink, G.R. STEROL METHYLTRANSFERASE 1 Controls the Level of Cholesterol in Plants. Plant Cell 2000, 12, 853–870. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.K. The evolutionary paths towards complexity: A metabolic perspective. New Phytol. 2014, 201, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Prall, W.; Hendy, O.; Thornton, L.E. Utility of a Phylogenetic Perspective in Structural Analysis of CYP72A Enzymes from Flowering Plants. PLoS ONE 2016, 11, e0163024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Chen, Q.; Xin, P.; Yuan, J.; Ma, Y.; Wang, X.; Xu, M.; Chu, J.; Peters, R.J.; Wang, G. CYP72A enzymes catalyse 13-hydrolyzation of gibberellins. Nat. Plants 2019, 5, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, J.; Cui, M.Y.; Liu, J.; Fang, Y.; Yan, M.; Qiu, W.; Shang, H.; Xu, Z.; Yidiresi, R.; et al. The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis. Mol. Plant 2019, 12, 935–950. [Google Scholar] [CrossRef] [Green Version]
- De Costa, F.; Barber, C.J.S.; Kim, Y.-B.; Reed, D.W.; Zhang, H.X.; Fett-Neto, A.G.; Covello, P.S. Molecular cloning of an ester-forming triterpenoid: UDP-glucose 28-O-glucosyltransferase involved in saponin biosynthesis from the medicinal plant Centella asiatica. Plant Sci. 2017, 262, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isayenkova, J.; Wray, V.; Nimta, M.; Strack, D.; Vogt, T. Cloning and functional characterization of two regioselective flavonoid glucosyltransferases from Beta vulgaris. Phytochemistry 2006, 67, 1598–1612. [Google Scholar] [CrossRef] [PubMed]
- Stucky, D.F.; Arpin, J.C.; Schrick, K. Functional diversification of two UGT80 enzymes required for steryl glucoside synthesis in Arabidopsis. J. Exp. Bot. 2015, 66, 189–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itkin, M.; Heinig, U.; Tzfadia, O.; Bhide, A.J.; Shinde, B.; Cardenas, P.D.; Bocobza, S.E.; Unger, T.; Malitsky, S.; Finkers, R.; et al. Biosynthesis of antinutritional alkaloids in Solanaceous crops is mediated by clustered genes. Science 2013, 341, 175–179. [Google Scholar] [CrossRef]
- El-Hashash, M.A.; Amine, M.S.; Shoeb, H.A.; Refahy, L.A. ChemInform Abstract: Triterpenes from Agave kerchovei. Cheminform 1995, 26. [Google Scholar] [CrossRef]
- Hu, G.; Mao, R.; Ma, Z. A new steroidal saponin from the seeds of Allium tuberosum. Food Chem. 2009, 113, 1066–1068. [Google Scholar] [CrossRef]
- Yuan, L.; Ji, T.-F.; Li, C.-J.; Wang, A.-G.; Yang, J.-B.; Su, Y.-L. Two new steroidal saponins from the seeds of Allium cepa L. J. Asian Nat. Prod. Res. 2009, 11, 213–218. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.-B.; Chen, T.-H.; Bastow, K.F.; Shibano, M.; Lee, K.-H.; Chen, D.-F.; Filiasparosides, A.-D. Cytotoxic Steroidal Saponins from the Roots of Asparagus filicinus. J. Nat. Prod. 2007, 70, 1263–1267. [Google Scholar] [CrossRef]
- Wu, J.-J.; Cheng, K.-W.; Zuo, X.-F.; Wang, M.; Li, P.; Zhang, L.-Y.; Wang, H.; Ye, W.-C. Steroidal saponins and ecdysterone from Asparagus filicinus and their cytotoxic activities. Steroids 2010, 75, 734–739. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Kumar, N.; Singh, B. Furostanol Saponin and Diphenylpentendiol from the Roots of Asparagus racemosus. Nat. Prod. Commun. 2012, 7, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.-J.; Lu, T.-J.; Hwang, L.S. Isolation and Identification of Steroidal Saponins in Taiwanese Yam Cultivar (Dioscorea pseudojaponica Yamamoto). J. Agric. Food Chem. 2003, 51, 6438–6444. [Google Scholar] [CrossRef]
- Lin, S.; Wang, D.; Yang, D.; Yao, J.; Tong, Y.; Chen, J. Characterization of steroidal saponins in crude extract from Dioscorea nipponica Makino by liquid chromatography tandem multi-stage mass spectrometry. Anal. Chim. Acta 2007, 599, 98–106. [Google Scholar] [CrossRef]
- Yu, H.-S.; Ma, B.-P.; Song, X.-B.; Kang, L.-P.; Zhang, T.; Fu, J.; Zhao, Y.; Xiong, C.-Q.; Tan, D.-W.; Zhang, L.-J.; et al. Two New Steroidal Saponins from the Processed Polygonatum kingianum. Helvetica Chim. Acta 2010, 93, 1086–1092. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, L.-P.; Liu, Y.-X.; Zhao, Y.; Xiong, C.-Q.; Ma, B.-P.; Dong, F.-T. Three new steroidal saponins from the rhizome of Paris polyphylla. Org. Magn. Reson. 2007, 45, 739–744. [Google Scholar] [CrossRef]
- Yang, Q.-X.; Xu, M.; Zhang, Y.-J.; Li, H.-Z.; Yang, C.-R. Steroidal Saponins from Disporopsis pernyi. Helvetica Chim. Acta 2004, 87, 1248–1253. [Google Scholar] [CrossRef]
- Le Tran, Q.; Tezuka, Y.; Banskota, A.H.; Tran, Q.K.; Saiki, I.; Kadota, S. New Spirostanol Steroids and Steroidal Saponins from Roots and Rhizomes of Dracaena angustifolia and Their Antiproliferative Activity. J. Nat. Prod. 2001, 64, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-H.; Wang, C.-Z.; Wang, S.-Q.; Mi, C.; He, Y.; Zhang, J.; Zhang, Y.-W.; Anderson, S.; Yuan, C.-S. Anti-hyperuricemia effects of allopurinol are improved by Smilax riparia, a traditional Chinese herbal medicine. J. Ethnopharmacol. 2015, 162, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Mimaki, Y.; Watanabe, K.; Ando, Y.; Sakuma, C.; Sashida, Y.; Furuya, S.; Sakagami, H. Flavonol Glycosides and Steroidal Saponins from the Leaves of Cestrum nocturnum and Their Cytotoxicity. J. Nat. Prod. 2000, 64, 17–22. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, H.; Li, Z.; Li, S.; Li, J. Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants. Int. J. Mol. Sci. 2023, 24, 2620. https://doi.org/10.3390/ijms24032620
Li Y, Yang H, Li Z, Li S, Li J. Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants. International Journal of Molecular Sciences. 2023; 24(3):2620. https://doi.org/10.3390/ijms24032620
Chicago/Turabian StyleLi, Yi, Huan Yang, Zihao Li, Song Li, and Jiaru Li. 2023. "Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants" International Journal of Molecular Sciences 24, no. 3: 2620. https://doi.org/10.3390/ijms24032620
APA StyleLi, Y., Yang, H., Li, Z., Li, S., & Li, J. (2023). Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants. International Journal of Molecular Sciences, 24(3), 2620. https://doi.org/10.3390/ijms24032620