Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Viscosity Data
2.2. Diffusion Coefficients Analysis
2.2.1. Tracer Binary Diffusion Coefficients of Sodium Hyaluronate
2.2.2. Tracer Ternary Diffusion Coefficients of Sodium Hyaluronate
3. Materials and Methods
Chemical Name | Source | CAS Number | Mass Fraction Purity |
---|---|---|---|
Sodium hyaluronate | Contipro Ltd. (Dolní Dobrouč, Czech Republic) (Mw = 243 kDa) | 9067-32-7 | >0.99 1 |
β-cyclodextrin | Sigma-Aldrich (water mass fraction of 0.131) | 7585-39-9 | >0.99 1 |
water | Millipore-Q water (18.2 MΩ·cm at 25.0 °C) | 7732-18-5 |
3.1. Viscosity Measurements
3.2. Diffusion Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ågren, U.M.; Tammi, M.; Ryynänen, M.; Tammi, R. Developmentally Programmed Expression of Hyaluronan in Human Skin and its Appendages. J. Investig. Dermatol. 1997, 109, 219–224. [Google Scholar] [CrossRef]
- Liang, J.; Jiang, D.; Noble, P.W. Hyaluronan as a therapeutic target in human diseases. Adv. Drug Deliv. Rev. 2016, 97, 186–203. [Google Scholar] [CrossRef] [PubMed]
- Di Mola, A.; Landi, M.R.; Massa, A.; D’Amora, U.; Guarino, V. Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int. J. Mol. Sci. 2022, 23, 14372. [Google Scholar] [CrossRef]
- Azevedo, E.F.G.; Azevedo, M.L.G.; Ribeiro, A.C.F.; Mráček, A.; Gřundĕlová, L.; Minařík, A. Hyaluronic acid transport properties and its medical applications in voice disorders. In Innovations in Physical Chemistry: Monograph Serie, Engineering Technology and Industrial Chemistry with Applications; Hagui, R., Torrens, F., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2018; ISBN 9781771886376. [Google Scholar]
- Pérez, L.A.; Hernández, R.; Alonso, J.M.; Pérez-González, R.; Sáez-Martínez, V. Hyaluronic Acid Hydrogels Crosslinked in Physiological Conditions: Synthesis and Biomedical Applications. Biomedicines 2021, 9, 1113. [Google Scholar] [CrossRef]
- Charlot, A.; Heyraud, A.; Guenot, P.; Rinaudo, M.; Auzély-Velty, R. Controlled Synthesis and Inclusion Ability of a Hyaluronic Acid Derivative Bearing β-Cyclodextrin Molecules. Biomacromolecules 2006, 7, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Sakulwech, S.; Lourith, N.; Ruktanonchai, U.; Kanlayavattanakul, M. Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian J. Pharm. Sci. 2018, 13, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Nakama, T.; Ooya, T.; Yui, N. Gelation Rate Modulation of anα-Cyclodextrin and Poly(ethylene glycol)-Grafted Hyaluronic Acid Solution System by Inclusion Complexation of a Microphase-Separated Structure. Macromol. Rapid Commun. 2004, 25, 739–742. [Google Scholar] [CrossRef]
- Singh, P.; Wu, L.; Ren, X.; Zhang, W.; Tang, Y.; Chen, Y.; Carrier, A.; Zhang, X.; Zhang, J. Hyaluronic-acid-based β-cyclodextrin grafted copolymers as biocompatible supramolecular hosts to enhance the water solubility of tocopherol. Int. J. Pharm. 2020, 586, 119542. [Google Scholar] [CrossRef]
- Singh, P.; Chen, Y.; Tyagi, D.; Wu, L.; Ren, X.; Feng, J.; Carrier, A.; Luan, T.; Tang, Y.; Zhang, J.; et al. β-Cyclodextrin-grafted hyaluronic acid as a supramolecular polysaccharide carrier for cell-targeted drug delivery. Int. J. Pharm. 2021, 602, 120602. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Guo, X.; Zhao, Y.; Ren, S.; Zhang, Z.; Lv, H. Hyaluronic acid-cyclodextrin encapsulating paeonol for treatment of atopic dermatitis. Int. J. Pharm. 2022, 623, 121916. [Google Scholar] [CrossRef]
- Yin, H.; Zhao, F.; Zhang, D.; Li, J. Hyaluronic acid conjugated β-cyclodextrin-oligoethylenimine star polymer for CD44-targeted gene delivery. Int. J. Pharm. 2015, 483, 169–179. [Google Scholar] [CrossRef]
- Seçer, S.; Ceylan Tuncaboylu, D. Supramolecular poloxamer-based in situ gels with hyaluronic acid and cyclodextrins. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 647–655. [Google Scholar] [CrossRef]
- Nakama, T.; Ooya, T.; Yui, N. Temperature- and pH-Controlled Hydrogelation of Poly(ethylene glycol)-Grafted Hyaluronic Acid by Inclusion Complexation with α-Cyclodextrin. Polym. J. 2004, 36, 338–344. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, C.-P.; Chen, D.; Liu, C.-F.; Zhuo, L.-H.; Li, H.; Wang, C.; Bu, H.-T.; Tian, W. β-Cyclodextrin-modified hyaluronic acid-based supramolecular self-assemblies for pH- and esterase- dual-responsive drug delivery. Carbohydr. Polym. 2020, 246, 116654. [Google Scholar] [CrossRef] [PubMed]
- Valente, A.J.M.; Söderman, O. The formation of host-guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 2014, 205, 156–176. [Google Scholar] [CrossRef]
- Cova, T.F.; Murtinho, D.; Pais, A.A.C.C.; Valente, A.J.M. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front. Chem. 2018, 6, 271. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Yang, X.; Chen, S.; Wang, Q.; Zhang, A.; Tang, B. Cyclodextrin-based host–guest supramolecular hydrogels for local drug delivery. Coord. Chem. Rev. 2022, 454, 214352. [Google Scholar] [CrossRef]
- Higashi, T. Cyclodextrin-Based Molecular Accessories for Drug Discovery and Drug Delivery. Chem. Pharm. Bull. 2019, 67, 289–298. [Google Scholar] [CrossRef]
- Alvarez-Lorenzo, C.; García-González, C.A.; Concheiro, A. Cyclodextrins as versatile building blocks for regenerative medicine. J. Control. Release 2017, 268, 269–281. [Google Scholar] [CrossRef]
- Ataei, S.; Azari, P.; Hassan, A.; Pingguan-Murphy, B.; Yahya, R.; Muhamad, F. Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. Adv. Polym. Technol. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Cova, T.F.G.G.; Murtinho, D.; Pais, A.A.C.C.; Valente, A.J.M. Cyclodextrin-based Materials for Removing Micropollutants From Wastewater. Curr. Org. Chem. 2018, 22, 2150–2181. [Google Scholar] [CrossRef]
- Utzeri, G.; Cova, T.F.; Murtinho, D.; Pais, A.A.C.C.; Valente, A.J.M. Insights on macro- and microscopic interactions between Confidor and cyclodextrin-based nanosponges. Chem. Eng. J. 2023, 455, 140882. [Google Scholar] [CrossRef]
- Aguado, R.; Santos, A.R.M.G.; Vallejos, S.; Valente, A.J.M. Paper-Based Probes with Visual Response to Vapors from Nitroaromatic Explosives: Polyfluorenes and Tertiary Amines. Molecules 2022, 27, 2900. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Shin, K.; Kwon, O.S.; Hwang, Y.; An, J.; Jang, A.; Kim, H.J.; Lee, C.-S. A succinct review of refined chemical sensor systems based on conducting polymer–cyclodextrin hybrids. J. Ind. Eng. Chem. 2019, 79, 19–28. [Google Scholar] [CrossRef]
- Mráček, A.; Gřundělová, L.; Minařík, A.; Veríssimo, L.; Barros, M.; Ribeiro, A. Characterization at 25 °C of Sodium Hyaluronate in Aqueous Solutions Obtained by Transport Techniques. Molecules 2015, 20, 5812–5824. [Google Scholar] [CrossRef]
- Musilová, L.; Mráček, A.; Kašpárková, V.; Minařík, A.; Valente, A.J.M.; Azevedo, E.F.G.; Veríssimo, L.M.P.; Rodrigo, M.M.; Esteso, M.A.; Ribeiro, A.C.F. Effect of Hofmeister Ions on Transport Properties of Aqueous Solutions of Sodium Hyaluronate. Int. J. Mol. Sci. 2021, 22, 1932. [Google Scholar] [CrossRef]
- Veríssimo, L.M.P.; Valada, T.I.C.; Sobral, A.J.F.N.; Azevedo, E.E.F.G.; Azevedo, M.L.G.; Ribeiro, A.C.F. Mutual diffusion of sodium hyaluranate in aqueous solutions. J. Chem. Thermodyn. 2014, 71, 14–18. [Google Scholar] [CrossRef]
- Ribeiro, A.C.F.; Musilová, L.; Mráček, A.; Cabral, A.M.T.D.P.V.; Ana Santos, M.; Cabral, I.; Esteso, M.A.; Valente, A.J.M.; Leaist, D. Host-guest paracetamol/cyclodextrin complex formation evaluated from coupled diffusion measurements. J. Chem. Thermodyn. 2021, 161, 106551. [Google Scholar] [CrossRef]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, USA, 1995. [Google Scholar]
- Hersloef, A.; Sundeloef, L.O.; Edsman, K. Interaction between polyelectrolyte and surfactant of opposite charge: Hydrodynamic effects in the sodium hyaluronate/tetradecyltrimethylammonium bromide/sodium chloride/water system. J. Phys. Chem. 1992, 96, 2345–2348. [Google Scholar] [CrossRef]
- Cowman, M.K.; Matsuoka, S. Experimental approaches to hyaluronan structure. Carbohydr. Res. 2005, 340, 791–809. [Google Scholar] [CrossRef]
- Ribitsch, G.; Schurz, J.; Ribitsch, V. Investigation of the solution structure of hyaluronic acid by light scattering, SAXS, and viscosity measurements. Colloid Polym. Sci. 1980, 258, 1322–1334. [Google Scholar] [CrossRef]
- Musilová, L.; Kašpárková, V.; Mráček, A.; Minařík, A.; Minařík, M. The behaviour of hyaluronan solutions in the presence of Hofmeister ions: A light scattering, viscometry and surface tension study. Carbohydr. Polym. 2019, 212, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Effect of Ions on the Structure of Water: Structure Making and Breaking. Chem. Rev. 2009, 109, 1346–1370. [Google Scholar] [CrossRef]
- Jonsson, B.; Lindman, B.; Holmberg, K.; Kronberg, B. Surfactants and Polymers in Aqueous Solution; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Valente, A.J.M.; Nilsson, M.; Söderman, O. Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR. J. Colloid Interface Sci. 2005, 281, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.C.F.A.C.F.; Leaist, D.G.D.G.; Esteso, M.A.M.A.; Lobo, V.M.M.V.M.M.; Valente, A.J.M.A.J.M.; Santos, C.I.A.V.C.I.A.V.; Cabral, A.M.T.D.P.V.; Veiga, F.J.B.F.J.B.; Cabrai, A.M.T.D.P.V.; Veiga, F.J.B.F.J.B. Binary Mutual Diffusion Coefficients of Aqueous Solutions of β-Cyclodextrin at Temperatures from 298.15 to 312.15 K. J. Chem. Eng. Data 2006, 51, 1368–1371. [Google Scholar] [CrossRef]
- Tyrrell, H.J.V.; Harris, K.R. Diffusion in Liquids; Butterworths: London, UK, 1984. [Google Scholar]
- Callendar, R.; Leaist, D.G. Diffusion Coefficients for Binary, Ternary, and Polydisperse Solutions from Peak-Width Analysis of Taylor Dispersion Profiles. J. Solut. Chem. 2006, 35, 353–379. [Google Scholar] [CrossRef]
- Barthel, J.; Gores, H.J.; Lohr, C.M.; Seidl, J.J. Taylor dispersion measurements at low electrolyte concentrations. I. Tetraalkylammonium perchlorate aqueous solutions. J. Solut. Chem. 1996, 25, 921–935. [Google Scholar] [CrossRef]
- Loh, W. A técnica de dispersão de taylor para estudos de difusão em líquidos e suas aplicações. Quim. Nova 1997, 20, 541–545. [Google Scholar] [CrossRef]
- Alizadeh, A.; Nieto de Castro, C.A.; Wakeham, W.A. The theory of the Taylor dispersion technique for liquid diffusivity measurements. Int. J. Thermophys. 1980, 1, 243–284. [Google Scholar] [CrossRef]
- Matos Lopes, M.L.S.; Nieto de Castro, C.A.; Sengers, J.V. Mutual diffusivity of a mixture of n-hexane and nitrobenzene near its consolute point. Int. J. Thermophys. 1992, 13, 283–294. [Google Scholar] [CrossRef]
- Deng, Z.; Leaist, D.G. Ternary mutual diffusion coefficients of MgCl 2 + MgSO 4 + H 2 O and Na 2 SO 4 + MgSO 4 + H 2 O from Taylor dispersion profiles. Can. J. Chem. 1991, 69, 1548–1553. [Google Scholar] [CrossRef]
- Leaist, D.G. Ternary diffusion coefficients of 18-crown-6 ether–KCl–water by direct least-squares analysis of Taylor dispersion measurements. J. Chem. Soc. Faraday Trans. 1991, 87, 597–601. [Google Scholar] [CrossRef]
CNaHy/(g/dm−3) | ΔD/D % | ||
---|---|---|---|
[βCD] = 1 × 10−3 mol dm−3 | [βCD] = 5 × 10−3 mol dm−3 | [βCD] = 7 × 10−3 mol dm−3 | |
0.50 | −23.5 | −37.1 | −33.5 |
1.00 | −41.0 | −45.4 | −40.6 |
1.50 | −28.0 | −36.2 | −31.2 |
3.00 | −9.6 | −17.7 | −12.3 |
5.00 | 0.0 | −10.9 | −8.7 |
7.00 | −2.6 | −18.4 | −19.7 |
10.0 | −9.1 | −3.7 | 1.0 |
C1/(10−3 mol dm−3) | C2/(10−3 mol dm−3) | D11 ± SD/ (10−9 m2 s−1) | D12 ± SD/ (10−9 m2 s−1) | D21 ± SD/ (10−9 m2 s−1) | D22 ± SD/ (10−9 m2 s−1) |
---|---|---|---|---|---|
0.0 1 | 7 | 0.430 ± 0.012 | 0.030 ± 0.010 | −0.130 ± 0.030 | 0.380 ± 0.030 |
0.0 2 | 7 | 0.476 ± 0.012 | 0.035 ± 0.010 | −0.748 ± 0.010 | 0.368 ± 0.030 |
0.0 3 | 7 | 0.443 ± 0.012 | 0.001 ± 0.010 | −0.680 ± 0.010 | 0.389 ± 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Musilová, L.; Mráček, A.; Azevedo, E.F.G.; Valente, A.J.M.; Cabral, A.M.T.D.P.V.; Ribeiro, A.C.F.; Esteso, M.A. Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. Int. J. Mol. Sci. 2023, 24, 2889. https://doi.org/10.3390/ijms24032889
Musilová L, Mráček A, Azevedo EFG, Valente AJM, Cabral AMTDPV, Ribeiro ACF, Esteso MA. Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. International Journal of Molecular Sciences. 2023; 24(3):2889. https://doi.org/10.3390/ijms24032889
Chicago/Turabian StyleMusilová, Lenka, Aleš Mráček, Eduarda F. G. Azevedo, Artur J. M. Valente, Ana M. T. D. P. V. Cabral, Ana C. F. Ribeiro, and Miguel A. Esteso. 2023. "Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties" International Journal of Molecular Sciences 24, no. 3: 2889. https://doi.org/10.3390/ijms24032889
APA StyleMusilová, L., Mráček, A., Azevedo, E. F. G., Valente, A. J. M., Cabral, A. M. T. D. P. V., Ribeiro, A. C. F., & Esteso, M. A. (2023). Interactions between Sodium Hyaluronate and β-Cyclodextrin as Seen by Transport Properties. International Journal of Molecular Sciences, 24(3), 2889. https://doi.org/10.3390/ijms24032889