Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Efficacy Tests against P. expansum
2.2. Efficacy of EOs against Blue Mould on Apples and Effect on Fruit Quality
2.3. Characterisation of Volatile Compounds of EOs in the Cabinets during Storage
2.4. Evaluation of the Possible Mechanisms of Action
3. Materials and Methods
3.1. Essential Oils and Chromatographic Analysis
3.2. Antifungal Tests In Vitro
3.3. Efficacy against Blue Mould on Apples
3.4. Effect on Fruit Quality
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rossi, R.; European Parliamentary Research Service. The EU Fruit and Vegetable Sector: Main Features, Challenges and Prospects. 2019. Available online: https://www.europarl.europa.eu/thinktank/mt/document/EPRS_BRI(2019)635563 (accessed on 12 December 2022).
- CBI Ministry of Foreign Affairs. The European Market Potential for Apples. 2021. Available online: https://www.cbi.eu/market-information/fresh-fruit-vegetables/apples/market-potential (accessed on 12 December 2022).
- Food and Agriculture Organization of the United Nations. FAOSTAT Statistical Database. 2020. Available online: https://www.fao.org/faostat/en/ (accessed on 12 December 2022).
- Luciano-Rosario, D.; Keller, N.P.; Jurick, W.M. Penicillium expansum: Biology, Omics, and Management Tools for a Global Postharvest Pathogen Causing Blue Mould of Pome Fruit. Mol. Plant Pathol. 2020, 21, 1391–1404. [Google Scholar] [CrossRef]
- Quaglia, M.; Ederli, L.; Pasqualini, S.; Zazzerini, A. Biological Control Agents and Chemical Inducers of Resistance for Postharvest Control of Penicillium expansum Link. on Apple Fruit. Postharvest Biol. Technol. 2011, 59, 307–315. [Google Scholar] [CrossRef]
- Garello, M.; Piombo, E.; Prencipe, S.; Schiavon, G.; Berra, L.; Wisniewski, M.; Droby, S.; Spadaro, D. Fruit microbiome: A powerful tool to study the epidemiology of dry lenticel rot and white haze—Emerging postharvest diseases of apple. Postharvest Biol. Technol. 2023, 196, 112163. [Google Scholar] [CrossRef]
- Franco Ortega, S.; Prencipe, S.; Gullino, M.L.; Spadaro, D. New molecular tool for a quick and easy detection of apple scab in the field. Agronomy 2020, 10, 581. [Google Scholar] [CrossRef]
- Prencipe, S.; Valente, S.; Nari, L.; Spadaro, D. A quantitative real-time PCR assay for early detection and quantification of Ramularia mali, an emerging pathogen of apple causing dry lenticel rot. Plant Dis. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, D.; Torres, R.; Errampalli, D.; Everett, K.; Ramos, L.; Mari, M. Postharvest Diseases of Pome Fruit. In Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 55–109. ISBN 9781138630833. [Google Scholar]
- Yaseen, T.; Ricelli, A.; Turan, B.; Albanese, P.; D’Onghia, A.M. Ozone for Post-Harvest Treatment of Apple Fruits. Phytopathol. Mediterr. 2015, 54, 94–103. [Google Scholar] [CrossRef]
- Morales, H.; Marín, S.; Ramos, A.J.; Sanchis, V. Influence of Post-Harvest Technologies Applied during Cold Storage of Apples in Penicillium Expansum Growth and Patulin Accumulation: A Review. Food Control 2010, 21, 953–962. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Spadaro, D.; Lore, A.; Gullino, M.L.; Garibaldi, A. Potential of Patulin Production by Penicillium Expansum Strains on Various Fruits. Mycotoxin Res. 2010, 26, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tannous, J.; Keller, N.P.; Atoui, A.; el Khoury, A.; Lteif, R.; Oswald, I.P.; Puel, O. Secondary Metabolism in Penicillium Expansum: Emphasis on Recent Advances in Patulin Research. Crit. Rev. Food Sci. Nutr. 2018, 58, 2082–2098. [Google Scholar] [CrossRef]
- Touhami, N.; Soukup, S.T.; Schmidt-Heydt, M.; Kulling, S.E.; Geisen, R. Citrinin as an Accessory Establishment Factor of P. Expansum for the Colonization of Apples. Int. J. Food Microbiol. 2018, 266, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, D.; Ciavorella, A.; Frati, S.; Garibaldi, A.; Gullino, M.L. Incidence and Level of Patulin Contamination in Pure and Mixed Apple Juices Marketed in Italy. Food Control 2007, 18, 1098–1102. [Google Scholar] [CrossRef]
- Bräse, S.; Encinas, A.; Keck, J.; Nising, C.F. Chemistry and Biology of Mycotoxins and Related Fungal Metabolites. Chem. Rev. 2009, 109, 3903–3990. [Google Scholar] [CrossRef] [PubMed]
- Reverberi, M.; Ricelli, A.; Zjalic, S.; Fabbri, A.A.; Fanelli, C. Natural Functions of Mycotoxins and Control of Their Biosynthesis in Fungi. Appl. Microbiol. Biotechnol. 2010, 87, 899–911. [Google Scholar] [CrossRef]
- Andersen, B.; Smedsgaard, J.; Frisvad, J.C. Penicillium expansum: Consistent Production of Patulin, Chaetoglobosins, and Other Secondary Metabolites in Culture and Their Natural Occurrence in Fruit Products. J. Agric. Food Chem. 2004, 52, 2421–2428. [Google Scholar] [CrossRef] [PubMed]
- Morales, H.; Marín, S.; Centelles, X.; Ramos, A.J.; Sanchis, V. Cold and Ambient Deck Storage Prior to Processing as a Critical Control Point for Patulin Accumulation. Int. J. Food Microbiol. 2007, 116, 260–265. [Google Scholar] [CrossRef]
- Jackson, L.S.; Beacham-Bowden, T.; Keller, S.E.; Adhikari, C.; Taylor, K.T.; Chirtel, S.J.; Merker, R.I. Apple Quality, Storage, and Washing Treatments Affect Patulin Levels in Apple Cider. J. Food Prot. 2003, 66, 618–624. [Google Scholar] [CrossRef]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Blackie Academic and Professional: London, UK, 1997. [Google Scholar]
- Morales, H.; Marín, S.; Obea, L.; Patiño, B.; Doménech, M.; Ramos, A.J.; Sanchis, V. Ecophysiological Characterization of Penicillium Expansum Population in Lleida (Spain). Int. J. Food Microbiol. 2008, 122, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, E.; Mari, M.; Chierici, E.; Pondrelli, M.; Bertolini, P.; Pratella, G.C. Studies on Thiabendazole Resistance of Penicillium Expansum of Pears: Pathogenic Fitness and Genetic Characterization. Plant Pathol. 2003, 52, 362–370. [Google Scholar] [CrossRef]
- Cabañas, R.; Abarca, M.L.; Bragulat, M.R.; Cabañes, F.J. Comparison of Methods to Detect Resistance of Penicillium Expansum to Thiabendazole. Lett. Appl. Microbiol. 2009, 48, 241–246. [Google Scholar] [CrossRef]
- Eckert, J.W.; Ogawa, J.M. The Chemical Control of Postharvest Diseases: Deciduous Fruits, Berries, Vegetables and Root/Tuber Crops. Annu. Rev. Phytopathol. 1988, 26, 433–469. [Google Scholar] [CrossRef]
- Ippolito, A.; Nigro, F. Impact of Preharvest Application of Biological Control Agents on Postharvest Diseases of Fresh Fruits and Vegetables. Crop Prot. 2000, 19, 715–723. [Google Scholar] [CrossRef]
- Etebarian, H.R.; Sholberg, P.L.; Eastwell, K.C.; Sayler, R.J. Biological Control of Apple Blue Mold with Pseudomonas Fluorescens. Can. J. Microbiol. 2005, 51, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; Sanz de Tosetti, M.I. Biological Control of Postharvest Spoilage Caused by Penicillium Expansum and Botrytis Cinerea in Apple by Using the Bacterium Rahnella Aquatilis. Int. J. Food Microbiol. 2007, 113, 251–257. [Google Scholar] [CrossRef]
- Moodley, R.S.; Govinden, R.; Odhav, B. The Effect of Modified Atmospheres and Packaging on Patulin Production in Apples. J. Food Prot. 2002, 65, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Baert, K.; Devlieghere, F.; Bo, L.; Debevere, J.; de Meulenaer, B. The Effect of Inoculum Size on the Growth of Penicillium Expansum in Apples. Food Microbiol. 2008, 25, 212–217. [Google Scholar] [CrossRef]
- Chung, H.-S.; Moon, K.-D.; Chung, S.-K.; Choi, J.-U. Control of Internal Browning and Quality Improvement of ‘Fuji’ Apples by Stepwise Increase of CO2 Level during Controlled Atmosphere Storage. J. Sci. Food Agric. 2005, 85, 883–888. [Google Scholar] [CrossRef]
- Sitton, J.W. Effect of High-Carbon Dioxide and Low-Oxygen Controlled Atmospheres on Postharvest Decays of Apples. Plant Dis. 1992, 76, 992. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Efficacy of Plant Essential Oils on Postharvest Control of Rot Caused by Fungi on Four Cultivars of Apples in Vivo. Flavour Fragr. J. 2010, 25, 171–177. [Google Scholar] [CrossRef]
- Santoro, K.; Maghenzani, M.; Chiabrando, V.; Bosio, P.; Gullino, M.L.; Spadaro, D.; Giacalone, G. Thyme and Savory Essential Oil Vapor Treatments Control Brown Rot and Improve the Storage Quality of Peaches and Nectarines, but Could Favor Gray Mold. Foods 2018, 7, 7. [Google Scholar] [CrossRef]
- Schiavon, G.; Garello, M.; Prencipe, S.; Meloni, G.R.; Buonsenso, F.; Spadaro, D. Essential oils reduce grey mould rot of apples and modify the fruit microbiome during postharvest storage. J. Fungi 2023, 9, 22. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Spadaro, D.; Prelle, A.; Garibaldi, A.; Gullino, M.L. Efficacy of Plant Essential Oils on Postharvest Control of Rots Caused by Fungi on Different Stone Fruits In Vivo. J. Food Prot. 2013, 76, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Bautista-Baños, S.; Sivakumar, D. Decay Control in the Postharvest System: Role of Microbial and Plant Volatile Organic Compounds. Postharvest Biol. Technol. 2016, 122, 70–81. [Google Scholar] [CrossRef]
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Barrera-Necha, L.L.; Bautista-Banos, S.; Flores-Moc, H.E.; Estudillo, A.R. Efficacy of Essential Oils on the Conidial Germination, Growth of Colletotrichum Gloeosporioides (Penz.) Penz. and Sacc and Control of Postharvest Diseases in Papaya (Carica Papaya L.). Plant Pathol. J. 2008, 7, 174–178. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS Analysis of Essential Oils from Some Greek Aromatic Plants and Their Fungitoxicity on Penicillium Digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.S.; Camele, I. Investigating the Effects of Plant Essential Oils on Post-Harvest Fruit Decay. In Fungal Pathogenicity; InTech: London, UK, 2016. [Google Scholar]
- Marandi, R.J.; Hassani, A.; Ghosta, Y.; Abdollahi, A.; Pirzad, A.; Sefidkon, F. Control of Penicillium expansum and Botrytis cinerea on pear with Thymus kotschyanus, Ocimum basilicum and Rosmarinus officinalis essential oils. J. Med. Plant Res. 2011, 5, 626–634. [Google Scholar]
- Lazar-Baker, E.E.; Hetherington, S.D.; Ku, V.V.; Newman, S.M. Evaluation of Commercial Essential Oil Samples on the Growth of Postharvest Pathogen Monilinia Fructicola (G. Winter) Honey. Lett. Appl. Microbiol. 2011, 52, 227–232. [Google Scholar] [CrossRef]
- Šegvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal Activity of Thyme (Thymus Vulgaris L.) Essential Oil and Thymol against Moulds from Damp Dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
- Sarkhosh, A.; Vargas, A.I.; Schaffer, B.; Palmateer, A.J.; Lopez, P.; Soleymani, A.; Farzaneh, M. Postharvest Management of Anthracnose in Avocado (Persea Americana Mill.) Fruit with Plant-Extracted Oils. Food Packag. Shelf Life 2017, 12, 16–22. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, X.; Ye, B.; Shi, L.; Bai, X.; Lai, T. Effects of essential oil decanal on growth and transcriptome of the postharvest fungal pathogen Penicillium expansum. Postharvest Biol. Technol. 2018, 145, 203–212. [Google Scholar] [CrossRef]
- Droby, S.; Eick, A.; Macarisin, D.; Cohen, L.; Rafael, G.; Stange, R.; McColum, G.; Dudai, N.; Nasser, A.; Wisniewski, M.; et al. Role of citrus volatiles in host recognition, germination and growth of Penicillium digitatum and Penicillium italicum. Postharvest Biol. Technol. 2008, 49, 386–396. [Google Scholar] [CrossRef]
- Perdones, A.; Sánchez-González, L.; Chiralt, A.; Vargas, M. Effect of chitosan-lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biol. Technol. 2012, 70, 32–41. [Google Scholar] [CrossRef]
- Montero-Prado, P.; Rodriguez-Lafuente, A.; Nerin, C. Active label-based packaging to extend the shelf-life of “Calanda” peach fruit: Changes in fruit quality and enzymatic activity. Postharvest Biol. Technol. 2011, 60, 211–219. [Google Scholar] [CrossRef]
- Martínez, K.; Ortiz, M.; Albis, A.; Gilma Gutiérrez Castañeda, C.; Valencia, M.E.; Grande Tovar, C.D. The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry (Fragaria x ananassa) during Cold Storage. Biomolecules 2018, 8, 155. [Google Scholar] [CrossRef]
- Žebeljana, A.; Vicoa, I.; Duduka, N.; Žibernab, B.; Urbanek Krajnc, A. Dynamic changes in common metabolites and antioxidants during Penicillium expansum-apple fruit interactions. Physiol. Mol. Plant Pathol. 2019, 106, 166–174. [Google Scholar] [CrossRef]
- Beauvoit, B.; Belouah, I.; Bertin, N.; Cakpo, C.B.; Colombié, S.; Dai, Z.; Gautier, H.; Génard, M.; Moing, A.; Roch, L.; et al. Putting primary metabolism into perspective to obtain better fruits. Ann. Bot. 2018, 122, 1–21. [Google Scholar] [CrossRef]
- Neri, F.; Mari, M.; Brigati, S. Control of Penicillium expansum by plant volatile compounds. Plant Pathol. 2006, 55, 100–105. [Google Scholar] [CrossRef]
- Venturini, M.E.; Blanco, D.; Oria, R. In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum. J. Food Prot. 2002, 65, 834–839. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Sharopov, F.S.; Wink, M.; Setzer, W.N. Radical scavenging and antioxidant activities of essential oil components—An experimental and computational investigation. Nat. Prod. Commun. 2015, 10, 153–156. [Google Scholar] [CrossRef]
- Shahat, A.A.; Ibrahim, A.Y.; Hendawy, S.F.; Omer, E.A.; Hammouda, F.M.; Abdel-Rahman, F.H.; Saleh, M.A. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars. Molecules 2011, 16, 1366–1377. [Google Scholar] [CrossRef]
- da Silva, B.D.; Campos Bernardes, P.; Fontes Pinheiro, P.; Fantuzzi, E.; Roberto, C.D. Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Sci. 2021, 176, 108463. [Google Scholar] [CrossRef] [PubMed]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Chen, P.M.; Varga, D.M.; Mielke, E.A.; Facteau, T.J.; Drake, S.R. Control of superficial scald on “Anjou” pears by ethoxyquin: Oxidation of a-Farnesene and its inhibition. J. Food Sci. 1990, 55, 171–175. [Google Scholar] [CrossRef]
- Lurie, S.; Watkins, C.B. Superficial scald, its etiology and control. Postharvest Biol. Technol. 2012, 65, 44–60. [Google Scholar] [CrossRef]
- Whitaker, B.D. Oxidation Products of α-Farnesene Associated with Superficial Scald Development in d’Anjou Pear Fruits Are Conjugated Trienols. Agric. Food Chem. 2007, 55, 3708–3712. [Google Scholar] [CrossRef]
- Dias, C.; Amaro, A.L.; Salvador, Â.C.; Silvestre, A.J.D.; Rocha, S.M.; Isidoro, N.; Pintado, M. Strategies to Preserve Postharvest Quality of Horticultural Crops and Superficial Scald Control: From Diphenylamine Antioxidant Usage to More Recent Approaches. Antioxidants 2020, 9, 356. [Google Scholar] [CrossRef]
- Rowan, D.D.; Hunt, M.B.; Fielder, S.; Norris, J.; Sherburn, M.S. Conjugated Triene Oxidation Products of α-Farnesene Induce Symptoms of Superficial Scald on Stored Apples. J. Agric. Food Chem. 2001, 49, 2780–2787. [Google Scholar] [CrossRef]
- Souleyre, E.J.F.; Bowen, J.K.; Matich, A.J.; Tomes, S.; Chen, X.; Hunt, M.B.; Wang, M.Y.; Ileperuma, N.R.; Richards, K.; Rowan, D.D.; et al. Genetic control of α-farnesene production in apple fruit and its role in fungal pathogenesis. Plant J. 2019, 100, 1148–1162. [Google Scholar] [CrossRef] [PubMed]
- Gong, D.; Bi, Y.; Zong, Y.; Li, Y.; Sionov, E.; Prusky, D. Characterization and sources of volatile organic compounds produced by postharvest pathogenic fungi colonized fruit. Postharvest Biol. Technol. 2022, 188, 111903. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Fazel Nabavi, S.; Mohammad Nabavi, S.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling 2018, 34, 630–656. [Google Scholar] [CrossRef] [PubMed]
Time Point (Temperature) | Treatment (Concentration) | Firmness (N/cm2) ± SD * | Total Soluble Sugar (%) ± SD * | Titratable Acidity (%) ± SD * |
---|---|---|---|---|
At harvest | 91.86 ± 14.18 | 12.30 ± 0.10 | 0.50 ± 0.13 | |
60 days (1 ± 1 °C) | Control | 76.76 ± 8.97 ab | 14.27 ± 1.60 ab | 0.48 ± 0.01 a |
Pyrimethanil | 73.21 ± 10.49 ab | 14.07 ± 0.12 ab | 0.38 ± 0.02 a | |
Inoculated control | 74.99 ± 15.63 ab | 15.50 ± 0.17 b | 0.36 ± 0.01 a | |
Lemon (1.0%) | 83.08 ± 19.04 bc | 13.57 ± 0.23 a | 0.36 ± 0.11 a | |
Thyme (1.0%) | 76.46 ± 10.28 ab | 13.60 ± 0.87 a | 0.35 ± 0.01 a | |
Savoury (1.0%) | 75.47 ± 11.14 ab | 12.60 ± 1.21 a | 0.39 ± 0.01 a | |
Fennel (1.0%) | 76.09 ± 15.21 ab | 12.70 ± 0.17 a | 0.39 ± 0.01 a | |
Basil (1.0%) | 71.83 ±12.35 a | 15.43 ± 1.27 b | 0.41 ± 0.01 a | |
Oregano (1.0%) | 86.73 ± 19.81 c | 13.97 ± 1.27 ab | 0.31 ± 0.02 a | |
14 days of shelf-life (15 ± 1 °C) | Control | 66.79 ± 14.55 a | 14.33 ± 1.33 bc | 0.28 ± 0.01 bc |
Pyrimethanil | 67.50 ± 11.35 a | 14.97 ± 0.23 c | 0.25 ± 0.00 a | |
Inoculated control | 65.85 ± 12.10 a | 15.30 ± 0.35 c | 0.25 ± 0.00 a | |
Lemon (1.0%) | 71.60 ± 15.14 a | 13.60 ± 0.69 ab | 0.32 ± 0.02 d | |
Thyme (1.0%) | 66.55 ± 13.44 a | 13.97 ± 0.75 abc | 0.30 ± 0.03 cd | |
Savoury (1.0%) | 71.75 ± 19.34 a | 13.60 ± 0.30 ab | 0.27 ± 0.01 ab | |
Fennel (1.0%) | 61.71 ± 6.98 a | 14.23 ± 0.55 bc | 0.26 ± 0.01 ab | |
Basil (1.0%) | 70.63 ±11.43 a | 15.00 ± 0.35 c | 0.37 ± 0.02 e | |
Oregano (1.0%) | 65.70 ± 19.54 a | 15.10 ± 0.36 c | 0.28 ± 0.00 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonsenso, F.; Schiavon, G.; Spadaro, D. Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum. Int. J. Mol. Sci. 2023, 24, 2900. https://doi.org/10.3390/ijms24032900
Buonsenso F, Schiavon G, Spadaro D. Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum. International Journal of Molecular Sciences. 2023; 24(3):2900. https://doi.org/10.3390/ijms24032900
Chicago/Turabian StyleBuonsenso, Fabio, Giada Schiavon, and Davide Spadaro. 2023. "Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum" International Journal of Molecular Sciences 24, no. 3: 2900. https://doi.org/10.3390/ijms24032900
APA StyleBuonsenso, F., Schiavon, G., & Spadaro, D. (2023). Efficacy and Mechanisms of Action of Essential Oils’ Vapours against Blue Mould on Apples Caused by Penicillium expansum. International Journal of Molecular Sciences, 24(3), 2900. https://doi.org/10.3390/ijms24032900