De Novo Assembly and Annotation of 11 Diverse Shrub Willow (Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions
Abstract
:1. Introduction
2. Results
2.1. Assembly and Annotation
2.2. Sex Determination Gene Analysis
2.3. Secondary Metabolism Gene Analysis
2.4. P336 Crosses and Progeny
3. Discussion
3.1. Assemblies and Annotations
3.2. Sex Determination Genes and SDR Assembly
3.3. Secondary Metabolism Genes
3.4. P336 Crosses and Progeny
4. Materials and Methods
4.1. DNA Sequencing
4.2. RNA Sequencing
4.3. Hi-C Library Preparation
4.4. Genome Assembly
4.5. Annotation
4.6. Sex Determination Candidate Gene Analysis
4.7. Secondary Metabolism and Rust Gene Analysis
4.8. P336 Crosses and Progeny
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuzovkina, Y.A.; Weih, M.; Romero, M.A.; Charles, J.; Hust, S.; McIvor, I.; Karp, A.; Trybush, S.; Labrecque, M.; Teodorescu, T.I. Salix: Botany and Global Horticulture. Hortic. Rev. 2007, 34, 447–489. [Google Scholar] [CrossRef]
- Wilkerson, D.G.; Taskiran, B.; Carlson, C.H.; Smart, L.B. Mapping the sex determination region in the Salix F1 hybrid common parent population confirms a ZW system in six diverse species. G3 2022, 12, jkac071. [Google Scholar] [CrossRef]
- Zhou, R.; Macaya-Sanz, D.; Rodgers-Melnick, E.; Carlson, C.H.; Gouker, F.E.; Evans, L.M.; Schmutz, J.; Jenkins, J.W.; Yan, J.; Tuskan, G.A.; et al. Characterization of a large sex determination region in Salix purpurea L. (Salicaceae). Mol. Genet. Genom. 2018, 293, 1437–1452. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, X.; Zhang, Y.; Hörandl, E.; Zhang, Z.; He, L. The male-heterogametic sex determination system on chromosome 15 of Salix triandra and Salix arbutifolia reveals ancestral male heterogamety and subsequent turnover events in the genus Salix. Heredity 2023, 1–13. [Google Scholar] [CrossRef]
- Gulyaev, S.; Cai, X.; Guo, F.; Kikuchi, S.; Applequist, W.L.; Zhang, Z.; Hörandl, E.; He, L. The phylogeny of Salix revealed by whole genome re-sequencing suggests different sex-determination systems in major groups of the genus. Ann. Bot. 2022, 129, 485–498. [Google Scholar] [CrossRef]
- Sanderson, B.J.; Feng, G.; Hu, N.; Carlson, C.H.; Smart, L.B.; Keefover-Ring, K.; Yin, T.; Ma, T.; Liu, J.; DiFazio, S.P. Sex determination through X–Y heterogamety in Salix nigra. Heredity 2021, 126, 630–639. [Google Scholar] [CrossRef]
- Wang, D.; Li, Y.; Li, M.; Yang, W.; Ma, X.; Zhang, L.; Wang, Y.; Feng, Y.; Zhang, Y.; Zhou, R.; et al. Repeated turnovers keep sex chromosomes young in willows. Genome Biol. 2022, 23, 200. [Google Scholar] [CrossRef]
- He, L.; Jia, K.H.; Zhang, R.G.; Wang, Y.; Shi, T.L.; Li, Z.C.; Zeng, S.W.; Cai, X.J.; Wagner, N.D.; Hörandl, E.; et al. Chromosome-scale assembly of the genome of Salix dunnii reveals a male-heterogametic sex determination system on chromosome 7. Mol. Ecol. Resour. 2021, 21, 1966–1982. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Nyman, T.; Wang, D.-C.; Argus, G.W.; Yang, Y.-P.; Chen, J.-H. Phylogeny of Salix subgenus Salix s.l. (Salicaceae): Delimitation, biogeography, and reticulate evolution. BMC Evol. Biol. 2015, 15, 31. [Google Scholar] [CrossRef]
- Yang, W.; Wang, D.; Li, Y.; Zhang, Z.; Tong, S.; Li, M.; Zhang, X.; Zhang, L.; Ren, L.; Ma, X.; et al. A general model to explain repeated turnovers of sex determination in the Salicaceae. Mol. Biol. Evol. 2020, 38, 968–980. [Google Scholar] [CrossRef] [PubMed]
- Cronk, Q.; Müller, N.A. Default sex and single gene sex determination in dioecious plants. Front. Plant Sci. 2020, 11, 1162. [Google Scholar] [CrossRef]
- Hyden, B.; Zou, J.; Wilkerson, D.G.; Carlson, C.H.; Rivera Robles, A.; DiFazio, S.; Smart, L.B. Structural variation of a sex-linked region confers monoecy and implicates GATA15 as a master regulator of sex in Salix purpurea. submitted, in review.
- Hyden, B.; Carlson, C.H.; Gouker, F.E.; Schmutz, J.; Barry, K.; Lipzen, A.; Sharma, A.; Sandor, L.; Tuskan, G.A.; Feng, G.; et al. Integrative genomics reveals paths to sex dimorphism in Salix purpurea L. Hortic. Res. 2021, 8, 170. [Google Scholar] [CrossRef] [PubMed]
- Argus, G.W. Infrageneric classification of Salix (Salicaceae) in the New World. Syst. Bot. Monogr. 1997, 52, 1–121. [Google Scholar] [CrossRef]
- Newsholme, C. Willows: The Genus Salix; Timber Press, Inc.: Portland, OR, USA, 1992. [Google Scholar]
- Fussel, U.; Dotterl, S.; Jurgens, A.; Aas, G. Inter- and intraspecific variation in floral scent in the genus Salix and its implication for pollination. J. Chem. Ecol. 2007, 33, 749–765. [Google Scholar] [CrossRef] [PubMed]
- Mosseler, A.; Major, J.; Ostaff, D.; Ascher, J. Bee foraging preferences on three willow (Salix) species: Effects of species, plant sex, sampling day and time of day. Ann. Appl. Biol. 2020, 177, 333–345. [Google Scholar] [CrossRef]
- Zeng, S.; Liang, T.; Li, L.; Xing, X.; Chen, H.; He, L. Pollination system and reproductive allocation strategies of dioecious tree Salix dunnii. J. Trop. Subtrop. Bot. 2022, 30, 357–366. [Google Scholar]
- Keefover-Ring, K.; Carlson, C.H.; Hyden, B.; Azeem, M.; Smart, L.B. Genetic mapping of sexually dimorphic volatile and non-volatile floral secondary chemistry of a dioecious willow. J. Exp. Bot. 2022, 73, 6352–6366. [Google Scholar] [CrossRef]
- Foley, W.J.; Moore, B.D. Plant secondary metabolites and vertebrate herbivores–from physiological regulation to ecosystem function. Curr. Opin. Plant Biol. 2005, 8, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Plant breeding: Importance of plant secondary metabolites for protection against pathogens and herbivores. Theor. Appl. Genet. 1988, 75, 225–233. [Google Scholar] [CrossRef]
- Carlson, C.H.; Gouker, F.E.; Crowell, C.R.; Evans, L.; DiFazio, S.P.; Smart, C.D.; Smart, L.B. Joint linkage and association mapping of complex traits in shrub willow (Salix purpurea L.). Ann. Bot. 2019, 124, 701–716. [Google Scholar] [CrossRef]
- Wilkerson, D.G.; Crowell, C.R.; Carlson, C.H.; McMullen, P.W.; Smart, C.D.; Smart, L.B. Comparative transcriptomics and eQTL mapping of response to Melampsora americana in selected Salix purpurea F2 progeny. BMC Genom. 2022, 23, 71. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.; Proux-Wera, E.; Churcher, A.; Soler, L.; Dainat, J.; Pucholt, P.; Nordlund, J.; Martin, T.; Rönnberg-Wästljung, A.-C.; Nystedt, B. Genome assembly of the basket willow, Salix viminalis, reveals earliest stages of sex chromosome expansion. BMC Biol. 2020, 18, 78. [Google Scholar] [CrossRef]
- Wei, S.; Yang, Y.; Yin, T. The chromosome-scale assembly of the willow genome provides insight into Salicaceae genome evolution. Hortic. Res. 2020, 7, 45. [Google Scholar] [CrossRef]
- Zhou, R.; Macaya-Sanz, D.; Carlson, C.H.; Schmutz, J.; Jenkins, J.W.; Kudrna, D.; Sharma, A.; Sandor, L.; Shu, S.; Barry, K.; et al. A willow sex chromosome reveals convergent evolution of complex palindromic repeats. Genome Biol. 2020, 21, 38. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A comparative platform for green plant genomics. Nucleic Acids Res. 2011, 40, D1178–D1186. [Google Scholar] [CrossRef]
- Müller, N.A.; Kersten, B.; Leite Montalvao, A.P.; Mahler, N.; Bernhardsson, C.; Brautigam, K.; Carracedo Lorenzo, Z.; Hoenicka, H.; Kumar, V.; Mader, M.; et al. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 2020, 6, 630–637. [Google Scholar] [CrossRef]
- Webster, T.H.; Couse, M.; Grande, B.M.; Karlins, E.; Phung, T.N.; Richmond, P.A.; Whitford, W.; Wilson, M.A. Identifying, understanding, and correcting technical artifacts on the sex chromosomes in next-generation sequencing data. Gigascience 2019, 8, giz074. [Google Scholar] [CrossRef] [PubMed]
- Hallingbäck, H.R.; Pucholt, P.; Ingvarsson, P.K.; Rönnberg-Wästljung, A.C.; Berlin, S. Genome-wide association mapping uncovers sex-associated copy number variation markers and female hemizygous regions on the W chromosome in Salix viminalis. BMC Genom. 2021, 22, 710. [Google Scholar] [CrossRef]
- Yates, T. Genome Evolution in the Salicaceae: Genetic Novelty, Horizontal Gene Transfer, and Comparative Genomics. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2022. [Google Scholar]
- Mower, J.P.; Bonen, L. Ribosomal protein L10 is encoded in the mitochondrial genome of many land plants and green algae. BMC Evol. Biol. 2009, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, M.L.F.; Pezza, A.; Biarc, J.; Burlingame, A.L.; Casati, P. Plant L10 ribosomal proteins have different roles during development and translation under ultraviolet-B stress. Plant Physiol. 2010, 153, 1878–1894. [Google Scholar] [CrossRef]
- Rocha, C.S.; Santos, A.A.; Machado, J.P.B.; Fontes, E.P. The ribosomal protein L10/QM-like protein is a component of the NIK-mediated antiviral signaling. Virology 2008, 380, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone Ferreyra, M.L.; Casadevall, R.; Luciani, M.D.; Pezza, A.; Casati, P. New evidence for differential roles of L10 ribosomal proteins from Arabidopsis. Plant Physiol. 2013, 163, 378–391. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Mayjonade, B.; Gouzy, J.; Donnadieu, C.; Pouilly, N.; Marande, W.; Callot, C.; Langlade, N.; Muños, S. Extraction of high-molecular-weight genomic DNA for long-read sequencing of single molecules. Biotechniques 2016, 61, 203–205. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, Y.; Zheng, K.; Xie, M.; Feng, K.; Jawdy, S.S.; Gunter, L.E.; Ranjan, P.; Singan, V.R.; Engle, N.; et al. Genome-wide association studies and expression-based quantitative trait loci analyses reveal roles of HCT2 in caffeoylquinic acid biosynthesis and its regulation by defense-responsive transcription factors in Populus. New Phytol. 2018, 220, 502–516. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Kronenberg, Z.N.; Rhie, A.; Koren, S.; Concepcion, G.T.; Peluso, P.; Munson, K.M.; Porubsky, D.; Kuhn, K.; Mueller, K.A.; Low, W.Y. Extended haplotype-phasing of long-read de novo genome assemblies using Hi-C. Nat. Commun. 2021, 12, 1935. [Google Scholar] [CrossRef]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Cook, D.E.; Valle-Inclan, J.E.; Pajoro, A.; Rovenich, H.; Thomma, B.P.H.J.; Faino, L. Long-read annotation: Automated eukaryotic genome annotation based on long-read cDNA sequencing. Plant Physiol. 2018, 179, 38–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Keller, O.; Gunduz, I.; Hayes, A.; Waack, S.; Morgenstern, B. AUGUSTUS: Ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006, 34, W435–W439. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Kopp, R.F.; Maynard, C.A.; Rocha de Niella, P.; Smart, L.B.; Abrahamson, L.P. Collection and storage of pollen from Salix (Salicaceae). Am. J. Bot. 2002, 89, 248–252. [Google Scholar] [CrossRef] [PubMed]
Genome | Species | Sex | Total Assembly Length | Number of Scaffolds | Number of Contigs | Contig N50 (KB) | Largest Contig (MB) | Mean Coverage | Assembly BUSCO Score |
---|---|---|---|---|---|---|---|---|---|
JGI v5.1 94006 | S. pupurea | F | 328,137,719 | 348 | NA | NA | NA | NA | 97.0% |
JGI v3.1 ‘Fish Creek’ | S. purpurea | M | 312,123,941 | 274 | NA | NA | NA | NA | 97.2% |
94006 | S. purpurea | F | 338,238,421 | 179 | 2675 | 319.30 | 4.75 | 72 | 95.8% |
94001 | S. purpurea | M | 332,407,318 | 136 | 2696 | 232.30 | 3.67 | 55 | 95.8% |
P63 | S. suchowensis | M | 369,253,841 | 135 | 2243 | 383.13 | 3.78 | 58 | 96.2% |
P294 | S. suchowensis | F | 375,803,650 | 173 | 2589 | 325.52 | 2.46 | 57 | 95.8% |
P295 | S. suchowensis | F | 382,054,263 | 135 | 1982 | 435.71 | 2.16 | 62 | 96.3% |
P336 | S. integra | F | 312,752,820 | 111 | 1246 | 804.25 | 5.99 | 60 | 96.7% |
SH3 | S. koriyanagi | F | 339,158,221 | 147 | 2922 | 335.52 | 2.19 | 45 | 95.5% |
04-FF-016 | S. koriyanagi | M | 349,107,755 | 152 * | 2983 | 300.36 | 2.27 | 75 | 95.1% |
07-MBG-5027 | S. viminalis | F | 293,303,539 | 171 | 1716 | 532.84 | 4.16 | 103 | 95.7% |
‘Jorr’ | S. viminalis | M | 282,587,186 | 197 | 2136 | 442.89 | 3.81 | 51 | 96.1% |
04-BN-051 | S. udensis | M | 315,877,065 | 140 | 2087 | 396.09 | 4.45 | 51 | 95.5% |
Genome | Species | Annotation BUSCO Score | Genes | Transcripts | Genes Missing | Genome-Specific Orthogroups | Genes in Specific Orthogroups |
---|---|---|---|---|---|---|---|
JGI v5.1 94006 | S. pupurea | 97.0% | 35,125 | 57,462 | NA | NA | NA |
JGI v3.1 ‘Fish Creek’ | S. purpurea | 97.2% | 34,464 | 46,943 | NA | NA | NA |
94006 | S. purpurea | 82.2% | 31,938 | 36,199 | 3706 | 379 | 1026 |
94001 | S. purpurea | 91.1% | 31,470 | 39,196 | 4164 | 336 | 770 |
P63 | S. suchowensis | 84.9% | 30,530 | 37,310 | 4663 | 229 | 534 |
P294 | S. suchowensis | 89.7% | 34,681 | 38,788 | 4002 | 298 | 730 |
P295 | S. suchowensis | 87.2% | 30,719 | 36,507 | 4532 | 217 | 574 |
P336 | S. integra | 77.9% | 29,907 | 34,327 | 4733 | 225 | 574 |
SH3 | S. koriyanagi | 86.1% | 30,539 | 36,436 | 4973 | 181 | 442 |
04-FF-016 | S. koriyanagi | 87.0% | 30,478 | 36,226 | 4856 | 229 | 543 |
07-MBG-5027 | S. viminalis | 89.0% | 31,708 | 37,991 | 3732 | 267 | 706 |
‘Jorr’ | S. viminalis | 92.9% | 30,524 | 34,112 | 4420 | 138 | 331 |
04-BN-051 | S. udensis | 86.5% | 30,382 | 36,483 | 4902 | 270 | 609 |
Gene ID | Function | 94006 JGI (F) | ‘Fish Creek’ JGI (M) | 94006 (F) | 94001 (M) | P295 (F) | P294 (F) | P63 (M) | P336 (F) | SH3 (F) | 04-FF-016 (M) | 07-MBG-5027 (F) | ‘Jorr’ (M) | 04-BN-051 (M) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sapur.15WG073500 | ARR17 | 4 | 0 | 3 ** | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
Sapur.019G053300 | ARR17 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
ARR17 15Z exon 1 | ARR17 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
Sapur.15WG062800 | GATA15 | 1 | 0 | 1 * | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sapur.15WG074400 | AGO4 | 3 | 0 | 3 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Sapur.15WG074300 | DRB1 | 2 | 0 | 5 | 1 | 1 | 2 | 1 | 1 | 5 | 2 | 2 | 1 | 2 |
Sapur.15WG074900 | hypothetical | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Sapur.15WG075300 | hypothetical | 1 | 0 | 0 | 0 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
Sapur.15WG075700 | hypothetical | 2 | 0 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 9 | 0 | 0 | 0 |
Family ID | Mother | Maternal Species | Father | Paternal Species | Progeny | Percent Flowering | Percent Female |
---|---|---|---|---|---|---|---|
13X-426 | P336 | S. integra | 94001 | S. purpurea | 284 | 98% | 100% |
20X-565 | P336 | S. integra | Fish Creek | S. purpurea | 210 | 75% | 100% |
20X-564 | P336 | S. integra | 94003 | S. purpurea | 252 | 77% | 100% |
20X-278 | P336 | S. integra | P63 | S. suchowensis | 212 | 98% | 100% |
20X-567 | P336 | S. integra | 04-FF-016 | S. koriyanagi | 208 | 97% | 100% |
20X-566 | P336 | S. integra | 04-BN-051 | S. udensis | 204 | 76% | 100% |
14X-454 | 05X-278-071 | S. integra × S. suchowensis | 94001 | S. purpurea | 94 | 88% | 100% |
14X-456 | 05X-278-071 | S. integra × S. suchowensis | P63 | S. suchowensis | 166 | 90% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyden, B.; Feng, K.; Yates, T.B.; Jawdy, S.; Cereghino, C.; Smart, L.B.; Muchero, W. De Novo Assembly and Annotation of 11 Diverse Shrub Willow (Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions. Int. J. Mol. Sci. 2023, 24, 2904. https://doi.org/10.3390/ijms24032904
Hyden B, Feng K, Yates TB, Jawdy S, Cereghino C, Smart LB, Muchero W. De Novo Assembly and Annotation of 11 Diverse Shrub Willow (Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions. International Journal of Molecular Sciences. 2023; 24(3):2904. https://doi.org/10.3390/ijms24032904
Chicago/Turabian StyleHyden, Brennan, Kai Feng, Timothy B. Yates, Sara Jawdy, Chelsea Cereghino, Lawrence B. Smart, and Wellington Muchero. 2023. "De Novo Assembly and Annotation of 11 Diverse Shrub Willow (Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions" International Journal of Molecular Sciences 24, no. 3: 2904. https://doi.org/10.3390/ijms24032904
APA StyleHyden, B., Feng, K., Yates, T. B., Jawdy, S., Cereghino, C., Smart, L. B., & Muchero, W. (2023). De Novo Assembly and Annotation of 11 Diverse Shrub Willow (Salix) Genomes Reveals Novel Gene Organization in Sex-Linked Regions. International Journal of Molecular Sciences, 24(3), 2904. https://doi.org/10.3390/ijms24032904