Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons
Abstract
:1. Introduction
2. Results
2.1. ICP0 Protein Profile Is Biphasic in Primary Adult Sensory Neurons
2.2. Mass Spectrometry Analysis of Proteins Ubiquitinated by ICP0
2.3. HMG I/Y and TDP43 Exhibit Increased Ubiquitination in the Presence of Functional ICP0
2.4. Productive HSV-1 Infection Alters HMG I/Y and TDP43 Proteins Profiles in Sensory Neurons
2.5. HMG I/Y Is Increasingly Ubiquitinated and Degraded by ICP0 between 8 and 10 hpi
3. Discussion
4. Conclusions and Future Studies
5. Materials and Methods
5.1. Cells and Viruses
5.2. Primary Adult Neuronal Cultures
5.3. Infection
5.4. Antibodies
5.5. LC-MS/MS
5.6. Data Processing
5.7. Statistical Analysis
5.8. Immunoblot
5.9. Immunoprecipitation
Supplementary Materials
Author Contributions
Funding
Institutional Animal Care and Use Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
HSV-1 | Herpes simplex virus 1 |
KOS | HSV-1 wildtype strain KOS |
n212 | HSV-1 strain n212, defective ICP0 protein |
UI | Uninfected |
hpi | Hours post inoculation |
IE | Immediate early |
ICP0 | Infected cell protein 0 |
ICP22 | infected cell protein 22 |
ICP27 | Infected cell protein 27 |
ICP47 | Infected cell protein 47 |
VP16 | HSV tegument viral protein 16, trans-inducing protein |
TK | HSV thymidine kinase |
DRG | Dorsal root ganglion |
HMG I/Y | High mobility group protein I/Y |
TDP43 | TAR-DNA binding protein 43 |
USP7 | Ubiquitin-specific peptidase 7 |
UbcH5a | Ubiquitin-conjugating enzyme H5a |
UbcH6a | Ubiquitin-conjugating enzyme H6a |
PML | Promyelocytic leukemia protein |
LC-MS/MS | Nano liquid chromatography tandem mass spectrometry |
PSM | Peptide spectrum matches |
TCE | 2,2,2-Trichloroethanol |
IP | Immunoprecipitation |
InP | Input |
References
- James, C.; Harfouche, M.; Welton, N.J.; Turner, K.M.; Abu-Raddad, L.J.; Gottlieb, S.L.; Looker, K.J. Herpes Simplex Virus: Global Infection Prevalence And Incidence Estimates, 2016. Bull. World Health Organ. 2020, 98, 315–329. [Google Scholar] [CrossRef] [PubMed]
- Kolokotronis, A.; Doumas, S. Herpes Simplex Virus Infection, With Particular Reference To The Progression And Complications Of Primary Herpetic Gingivostomatitis. Clin. Microbiol. Infect. 2006, 12, 202–211. [Google Scholar] [CrossRef]
- Whitley, R.J.; Kimberlin, D.W.; Roizman, B. Herpes Simplex Viruses. Clin. Infect. Dis. 1998, 26, 541–553, Quiz 554–545. [Google Scholar] [CrossRef] [PubMed]
- Rowe, A.M.; St Leger, A.J.; Jeon, S.; Dhaliwal, D.K.; Knickelbein, J.E.; Hendricks, R.L. Herpes Keratitis. Prog. Retin Eye Res. 2013, 32, 88–101. [Google Scholar] [CrossRef]
- Bradshaw, M.J.; Venkatesan, A. Herpes Simplex Virus-1 Encephalitis In Adults: Pathophysiology, Diagnosis, And Management. Neurotherapeutics 2016, 13, 493–508. [Google Scholar] [CrossRef]
- Carneiro, V.C.S.; Pereira, J.G.; De Paula, V.S. Family Herpesviridae And Neuroinfections: Current Status And Research In Progress. Mem. Inst. Oswaldo Cruz. 2022, 117, E220200. [Google Scholar] [CrossRef] [PubMed]
- Protto, V.; Marcocci, M.E.; Miteva, M.T.; Piacentini, R.; Li Puma, D.D.; Grassi, C.; Palamara, A.T.; De Chiara, G. Role Of Hsv-1 In Alzheimer’s Disease Pathogenesis: A Challenge For Novel Preventive/Therapeutic Strategies. Curr. Opin. Pharmacol. 2022, 63, 102200. [Google Scholar] [CrossRef]
- Kramer, T.; Enquist, L.W. Directional Spread Of Alphaherpesviruses In The Nervous System. Viruses 2013, 5, 678–707. [Google Scholar] [CrossRef]
- Bertke, A.S.; Swanson, S.M.; Chen, J.; Imai, Y.; Kinchington, P.R.; Margolis, T.P. A5-Positive Primary Sensory Neurons Are Nonpermissive For Productive Infection With Herpes Simplex Virus 1 In Vitro. J. Virol. 2011, 85, 6669–6677. [Google Scholar] [CrossRef]
- Bertke, A.S.; Ma, A.; Margolis, M.S.; Margolis, T.P. Different Mechanisms Regulate Productive Herpes Simplex Virus 1 (Hsv-1) And Hsv-2 Infections In Adult Trigeminal Neurons. J. Virol. 2013, 87, 6512–6516. [Google Scholar] [CrossRef] [Green Version]
- Yanez, A.A.; Harrell, T.; Sriranganathan, H.J.; Ives, A.M.; Bertke, A.S. Neurotrophic Factors Ngf, Gdnf And Ntn Selectively Modulate Hsv1 And Hsv2 Lytic Infection And Reactivation In Primary Adult Sensory And Autonomic Neurons. Pathogens 2017, 6, 5. [Google Scholar] [CrossRef]
- Lanfranca, M.P.; Mostafa, H.H.; Davido, D.J. Hsv-1 Icp0: An E3 Ubiquitin Ligase That Counteracts Host Intrinsic And Innate Immunity. Cells 2014, 3, 438–454. [Google Scholar] [CrossRef]
- Rice, S.A.; Davido, D.J. Hsv-1 Icp22: Hijacking Host Nuclear Functions To Enhance Viral Infection. Future Microbiol. 2013, 8, 311–321. [Google Scholar] [CrossRef]
- Goldsmith, K.; Chen, W.; Johnson, D.C.; Hendricks, R.L. Infected Cell Protein (Icp)47 Enhances Herpes Simplex Virus Neurovirulence By Blocking The Cd8+ T Cell Response. J. Exp. Med. 1998, 187, 341–348. [Google Scholar] [CrossRef]
- Orr, M.T.; Edelmann, K.H.; Vieira, J.; Corey, L.; Raulet, D.H.; Wilson, C.B. Inhibition Of Mhc Class I Is A Virulence Factor In Herpes Simplex Virus Infection Of Mice. PLoS Pathog. 2005, 1, E7. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.H.; Jensen, S.B.; Miettinen, J.J.; Luecke, S.; Prabakaran, T.; Reinert, L.S.; Mettenleiter, T.; Chen, Z.J.; Knipe, D.M.; Sandri-Goldin, R.M.; et al. Hsv-1 Icp27 Targets The Tbk1-Activated Sting Signalsome To Inhibit Virus-Induced Type I Ifn Expression. Embo J. 2016, 35, 1385–1399. [Google Scholar] [CrossRef]
- Long, M.C.; Leong, V.; Schaffer, P.A.; Spencer, C.A.; Rice, S.A. Icp22 And The Ul13 Protein Kinase Are Both Required For Herpes Simplex Virus-Induced Modification Of The Large Subunit Of Rna Polymerase Ii. J. Virol. 1999, 73, 5593–5604. [Google Scholar] [CrossRef]
- Grondin, B.; Deluca, N. Herpes Simplex Virus Type 1 Icp4 Promotes Transcription Preinitiation Complex Formation By Enhancing The Binding Of Tfiid To Dna. J. Virol. 2000, 74, 11504–11510. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Wang, S.; Zheng, C. Herpes Simplex Virus 1 E3 Ubiquitin Ligase Icp0 Protein Inhibits Tumor Necrosis Factor Alpha-Induced Nf-Kappab Activation By Interacting With P65/Rela And P50/Nf-Kappab1. J. Virol. 2013, 87, 12935–12948. [Google Scholar] [CrossRef]
- Van Lint, A.L.; Murawski, M.R.; Goodbody, R.E.; Severa, M.; Fitzgerald, K.A.; Finberg, R.W.; Knipe, D.M.; Kurt-Jones, E.A. Herpes Simplex Virus Immediate-Early Icp0 Protein Inhibits Toll-Like Receptor 2-Dependent Inflammatory Responses And Nf-Kappab Signaling. J. Virol. 2010, 84, 10802–10811. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, W.E.; Deluca, N.A. Perturbation Of Cell Cycle Progression And Cellular Gene Expression As A Function Of Herpes Simplex Virus Icp0. J. Virol. 1999, 73, 8245–8255. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Schaffer, P.A. Herpes Simplex Virus Type 1 Icp0 Regulates Expression Of Immediate-Early, Early, And Late Genes In Productively Infected Cells. J. Virol. 1992, 66, 2904–2915. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Raja, P.; Knipe, D.M. Herpesviral Icp0 Protein Promotes Two Waves Of Heterochromatin Removal On An Early Viral Promoter During Lytic Infection. Mbio 2016, 7, E02007–E02015. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.T.; Dybas, J.M.; Kulej, K.; Reyes, E.D.; Price, A.M.; Akhtar, L.N.; Orr, A.; Garcia, B.A.; Boutell, C.; Weitzman, M.D. Comparative Proteomics Identifies Schlafen 5 (Slfn5) As A Herpes Simplex Virus Restriction Factor That Suppresses Viral Transcription. Nat. Microbiol. 2021, 6, 234–245. [Google Scholar] [CrossRef]
- Hagglund, R.; Roizman, B. Characterization Of The Novel E3 Ubiquitin Ligase Encoded In Exon 3 Of Herpes Simplex Virus-1-Infected Cell Protein 0. Proc. Natl. Acad. Sci. USA 2002, 99, 7889–7894. [Google Scholar] [CrossRef]
- Rodriguez, M.C.; Dybas, J.M.; Hughes, J.; Weitzman, M.D.; Boutell, C. The Hsv-1 Ubiquitin Ligase Icp0: Modifying The Cellular Proteome To Promote Infection. Virus Res. 2020, 285, 198015. [Google Scholar] [CrossRef]
- Daubeuf, S.; Singh, D.; Tan, Y.; Liu, H.; Federoff, H.J.; Bowers, W.J.; Tolba, K. Hsv Icp0 Recruits Usp7 To Modulate Tlr-Mediated Innate Response. Blood 2009, 113, 3264–3275. [Google Scholar] [CrossRef]
- Boutell, C.; Sadis, S.; Everett, R.D. Herpes Simplex Virus Type 1 Immediate-Early Protein Icp0 And Is Isolated Ring Finger Domain Act As Ubiquitin E3 Ligases In Vitro. J. Virol. 2002, 76, 841–850. [Google Scholar] [CrossRef]
- Boutell, C.; Everett, R.D. Regulation Of Alphaherpesvirus Infections By The Icp0 Family Of Proteins. J. Gen. Virol. 2013, 94, 465–481. [Google Scholar] [CrossRef]
- Boutell, C.; Everett, R.D. The Herpes Simplex Virus Type 1 (Hsv-1) Regulatory Protein Icp0 Interacts With And Ubiquitinates P53. J. Biol. Chem. 2003, 278, 36596–36602. [Google Scholar] [CrossRef] [Green Version]
- Lopez, P.; Van Sant, C.; Roizman, B. Requirements For The Nuclear-Cytoplasmic Translocation Of Infected-Cell Protein 0 Of Herpes Simplex Virus 1. J. Virol. 2001, 75, 3832–3840. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Van Sant, C.; Roizman, B. Herpes Simplex Virus 1 Alpha Regulatory Protein Icp0 Interacts With And Stabilizes The Cell Cycle Regulator Cyclin D3. J. Virol. 1997, 71, 7328–7336. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Deluca, N.A.; Schaffer, P.A. Overexpression Of The Herpes Simplex Virus Type 1 Immediate-Early Regulatory Protein, Icp27, Is Responsible For The Aberrant Localization Of Icp0 And Mutant Forms Of Icp4 In Icp4 Mutant Virus-Infected Cells. J. Virol. 1996, 70, 5346–5356. [Google Scholar] [CrossRef]
- Everett, R.D. Icp0 Induces The Accumulation Of Colocalizing Conjugated Ubiquitin. J. Virol. 2000, 74, 9994–10005. [Google Scholar] [CrossRef]
- Zhu, Z.; Du, T.; Zhou, G.; Roizman, B. The Stability Of Herpes Simplex Virus 1 Icp0 Early After Infection Is Defined By The Ring Finger And The Ul13 Protein Kinase. J. Virol. 2014, 88, 5437–5443. [Google Scholar] [CrossRef]
- Gu, H.; Roizman, B. The Degradation Of Promyelocytic Leukemia And Sp100 Proteins By Herpes Simplex Virus 1 Is Mediated By The Ubiquitin-Conjugating Enzyme Ubch5a. Proc. Natl. Acad. Sci. USA 2003, 100, 8963–8968. [Google Scholar] [CrossRef]
- Boutell, C.; Canning, M.; Orr, A.; Everett, R.D. Reciprocal Activities Between Herpes Simplex Virus Type 1 Regulatory Protein Icp0, A Ubiquitin E3 Ligase, And Ubiquitin-Specific Protease Usp7. J. Virol. 2005, 79, 12342–12354. [Google Scholar] [CrossRef]
- Schaffer, W.Z.C.A.P.A. Herpes Simplex Virus Type 1 Icp0 Plays A Critical Role In The De Novo Synthesis Of Infectious Virus Following Transfection Of Viral Dna. J. Virol. 1989, 63, 4579–4589. [Google Scholar]
- Fujimuro, M.; Sawada, H.; Yokosawa, H. Production And Characterization Of Monoclonal Antibodies Specific To Multi-Ubiquitin Chains Of Polyubiquitinated Proteins. FEBS Lett. 1994, 349, 173–180. [Google Scholar] [CrossRef]
- Reeves, R. Structure And Function Of The Hmgi(Y) Family Of Architectural Transcription Factors. Environ. Health Perspect. 2000, 108 (Suppl. 5), 803–809. [Google Scholar] [CrossRef]
- Reeves, R. Nuclear Functions Of The Hmg Proteins. Biochim. Biophys. Acta 2010, 1799, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Chin, M.T.; Pellacani, A.; Wang, H.; Lin, S.S.; Jain, M.K.; Perrella, M.A.; Lee, M.E. Enhancement Of Serum-Response Factor-Dependent Transcription And Dna Binding By The Architectural Transcription Factor Hmg-I(Y). J. Biol. Chem. 1998, 273, 9755–9760. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Xia, M.; Liu, C.; Zu, X.; Zhong, J. High Mobility Group A1 (Hmga1): Structure, Biological Function, And Therapeutic Potential. Int. J. Biol. Sci. 2022, 18, 4414–4431. [Google Scholar] [CrossRef] [PubMed]
- Reeves, R.; Nissen, M.S. The A.T-Dna-Binding Domain Of Mammalian High Mobility Group I Chromosomal Proteins. A Novel Peptide Motif For Recognizing Dna Structure. J. Biol. Chem. 1990, 265, 8573–8582. [Google Scholar] [CrossRef]
- Panagiotidis, C.A.; Silverstein, S.J. The Host-Cell Architectural Protein Hmg I(Y) Modulates Binding Of Herpes Simplex Virus Type 1 Icp4 To Its Cognate Promoter. Virology 1999, 256, 64–74. [Google Scholar] [CrossRef]
- Ou, S.H.; Wu, F.; Harrich, D.; Garcia-Martinez, L.F.; Gaynor, R.B. Cloning And Characterization Of A Novel Cellular Protein, Tdp-43, That Binds To Human Immunodeficiency Virus Type 1 Tar Dna Sequence Motifs. J. Virol. 1995, 69, 3584–3596. [Google Scholar] [CrossRef]
- Lalmansingh, A.S.; Urekar, C.J.; Reddi, P.P. Tdp-43 Is A Transcriptional Repressor: The Testis-Specific Mouse Acrv1 Gene Is A Tdp-43 Target In Vivo. J. Biol. Chem. 2011, 286, 10970–10982. [Google Scholar] [CrossRef]
- Polymenidou, M.; Lagier-Tourenne, C.; Hutt, K.R.; Huelga, S.C.; Moran, J.; Liang, T.Y.; Ling, S.C.; Sun, E.; Wancewicz, E.; Mazur, C.; et al. Long Pre-Mrna Depletion And Rna Missplicing Contribute To Neuronal Vulnerability From Loss Of Tdp-43. Nat. Neurosci. 2011, 14, 459–468. [Google Scholar] [CrossRef]
- Sadowski, M.; Sarcevic, B. Mechanisms Of Mono- And Poly-Ubiquitination: Ubiquitination Specificity Depends On Compatibility Between The E2 Catalytic Core And Amino Acid Residues Proximal To The Lysine. Cell Div. 2010, 5, 19. [Google Scholar] [CrossRef]
- Canning, M.; Boutell, C.; Parkinson, J.; Everett, R.D. A Ring Finger Ubiquitin Ligase Is Protected From Autocatalyzed Ubiquitination And Degradation By Binding To Ubiquitin-Specific Protease Usp7. J. Biol. Chem. 2004, 279, 38160–38168. [Google Scholar] [CrossRef]
- Xu, G.; Jaffrey, S.R. Proteomic Identification Of Protein Ubiquitination Events. Biotechnol. Genet. Eng. Rev. 2013, 29, 73–109. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.; Courtney, R.J. Association Of Icp0 But Not Icp27 With Purified Virions Of Herpes Simplex Virus Type 1. J. Virol. 1992, 66, 2709–2716. [Google Scholar] [CrossRef]
- Margolis, T.P.; Dawson, C.R.; Lavail, J.H. Herpes Simplex Viral Infection Of The Mouse Trigeminal Ganglion. Immunohistochemical Analysis Of Cell Populations. Investig. Ophthalmol. Vis. Sci. 1992, 33, 259–267. [Google Scholar]
- Yang, L.; Voytek, C.C.; Margolis, T.P. Immunohistochemical Analysis Of Primary Sensory Neurons Latently Infected With Herpes Simplex Virus Type 1. J. Virol. 2000, 74, 209–217. [Google Scholar] [CrossRef]
- Margolis, T.P.; Imai, Y.; Yang, L.; Vallas, V.; Krause, P.R. Herpes Simplex Virus Type 2 (Hsv-2) Establishes Latent Infection In A Different Population Of Ganglionic Neurons Than Hsv-1: Role Of Latency-Associated Transcripts. J. Virol. 2007, 81, 1872–1878. [Google Scholar] [CrossRef]
- Bloom, D.C.; Giordani, N.V.; Kwiatkowski, D.L. Epigenetic Regulation Of Latent Hsv-1 Gene Expression. Biochim. Biophys. Acta 2010, 1799, 246–256. [Google Scholar] [CrossRef]
- Knipe, D.M.; Cliffe, A. Chromatin Control Of Herpes Simplex Virus Lytic And Latent Infection. Nat. Rev. Microbiol. 2008, 6, 211–221. [Google Scholar] [CrossRef]
- Nicoll, M.P.; Proenca, J.T.; Efstathiou, S. The Molecular Basis Of Herpes Simplex Virus Latency. Fems Microbiol. Rev. 2012, 36, 684–705. [Google Scholar] [CrossRef]
- Kristie, T.M. Dynamic Modulation Of Hsv Chromatin Drives Initiation Of Infection And Provides Targets For Epigenetic Therapies. Virology 2015, 479-480, 555–561. [Google Scholar] [CrossRef]
- Lieberman, P.M. Epigenetics And Genetics Of Viral Latency. Cell Host Microb. 2016, 19, 619–628. [Google Scholar] [CrossRef]
- Lees-Miller, S.P.; Long, M.C.; Kilvert, M.A.; Lam, V.; Rice, S.A.; Spencer, C.A. Attenuation Of Dna-Dependent Protein Kinase Activity And Its Catalytic Subunit By The Herpes Simplex Virus Type 1 Transactivator Icp0. J. Virol. 1996, 70, 7471–7477. [Google Scholar] [CrossRef] [PubMed]
- Dembowski, J.A.; Deluca, N.A. Selective Recruitment Of Nuclear Factors To Productively Replicating Herpes Simplex Virus Genomes. PLoS Pathog. 2015, 11, E1004939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dembowski, J.A.; Deluca, N.A. Temporal Viral Genome-Protein Interactions Define Distinct Stages Of Productive Herpesviral Infection. Mbio 2018, 9, e01182-18. [Google Scholar] [CrossRef] [PubMed]
- Orzalli, M.H.; Broekema, N.M.; Knipe, D.M. Relative Contributions Of Herpes Simplex Virus 1 Icp0 And Vhs To Loss Of Cellular Ifi16 Vary In Different Human Cell Types. J. Virol. 2016, 90, 8351–8359. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.L.; Kennedy, M.A.; Hutton, J.E.; Liu, D.; Song, B.; Phelan, B.; Cristea, I.M. Systematic Profiling Of Protein Complex Dynamics Reveals Dna-Pk Phosphorylation Of Ifi16 En Route To Herpesvirus Immunity. Sci. Adv. 2021, 7, eabg6680. [Google Scholar] [CrossRef]
- Hicke, L. Protein Regulation By Monoubiquitin. Nat. Rev. Mol. Cell Biol. 2001, 2, 195–201. [Google Scholar] [CrossRef]
- Boughton, A.J.; Krueger, S.; Fushman, D. Branching Via K11 And K48 Bestows Ubiquitin Chains With A Unique Interdomain Interface And Enhanced Affinity For Proteasomal Subunit Rpn1. Structure 2020, 28, 29–43.e26. [Google Scholar] [CrossRef]
- Kwon, Y.T.; Ciechanover, A. The Ubiquitin Code In The Ubiquitin-Proteasome System And Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. [Google Scholar] [CrossRef]
- Lange, S.M.; Kulathu, Y. Linking K29-Ub Chains To Biology. Nat. Chem. Biol. 2021, 17, 843–844. [Google Scholar] [CrossRef]
- Chen, A.; Kleiman, F.E.; Manley, J.L.; Ouchi, T.; Pan, Z.Q. Autoubiquitination Of The Brca1*Bard1 Ring Ubiquitin Ligase. J. Biol. Chem. 2002, 277, 22085–22092. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, X. Regulation Of Apoptosis: The Ubiquitous Way. FAESB J. 2003, 17, 790–799. [Google Scholar] [CrossRef]
- Amemiya, Y.; Azmi, P.; Seth, A. Autoubiquitination Of Bca2 Ring E3 Ligase Regulates Its Own Stability And Affects Cell Migration. Mol. Cancer Res. 2008, 6, 1385–1396. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Poon, A.P.; Roizman, B. During Its Nuclear Phase The Multifunctional Regulatory Protein Icp0 Undergoes Proteolytic Cleavage Characteristic Of Polyproteins. Proc. Natl. Acad. Sci. USA 2009, 106, 19132–19137. [Google Scholar] [CrossRef]
- Gu, H.; Zheng, Y.; Roizman, B. Interaction Of Herpes Simplex Virus Icp0 With Nd10 Bodies: A Sequential Process Of Adhesion, Fusion, And Retention. J. Virol. 2013, 87, 10244–10254. [Google Scholar] [CrossRef]
- Dremel, S.E.; Deluca, N.A. Herpes Simplex Viral Nucleoprotein Creates A Competitive Transcriptional Environment Facilitating Robust Viral Transcription And Host Shut Off. eLife 2019, 8, e51109. [Google Scholar] [CrossRef]
- Kops, A.D.B.; Knipe, D.M. Formation Of Dna Replication Structures In Herpes Virus-Infected Cells Requires A Viral Dna Binding Protein. Cell 1988, 55, 857–868. [Google Scholar] [CrossRef]
- Gao, M.; Knipe, D.M. Potential Role For Herpes Simplex Virus Icp8 Dna Replication Protein In Stimulation Of Late Gene Expression. J. Virol. 1991, 65, 2666–2675. [Google Scholar] [CrossRef]
- Field, H.J.; Wildy, P. The Pathogenicity Of Thymidine Kinase-Deficient Mutants Of Herpes Simplex Virus In Mice. J. Hyg. 1978, 81, 267–277. [Google Scholar] [CrossRef]
- Weller, S.K.; Coen, D.M. Herpes Simplex Viruses: Mechanisms Of Dna Replication. Cold Spring Harb. Perspect. Biol. 2012, 4, A013011. [Google Scholar] [CrossRef]
- Packard, J.E.; Dembowski, J.A. Hsv-1 Dna Replication-Coordinated Regulation By Viral And Cellular Factors. Viruses 2021, 13, 2015. [Google Scholar] [CrossRef]
- Arnoldo, L.; Sgarra, R.; Chiefari, E.; Iiritano, S.; Arcidiacono, B.; Pegoraro, S.; Pellarin, I.; Brunetti, A.; Manfioletti, G. A Novel Mechanism Of Post-Translational Modulation Of Hmga Functions By The Histone Chaperone Nucleophosmin. Sci. Rep. 2015, 5, 8552. [Google Scholar] [CrossRef] [PubMed]
- Cleynen, I.; Huysmans, C.; Sasazuki, T.; Shirasawa, S.; Van De Ven, W.; Peeters, K. Transcriptional Control Of The Human High Mobility Group A1 Gene: Basal And Oncogenic Ras-Regulated Expression. Cancer Res. 2007, 67, 4620–4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiefari, E.; Iiritano, S.; Paonessa, F.; Le Pera, I.; Arcidiacono, B.; Filocamo, M.; Foti, D.; Liebhaber, S.A.; Brunetti, A. Pseudogene-Mediated Posttranscriptional Silencing Of Hmga1 Can Result In Insulin Resistance And Type 2 Diabetes. Nat. Commun. 2010, 1, 40. [Google Scholar] [CrossRef] [PubMed]
- Matta, M.K.; Panagiotidis, C.A. High-Mobility Group Protein A1 Binds Herpes Simplex Virus Gene Regulatory Sequences And Affects Their Expression. Arch. Virol. 2008, 153, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Mellone, M.; Rinaldi, C.; Massimi, I.; Petroni, M.; Veschi, V.; Talora, C.; Truffa, S.; Stabile, H.; Frati, L.; Screpanti, I.; et al. Human Papilloma Virus-Dependent Hmga1 Expression Is A Relevant Step In Cervical Carcinogenesis. Neoplasia 2008, 10, 773–781. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, J.; Gao, Z.; Zhang, S.; Chen, J.; He, J.; Guo, Y.; Deng, Q.; Xie, Y.; Liu, J.; et al. High Mobility Group At-Hook 1 (Hmga1) Is An Important Positive Regulator Of Hepatitis B Virus (Hbv) That Is Reciprocally Upregulated By Hbv X Protein. Nucleic Acids Res. 2022, 50, 2157–2171. [Google Scholar] [CrossRef]
- Yie, J.; Merika, M.; Munshi, N.; Chen, G.; Thanos, D. The Role Of Hmg I(Y) In The Assembly And Function Of The Ifn-Beta Enhanceosome. Embo J. 1999, 18, 3074–3089. [Google Scholar] [CrossRef]
- Bouallaga, I.; Massicard, S.; Yaniv, M.; Thierry, F. An Enhanceosome Containing The Jun B/Fra-2 Heterodimer And The Hmg-I(Y) Architectural Protein Controls Hpv 18 Transcription. Embo Rep. 2000, 1, 422–427. [Google Scholar] [CrossRef]
- Tollervey, J.R.; Curk, T.; Rogelj, B.; Briese, M.; Cereda, M.; Kayikci, M.; Konig, J.; Hortobagyi, T.; Nishimura, A.L.; Zupunski, V.; et al. Characterizing The Rna Targets And Position-Dependent Splicing Regulation By Tdp-43. Nat. Neurosci. 2011, 14, 452–458. [Google Scholar] [CrossRef]
- Reddi, P.P. Transcription And Splicing Factor Tdp-43: Role In Regulation Of Gene Expression In Testis. Semin. Reprod. Med. 2017, 35, 167–172. [Google Scholar] [CrossRef]
- Dewey, C.M.; Cenik, B.; Sephton, C.F.; Johnson, B.A.; Herz, J.; Yu, G. Tdp-43 Aggregation In Neurodegeneration: Are Stress Granules The Key? Brain Res. 2012, 1462, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Sidibe, H.; Khalfallah, Y.; Xiao, S.; Gomez, N.B.; Fakim, H.; Tank, E.M.H.; Di Tomasso, G.; Bareke, E.; Aulas, A.; Mckeever, P.M.; et al. Tdp-43 Stabilizes G3bp1 Mrna: Relevance To Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. Brain 2021, 144, 3461–3476. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.S.; Cai, H.; Xue, W.; Wang, M.; Xia, T.; Li, W.J.; Xing, J.Q.; Zhao, M.; Huang, Y.J.; Chen, S.; et al. G3bp1 Promotes Dna Binding And Activation Of Cgas. Nat. Immunol. 2019, 20, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Wiser, C.; Kim, B.; Ascano, M. G3bp1 Enhances Cytoplasmic Dna Pattern Recognition. Nat. Immunol. 2019, 20, 5–7. [Google Scholar] [CrossRef]
- Cai, W.; Astor, T.L.; Liptak, L.M.; Cho, C.; Coen, D.M.; Schaffer, P.A. The Herpes Simplex Virus Type 1 Regulatory Protein Icp0 Enhances Virus Replication During Acute Infection And Reactivation From Latency. J. Virol. 1993, 67, 7501–7512. [Google Scholar] [CrossRef]
- Samaniego, L.A.; Wu, N.; Deluca, N.A. The Herpes Simplex Virus Immediate-Early Protein Icp0 Affects Transcription From The Viral Genome And Infected-Cell Survival In The Absence Of Icp4 And Icp27. J. Virol. 1997, 71, 4614–4625. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; Garcia-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The Pride Database Resources In 2022: A Hub For Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
Accession | Protein | Gene | UI | KOS | n212 | KOS/UI | KOS/n212 | KOS:UI (p Value) | KOS:n212 (p Value) | |
---|---|---|---|---|---|---|---|---|---|---|
Viral Proteins | P03176 | Thymidine kinase | TK | 0.0 | 12.5 | 3.0 | NC | 4.17 | 0.0016 | 0.0136 |
P08543 | Ribonucleoside-diphosphate reductase large subunit | RIR1 | 0.0 | 112.0 | 3.5 | NC | 32.00 | 0.0249 | 0.0266 | |
P10221 | Inner tegument protein | UL37 | 0.0 | 58.5 | 0.0 | NC | NC | 0.0018 | 0.0018 | |
P04296 | Major DNA-binding protein | DBP | 0.0 | 90.0 | 0.0 | NC | NC | 0.0202 | 0.0202 | |
P04294 | Alkaline nuclease | UL12 | 0.0 | 41.0 | 0.0 | NC | NC | 0.0279 | 0.0279 | |
P10211 | Envelope glycoprotein B | gB | 0.0 | 22.0 | 0.0 | NC | NC | 0.0670 | 0.0670 | |
P04485 | Transcriptional regulator ICP22 | ICP22 | 0.0 | 21.0 | 0.0 | NC | NC | 0.0955 | 0.0955 | |
P06492 | Tegument protein VP16 | UL48 | 0.0 | 21.0 | 0.0 | NC | NC | 0.1196 | 0.1196 | |
P08392 | Major viral transcription factor ICP4 | ICP4 | 0.0 | 28.0 | 0.0 | NC | NC | 0.2222 | 0.2222 | |
P06491 | Major capsid protein | MCP | 0.0 | 46.0 | 0.0 | NC | NC | 0.2421 | 0.2421 | |
P08393 | E3 ubiquitin-protein ligase ICP0 | ICP0 | 0.0 | 36.0 | 0.0 | NC | NC | 0.2865 | 0.2865 | |
P04488 | Envelope glycoprotein E | gE | 0.0 | 6.5 | 0.0 | NC | NC | 0.4226 | 0.4226 | |
Host Proteins | Q60900 | ELAV-like protein 3 | Elavl3 | 0.0 | 21.0 | 0.0 | NC | NC | 0.0023 | 0.0023 |
P61027 | Ras-related protein Rab-10 | Rab10 | 0.0 | 20.0 | 0.0 | NC | NC | 0.0025 | 0.0025 | |
A0A1B0GS70 | Proteasome endopeptidase complex | Psma1 | 0.0 | 15.5 | 0.0 | NC | NC | 0.0250 | 0.0250 | |
P54775 | 26S proteasome regulatory subunit 6B | Psmc4 | 0.0 | 21.5 | 0.0 | NC | NC | 0.0255 | 0.0255 | |
Q9JKC6 | Cell cycle exit and neuronal differentiation protein 1 | Cend1 | 0.0 | 12.0 | 0.0 | NC | NC | 0.0572 | 0.0572 | |
P49312 | Heterogeneous nuclear ribonucleoprotein A1 | Hnrnpa1 | 0.0 | 19.0 | 0.0 | NC | NC | 0.0628 | 0.0628 | |
P17095 | High mobility group protein HMG-I/HMG-Y | Hmga1 | 0.0 | 12.5 | 0.0 | NC | NC | 0.4226 | 0.4226 | |
P43274 | Histone H1.4 | H1-4 | 0.0 | 72.5 | 21.5 | NC | 3.37 | 0.2593 | 0.3874 | |
P15864 | Histone H1.2 | H1-2 | 0.0 | 74.5 | 23.0 | NC | 3.24 | 0.3050 | 0.4444 | |
Q91ZZ3 | Beta-synuclein | Sncb | 0.0 | 40.0 | 18.0 | NC | 2.22 | 0.0056 | 0.0258 | |
Q8R0B4 | TAR DNA-binding protein 43 | Tardp | 0.0 | 29.0 | 15.5 | NC | 1.87 | 0.0105 | 0.0995 | |
Q3THW5 | Histone H2A.V | H2az2 | 0.0 | 41.0 | 23.5 | NC | 1.74 | 0.0450 | 0.1917 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrell, T.L.; Davido, D.J.; Bertke, A.S. Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons. Int. J. Mol. Sci. 2023, 24, 2931. https://doi.org/10.3390/ijms24032931
Harrell TL, Davido DJ, Bertke AS. Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons. International Journal of Molecular Sciences. 2023; 24(3):2931. https://doi.org/10.3390/ijms24032931
Chicago/Turabian StyleHarrell, Telvin L., David J. Davido, and Andrea S. Bertke. 2023. "Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons" International Journal of Molecular Sciences 24, no. 3: 2931. https://doi.org/10.3390/ijms24032931
APA StyleHarrell, T. L., Davido, D. J., & Bertke, A. S. (2023). Herpes Simplex Virus 1 (HSV-1) Infected Cell Protein 0 (ICP0) Targets of Ubiquitination during Productive Infection of Primary Adult Sensory Neurons. International Journal of Molecular Sciences, 24(3), 2931. https://doi.org/10.3390/ijms24032931