Covalently Grafted Peptides to Decellularized Pericardium: Modulation of Surface Density
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Surface REDV Density
2.2. WCA and DSC Measurements
2.3. Biomechanical Characterization
2.4. Immunofluorescence Staining
3. Materials and Methods
3.1. Materials
3.2. TergiCol Decellularization and Sterilization
3.3. Evaluation of Decellularized Scaffold Histoarchitecture
3.4. Peptide Synthesis
3.5. Functionalization of the Biological Scaffolds
3.6. Quantification of Functionalization
3.7. Geometrical Properties of the Tissues
3.8. Uniaxial Tensile Test
3.9. Water Contact Angle (WCA)
3.10. Differential Scanning Calorimetry (DSC)
3.11. Assessment of REDV-Functionalization Bioactivity and Cytotoxicity
3.11.1. Cell Culture
3.11.2. Cell Viability
3.11.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ping, F.; Hongjun, L.; Dongfang, W.; Hanping, G. Experimental Study on Modified Treatment and Endothelialization of Bovine Pericardial Valves. J. Tongji Med. Univ. 1997, 17, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Lehner, G. Endothelialized Biological Heart Valve Prostheses in the Non-Human Primate Model. Eur. J. Cardio-Thorac. Surg. 1997, 11, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Jansson, K.; Bengtsson, L.; Swedenborg, J.; Haegerstrand, A. In Vitro Endothelialization of Bioprosthetic Heart Valves Provides a Cell Monolayer with Proliferative Capacities and Resistance to Pulsatile Flow. J. Thorac. Cardiovasc. Surg. 2001, 121, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, K.J. Endothelial Cell Seeding of Polymeric Vascular Grafts. Front. Biosci. 2004, 9, 1412–1421. [Google Scholar] [CrossRef]
- Gulbins, H.; Goldemund, A.; Anderson, I.; Haas, U.; Uhlig, A.; Meiser, B.; Reichart, B. Preseeding with Autologous Fibroblasts Improves Endothelialization of Glutaraldehyde-Fixed Porcine Aortic Valves. J. Thorac. Cardiovasc. Surg. 2003, 125, 592–601. [Google Scholar] [CrossRef] [PubMed]
- Dal Sasso, E.; Zamuner, A.; Filippi, A.; Romanato, F.; Palmosi, T.; Vedovelli, L.; Gregori, D.; Gómez Ribelles, J.L.; Russo, T.; Gloria, A.; et al. Covalent Functionalization of Decellularized Tissues Accelerates Endothelialization. Bioact. Mater. 2021, 6, 3851–3864. [Google Scholar] [CrossRef]
- Zamuner, A.; Cavo, M.; Scaglione, S.; Messina, G.; Russo, T.; Gloria, A.; Marletta, G.; Dettin, M. Design of Decorated Self-Assembling Peptide Hydrogels as Architecture for Mesenchymal Stem Cells. Materials 2016, 9, 727. [Google Scholar] [CrossRef]
- Brun, P.; Zamuner, A.; Peretti, A.; Conti, J.; Messina, G.M.L.; Marletta, G.; Dettin, M. 3D Synthetic Peptide-Based Architectures for the Engineering of the Enteric Nervous System. Sci. Rep. 2019, 9, 5583. [Google Scholar] [CrossRef]
- Brun, P.; Zamuner, A.; Cassari, L.; D’Auria, G.; Falcigno, L.; Franchi, S.; Contini, G.; Marsotto, M.; Battocchio, C.; Iucci, G.; et al. Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering. Nanomaterials 2021, 11, 2784. [Google Scholar] [CrossRef] [PubMed]
- Cassari, L.; Brun, P.; Di Foggia, M.; Taddei, P.; Zamuner, A.; Pasquato, A.; De Stefanis, A.; Valentini, V.; Saceleanu, V.M.; Rau, J.V.; et al. Mn-Containing Bioactive Glass-Ceramics: BMP-2-Mimetic Peptide Covalent Grafting Boosts Human-Osteoblast Proliferation and Mineral Deposition. Materials 2022, 15, 4647. [Google Scholar] [CrossRef]
- Underwood, P.A.; Steele, J.G.; Dalton, B.A. Effects of Polystyrene Surface Chemistry on the Biological Activity of Solid Phase Fibronectin and Vitronectin, Analysed with Monoclonal Antibodies. J. Cell Sci. 1993, 104, 793–803. [Google Scholar] [CrossRef]
- Massia, S.P.; Hubbell, J.A. An RGD Spacing of 440 Nm Is Sufficient for Integrin Alpha V Beta 3-Mediated Fibroblast Spreading and 140 Nm for Focal Contact and Stress Fiber Formation. J. Cell Biol. 1991, 114, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Neff, J. Surface Modification for Controlled Studies of Cell–Ligand Interactions. Biomaterials 1999, 20, 2377–2393. [Google Scholar] [CrossRef] [PubMed]
- Grant, D.S.; Kinsella, J.L.; Fridman, R.; Auerbach, R.; Piasecki, B.A.; Yamada, Y.; Zain, M.; Kleinman, H.K. Interaction of Endothelial Cells with a Laminin A Chain Peptide (SIKVAV) in Vitro and Induction of Angiogenic Behavior in Vivo. J. Cell. Physiol. 1992, 153, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Saik, J.E.; Gould, D.J.; Dickinson, M.E.; West, J.L. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis. BioResearch Open Access 2013, 2, 241–249. [Google Scholar] [CrossRef]
- Grant, D.S.; Tashiro, K.-I.; Segui-Real, B.; Yamada, Y.; Martin, G.R.; Kleinman, H.K. Two Different Laminin Domains Mediate the Differentiation of Human Endothelial Cells into Capillary-like Structures in Vitro. Cell 1989, 58, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Hubbell, J.A.; Massia, S.P.; Desai, N.P.; Drumheller, P.D. Endothelial Cell-Selective Materials for Tissue Engineering in the Vascular Graft Via a New Receptor. Nat. Biotechnol. 1991, 9, 568–572. [Google Scholar] [CrossRef]
- Massia, S.P.; Hubbell, J.A. Vascular Endothelial Cell Adhesion and Spreading Promoted by the Peptide REDV of the IIICS Region of Plasma Fibronectin Is Mediated by Integrin Alpha 4 Beta 1. J. Biol. Chem. 1992, 267, 14019–14026. [Google Scholar] [CrossRef]
- Wei, Y.; Ji, Y.; Xiao, L.; Lin, Q.; Ji, J. Different Complex Surfaces of Polyethyleneglycol (PEG) and REDV Ligand to Enhance the Endothelial Cells Selectivity over Smooth Muscle Cells. Colloids Surf. B Biointerfaces 2011, 84, 369–378. [Google Scholar] [CrossRef]
- Butruk, B.; Bąbik, P.; Marczak, B.; Ciach, T. Surface Endothelialization of Polyurethanes. Procedia Eng. 2013, 59, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Khan, M.; Zhang, L.; Ren, X.; Guo, J.; Feng, Y.; Wei, S.; Zhang, W. Antimicrobial Surfaces Grafted Random Copolymers with REDV Peptide Beneficial for Endothelialization. J. Mater. Chem. B 2015, 3, 7682–7697. [Google Scholar] [CrossRef] [PubMed]
- Cadenaro, M.; Fontanive, L.; Navarra, C.O.; Gobbi, P.; Mazzoni, A.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L. Effect of Carboidiimide on Thermal Denaturation Temperature of Dentin Collagen. Dent. Mater. 2016, 32, 492–498. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices. Part 5, Tests for In Vitro Cytotoxicity. BSI: London, UK, 2009.
- Todesco, M.; Imran, S.J.; Fortunato, T.M.; Sandrin, D.; Borile, G.; Romanato, F.; Casarin, M.; Giuggioli, G.; Conte, F.; Marchesan, M.; et al. A New Detergent for the Effective Decellularization of Bovine and Porcine Pericardia. Biomimetics 2022, 7, 104. [Google Scholar] [CrossRef] [PubMed]
- Aguiari, P.; Iop, L.; Favaretto, F.; Fidalgo, C.M.L.; Naso, F.; Milan, G.; Vindigni, V.; Spina, M.; Bassetto, F.; Bagno, A.; et al. In Vitro Comparative Assessment of Decellularized Bovine Pericardial Patches and Commercial Bioprosthetic Heart Valves. Biomed. Mater. 2017, 12, 015021. [Google Scholar] [CrossRef]
- Bagno, A.; Aguiari, P.; Fiorese, M.; Iop, L.; Spina, M.; Gerosa, G. Native Bovine and Porcine Pericardia Respond to Load With Additive Recruitment of Collagen Fibers: Additive Recruitment of Collagen Fibers. Artif. Organs 2018, 42, 540–548. [Google Scholar] [CrossRef]
- Spina, M.; Ortolani, F.; Messlemani, A.E.; Gandaglia, A.; Bujan, J.; Garcia-Honduvilla, N.; Vesely, I.; Gerosa, G.; Casarotto, D.; Petrelli, L.; et al. Isolation of Intact Aortic Valve Scaffolds for Heart-valve Bioprostheses: Extracellular Matrix Structure, Prevention from Calcification, and Cell Repopulation Features. J. Biomed. Mater. Res. A 2003, 67, 1338–1350. [Google Scholar] [CrossRef]
- Fidalgo, C.; Iop, L.; Sciro, M.; Harder, M.; Mavrilas, D.; Korossis, S.; Bagno, A.; Palù, G.; Aguiari, P.; Gerosa, G. A Sterilization Method for Decellularized Xenogeneic Cardiovascular Scaffolds. Acta Biomater. 2018, 67, 282–294. [Google Scholar] [CrossRef]
- Amblard, M.; Fehrentz, J.-A.; Martinez, J.; Subra, G. Methods and Protocols of Modern Solid Phase Peptide Synthesis. Mol. Biotechnol. 2006, 33, 239–254. [Google Scholar] [CrossRef]
- Díaz-Mochón, J.J.; Bialy, L.; Bradley, M. Full Orthogonality between Dde and Fmoc: The Direct Synthesis of PNA−Peptide Conjugates. Org. Lett. 2004, 6, 1127–1129. [Google Scholar] [CrossRef]
- Schwartz, A.; Wang, L.; Early, E.; Gaigalas, A.; Zhang, Y.Z.; Marti, G.E.; Vogt, R.F. Quantitating Fluorescence Intensity from Fluorophore: The Definition of MESF Assignment. J. Res. Natl. Inst. Stand. Technol. 2002, 107, 83–91. [Google Scholar] [CrossRef]
- Gaigalas, A.K.; Wang, L.L.; Schwartz, A.; Marti, G.E.; Vogt, R.F. Quantitating Fluorescence Intensity from Fluorophore: Assignment of MESF Values. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- ASTM D1708-18; D20 Committee. Standard Test Method for Tensile Properties of Plastics by Use of Microtensile Specimens. ASTM International: West Conshohocken, PA, USA, 2018.
- Casarin, M.; Fortunato, T.M.; Imran, S.; Todesco, M.; Sandrin, D.; Borile, G.; Toniolo, I.; Marchesan, M.; Gerosa, G.; Bagno, A.; et al. Porcine Small Intestinal Submucosa (SIS) as a Suitable Scaffold for the Creation of a Tissue-Engineered Urinary Conduit: Decellularization, Biomechanical and Biocompatibility Characterization Using New Approaches. Int. J. Mol. Sci. 2022, 23, 2826. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, H.; Mahara, A.; Morimoto, N.; Yamaoka, T. REDV -modified Decellularized Microvascular Grafts for Arterial and Venous Reconstruction. J. Biomed. Mater. Res. A 2022, 110, 547–558. [Google Scholar] [CrossRef]
Working Concentration | Surface Density (mol/cm2) | |
---|---|---|
Serosa | Fibrosa | |
10−6 M REDV | 8.14 ± 1.77 × 10−16 | 1.00 ± 0.62 × 10−15 |
10−5 M REDV | 1.17 ± 0.37 × 10−13 | 1.01 ± 0.05 × 10−13 |
10−4 M REDV | 14.03 ± 6.14 × 10−12 | 13.60 ± 7.67 × 10−12 |
10−3 M REDV | 46.71 ± 8.07 × 10−12 | 34.22 ± 15.43 × 10−12 |
Time Point | DBP | 10−4 M REDV | 10−3 M REDV |
---|---|---|---|
24 h | 75.69 ± 24.43% | 98.65 ± 1.05% | 99.31 ± 0.50% |
7 days | 83.88 ± 14.67% | 98.23 ± 1.63% | 97.5 ± 5% |
14 days | 88.84 ± 4.74% | 98.88 ± 0.95% | 97.91 ± 1.22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cassari, L.; Todesco, M.; Zamuner, A.; Imran, S.J.; Casarin, M.; Sandrin, D.; Ródenas-Rochina, J.; Gomez Ribelles, J.L.; Romanato, F.; Bagno, A.; et al. Covalently Grafted Peptides to Decellularized Pericardium: Modulation of Surface Density. Int. J. Mol. Sci. 2023, 24, 2932. https://doi.org/10.3390/ijms24032932
Cassari L, Todesco M, Zamuner A, Imran SJ, Casarin M, Sandrin D, Ródenas-Rochina J, Gomez Ribelles JL, Romanato F, Bagno A, et al. Covalently Grafted Peptides to Decellularized Pericardium: Modulation of Surface Density. International Journal of Molecular Sciences. 2023; 24(3):2932. https://doi.org/10.3390/ijms24032932
Chicago/Turabian StyleCassari, Leonardo, Martina Todesco, Annj Zamuner, Saima Jalil Imran, Martina Casarin, Deborah Sandrin, Joaquin Ródenas-Rochina, José Luis Gomez Ribelles, Filippo Romanato, Andrea Bagno, and et al. 2023. "Covalently Grafted Peptides to Decellularized Pericardium: Modulation of Surface Density" International Journal of Molecular Sciences 24, no. 3: 2932. https://doi.org/10.3390/ijms24032932
APA StyleCassari, L., Todesco, M., Zamuner, A., Imran, S. J., Casarin, M., Sandrin, D., Ródenas-Rochina, J., Gomez Ribelles, J. L., Romanato, F., Bagno, A., Gerosa, G., & Dettin, M. (2023). Covalently Grafted Peptides to Decellularized Pericardium: Modulation of Surface Density. International Journal of Molecular Sciences, 24(3), 2932. https://doi.org/10.3390/ijms24032932