Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity
Abstract
:1. Introduction
2. Results
2.1. AVN-C Protects against Hearing Loss due to Cisplatin-Induced Ototoxicity
2.2. AVN-C Prevents Cisplatin-Induced OHC Depletion
2.3. AVN-C Prevents Cisplatin-Induced Synaptic Ribbon Degeneration
2.4. Trend in the Dose-Dependent Cytotoxicity of AVN-C and Cisplatin on HEI-OC1 Cells
2.5. AVN-C Suppresses Cisplatin-Induced ROS Production
2.6. AVN-C Alleviates Cisplatin-Induced Inflammation in HEI-OC1 Cells
2.7. AVN-C Inhibits Cisplatin-Induced DNA Damage
2.8. Proposed AVN-C Mechanism of Action in the Prevention of Cisplatin-Induced Ototoxicity
3. Discussion
4. Materials and Methods
4.1. Animal Care
4.2. Drug Treatment
4.3. Auditory Brainstem Response Assessment
4.4. Immunohistochemistry for OHCs and Presynaptic Ribbons
4.5. Counting of OHCs and Presynaptic Ribbons
4.6. Cell Culture
4.7. Cell Viability Assessment
4.8. Measurement of ROS
4.9. H2AX Foci Staining in the Nucleus
4.10. RNA Isolation and Real-Time PCR
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Bass, J.K.; Knight, K.R.; Yock, T.I.; Chang, K.W.; Cipkala, D.; Grewal, S.S. Evaluation and management of hearing loss in survivors of childhood and adolescent cancers: A report from the children’s oncology group. Pediatr. Blood Cancer 2016, 63, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Maric, G. GPNMB in Triple-Negative Breast Cancers: Elucidating Molecular Mechanisms of Action; McGill University: Montreal, QC, Canada, 2019. [Google Scholar]
- Qi, L.; Luo, Q.; Zhang, Y.; Jia, F.; Zhao, Y.; Wang, F. Advances in toxicological research of the anticancer drug cisplatin. Chem. Res. Toxicol. 2019, 32, 1469–1486. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lieb, J.D.; Sancar, A.; Adar, S. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. Proc. Natl. Acad. Sci. USA 2016, 113, 11507–11512. [Google Scholar] [PubMed]
- Marti, T.M.; Hefner, E.; Feeney, L.; Natale, V.; Cleaver, J.E. H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc. Natl. Acad. Sci. USA 2006, 103, 9891–9896. [Google Scholar] [CrossRef]
- Park, E.J.; Chan, D.W.; Park, J.H.; Oettinger, M.A.; Kwon, J. DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res. 2003, 31, 6819–6827. [Google Scholar] [CrossRef]
- Wang, H.; Wang, M.; Wang, H.; Böcker, W.; Iliakis, G. Complex H2AX phosphorylation patterns by multiple kinases including ATM and DNA-PK in human cells exposed to ionizing radiation and treated with kinase inhibitors. J. Cell. Physiol. 2005, 202, 492–502. [Google Scholar]
- Paull, T.T.; Rogakou, E.P.; Yamazaki, V.; Kirchgessner, C.U.; Gellert, M.; Bonner, W.M. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 2000, 10, 886–895. [Google Scholar]
- Guo, W.; Nie, L.; Wu, D.; Wise, M.L.; Collins, F.W.; Meydani, S.N.; Meydani, M. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro. Nutr. Cancer 2010, 62, 1007–1016. [Google Scholar] [CrossRef]
- Umugire, A.; Lee, S.; Kim, D.; Choi, M.; Kim, H.-S.; Cho, H.-H. Avenanthramide-C prevents noise-and drug-induced hearing loss while protecting auditory hair cells from oxidative stress. Cell Death Discov. 2019, 5, 115. [Google Scholar] [CrossRef]
- Umugire, A.; Choi, Y.; Lee, S.; Cho, H.-H. Efficiency of antioxidant Avenanthramide-C on high-dose methotrexate-induced ototoxicity in mice. PLoS ONE 2022, 17, e0266108. [Google Scholar]
- Vermorken, J.B.; Remenar, E.; Van Herpen, C.; Gorlia, T.; Mesia, R.; Degardin, M.; Stewart, J.S.; Jelic, S.; Betka, J.; Preiss, J.H. Cisplatin, fluorouracil, and docetaxel in unresectable head and neck cancer. N. Engl. J. Med. 2007, 357, 1695–1704. [Google Scholar] [CrossRef] [PubMed]
- Schacht, J.; Talaska, A.E.; Rybak, L.P. Cisplatin and aminoglycoside antibiotics: Hearing loss and its prevention. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2012, 295, 1837–1850. [Google Scholar] [CrossRef] [PubMed]
- Alchin, K.F. Ototoxicity in Patients Receiving Concurrent Cisplatin and Cranial Irradiation Therapy for the Treatment of Head and Neck Cancers: An Audiometric Follow-Up. Master’s Thesis, University of Canterbury, Christchurch, New Zealand, 2010. [Google Scholar]
- Forge, A. Ototoxicity. In Scott-Brown’s Otorhinolaryngology Head and Neck Surgery; CRC Press: Boca Raton, FL, USA, 2018; pp. 721–737. [Google Scholar]
- Rolland, V.; Meyer, F.; Guitton, M.J.; Bussières, R.; Philippon, D.; Bairati, I.; Leclerc, M.; Côté, M. A randomized controlled trial to test the efficacy of trans-tympanic injections of a sodium thiosulfate gel to prevent cisplatin-induced ototoxicity in patients with head and neck cancer. J. Otolaryngol. Head Neck Surg. 2019, 48, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Bai, X.; Li, L.; Li, J.; Wang, H. Forskolin protects against cisplatin-induced ototoxicity by inhibiting apoptosis and ROS production. Biomed. Pharmacother. 2018, 99, 530–536. [Google Scholar]
- Adachi, S.; Ogasawara, T.; Tsubamoto, H.; Oku, H.; Hori, Y.; Tsuji, Y.; Takemura, T.; Koyama, K. Intravenous nedaplatin and intraarterial cisplatin with transcatheter arterial embolization for patients with locally advanced uterine cervical cancer. Int. J. Clin. Pharmacol. Res. 2001, 21, 105–110. [Google Scholar]
- Park, C.-M.; Park, M.-J.; Kwak, H.-J.; Moon, S.-I.; Yoo, D.-H.; Lee, H.-C.; Park, I.-C.; Rhee, C.H.; Hong, S.-I. Induction of p53-mediated apoptosis and recovery of chemosensitivity through p53 transduction in human glioblastoma cells by cisplatin. Int. J. Oncol. 2006, 28, 119–125. [Google Scholar] [CrossRef]
- Takeno, S.; Harrison, R.; Mount, R.; Wake, M.; Harada, Y. Induction of selective inner hair cell damage by carboplatin. Scanning Microsc. 1994, 8, 10. [Google Scholar]
- Li, Y.; Ding, D.; Jiang, H.; Fu, Y.; Salvi, R. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox. Res. 2011, 20, 307–319. [Google Scholar]
- Callejo, A.; Sedó-Cabezón, L.; Juan, I.D.; Llorens, J. Cisplatin-induced ototoxicity: Effects, mechanisms and protection strategies. Toxics 2015, 3, 268–293. [Google Scholar]
- Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene 2012, 31, 1869–1883. [Google Scholar] [CrossRef]
- Quasthoff, S.; Hartung, H.P. Chemotherapy-induced peripheral neuropathy. J. Neurol. 2002, 249, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Lee, B.; Kim, Y.-R.; Kim, M.-A.; Ryu, N.; Kim, U.-K.; Baek, J.-I.; Lee, K.-Y. Evaluating protective and therapeutic effects of alpha-lipoic acid on cisplatin-induced ototoxicity. Cell Death Dis. 2018, 9, 827. [Google Scholar] [PubMed]
- Kim, H.-J.; Pandit, A.; Oh, G.-S.; Shen, A.; Lee, S.-B.; Khadka, D.; Lee, S.; Shim, H.; Yang, S.-H.; Cho, E.-Y. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD+ metabolism. Hear. Res. 2016, 333, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Borse, V.; Sheth, S.; Sheehan, K.; Ghosh, S.; Tupal, S.; Jajoo, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J. Neurosci. 2016, 36, 3962–3977. [Google Scholar]
- Kim, S.-J.; Hur, J.H.; Park, C.; Kim, H.-J.; Oh, G.-S.; Lee, J.N.; Yoo, S.-J.; Choe, S.-K.; So, H.-S.; Lim, D.J. Bucillamine prevents cisplatin-induced ototoxicity through induction of glutathione and antioxidant genes. Exp. Mol. Med. 2015, 47, e142. [Google Scholar]
- Matthews, G.; Fuchs, P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 2010, 11, 812–822. [Google Scholar] [CrossRef]
- Bakay, W.M.H.; Anderson, L.A.; Garcia-Lazaro, J.A.; McAlpine, D.; Schaette, R. Hidden hearing loss selectively impairs neural adaptation to loud sound environments. Nat. Commun. 2018, 9, 4298. [Google Scholar] [CrossRef]
- Sun, S.; Sun, M.; Zhang, Y.; Cheng, C.; Waqas, M.; Yu, H.; He, Y.; Xu, B.; Wang, L.; Wang, J. In vivo overexpression of X-linked inhibitor of apoptosis protein protects against neomycin-induced hair cell loss in the apical turn of the cochlea during the ototoxic-sensitive period. Front. Cell. Neurosci. 2014, 8, 248. [Google Scholar]
- Borse, V.; Al Aameri, R.F.; Sheehan, K.; Sheth, S.; Kaur, T.; Mukherjea, D.; Tupal, S.; Lowy, M.; Ghosh, S.; Dhukhwa, A. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis. 2017, 8, e2921. [Google Scholar] [CrossRef]
- Ghosh, S.; Sheth, S.; Sheehan, K.; Mukherjea, D.; Dhukhwa, A.; Borse, V.; Rybak, L.P.; Ramkumar, V. The endocannabinoid/cannabinoid receptor 2 system protects against cisplatin-induced hearing loss. Front. Cell. Neurosci. 2018, 12, 271. [Google Scholar] [CrossRef]
- Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J. Neurosci. 2008, 28, 13056–13065. [Google Scholar]
- Ramkumar, V.; Mukherjea, D.; Dhukhwa, A.; Rybak, L.P. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011, 2, e180. [Google Scholar] [CrossRef]
- Clerici, W.J.; Yang, L. Direct effects of intraperilymphatic reactive oxygen species generation on cochlear function. Hear. Res. 1996, 101, 14–22. [Google Scholar]
- Rybak, L.P.; Mukherjea, D.; Jajoo, S.; Ramkumar, V. Cisplatin ototoxicity and protection: Clinical and experimental studies. Tohoku J. Exp. Med. 2009, 219, 177–186. [Google Scholar]
- Buran, B.N.; Elkins, S.; Kempton, J.B.; Porsov, E.V.; Brigande, J.V.; David, S.V. Optimizing auditory brainstem response acquisition using interleaved frequencies. J. Assoc. Res. Otolaryngol. 2020, 21, 225–242. [Google Scholar] [CrossRef]
- Colmenárez-Raga, A.C.; Díaz, I.; Pernia, M.; Pérez-González, D.; Delgado-García, J.M.; Carro, J.; Plaza, I.; Merchán, M.A. Reversible functional changes evoked by anodal epidural direct current electrical stimulation of the rat auditory cortex. Front. Neurosci. 2019, 13, 356. [Google Scholar]
iNOS forward | 5′-GCATGGAACAGTATAAGGCAAACA-3′ |
iNOS reverse | 5′-GTTTCTGGTCGATGTCATGAGCAA-3′ |
COX2 forward | 5′-GCATGGAACAGTATAAGGCAAACA-3′ |
COX2 reverse | 5′-GTTTCTGGTCGATGTCATGAGCAA-3′ |
IL-1β forward | 5′-GCTGCTTCCAAACCTTTGAC-3′ |
IL-1β reverse | 5′-AGGCCACAGGTATTTTGTCG-3′ |
TNFα forward | 5′-CCACCACGCTCTTCTGTCTA-3′ |
TNFα reverse | 5′-CACTTGGTGGTTTGCTACGA-3′ |
IL-6 forward | 5′-TCCAGTTGCCTTCTTGGGAC-3′ |
IL-6 reverse | 5′-GTACTCCAGAAGACCAGAGG-3′ |
GAPDH forward | 5′-ACCACAGTCCATGCCATCAC-3′ |
GAPDH reverse | 5′-TCC ACC ACC CTG TTG CTG TA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umugire, A.; Nam, Y.S.; Nam, Y.E.; Choi, Y.M.; Choi, S.M.; Lee, S.; Cho, J.H.; Cho, H.-H. Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity. Int. J. Mol. Sci. 2023, 24, 2947. https://doi.org/10.3390/ijms24032947
Umugire A, Nam YS, Nam YE, Choi YM, Choi SM, Lee S, Cho JH, Cho H-H. Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity. International Journal of Molecular Sciences. 2023; 24(3):2947. https://doi.org/10.3390/ijms24032947
Chicago/Turabian StyleUmugire, Alphonse, Yoon Seok Nam, Ye Eun Nam, Young Mi Choi, Se Myeong Choi, Sungsu Lee, Jong Hyun Cho, and Hyong-Ho Cho. 2023. "Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity" International Journal of Molecular Sciences 24, no. 3: 2947. https://doi.org/10.3390/ijms24032947
APA StyleUmugire, A., Nam, Y. S., Nam, Y. E., Choi, Y. M., Choi, S. M., Lee, S., Cho, J. H., & Cho, H. -H. (2023). Protective Effect of Avenanthramide-C on Auditory Hair Cells against Oxidative Stress, Inflammatory Cytokines, and DNA Damage in Cisplatin-Induced Ototoxicity. International Journal of Molecular Sciences, 24(3), 2947. https://doi.org/10.3390/ijms24032947